首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new approach for the fluorescence labeling of an aminoacyl-tRNA at the 3'-end is applied to study its interaction with bacterial elongation factor Tu (EF-Tu) and GTP at equilibrium. The penultimate cytidine residue in yeast tRNATyr-C-C-A was replaced by 2-thiocytidine (s2C). The resulting tRNATyr-C-s2C-A was aminoacylated and then alkylated at the s2C residue with N-(iodoacetylaminoethyl)-5-naphthylamine-1-sulfonic acid (1,5-I-AEDANS). A greater than 100% increase in the intensity of fluorescence emission of the modified Tyr-tRNATyr-C-s2C(AEDANS)-A was observed upon interaction with EF-Tu.GTP. A ternary complex dissociation constant of 1.27 X 10(-8) M was calculated from this direct interaction. Using such fluorescent aminoacyl-tRNA, the affinity of any unmodified aminoacyl-tRNA can be determined by competition experiments. By this approach, we show here that the affinity of unmodified Tyr-tRNATyr-C-C-A is identical to that of the modified Tyr-tRNATyr. This indicates that the fluorescence labeling procedure applied does not alter the affinity of the aminoacyl-tRNA for EF-Tu.GTP. The introduction of 2-thiocytidine into nucleic acids and their labeling with spectroscopic reporter groups may provide a unique means of investigating various types of nucleic acid-protein interactions.  相似文献   

2.
The 5'-terminal phosphate of tRNAPhe from yeast was removed using tRNAPhe lacking its 3'-terminal adenosine. After regeneration of the C-C-A terminus this tRNA was investigated in following reactions: aminoacylation, spontaneous hydrolysis of the amino acid from aminoacyl-tRNA, aminoacyl-tRNA.EF-Tu.GTP ternary complex formation and poly(U)-dependent synthesis of poly(Phe). The absence of the 5'-terminal phosphate of Phe-tRNAPhe does not influence the rate of hydrolysis of the amino acid or the ability of this rRNA to participate in complex formation with EF-Tu.GTP. The translation of the polyuridylic acid is slightly inhibited whereas the rate and extent of the enzymatic aminoacylation is not affected.  相似文献   

3.
D Ringer  S Chládek 《Biochemistry》1976,15(13):2759-2765
The mechanism of enzymatic binding of AAtRNA to the acceptor site Escherichia coli ribosomes has been studied using the following aminoacyl oligonucleotides as models of the 3' terminus of AA-tRNA: C-A-Phe, C-A-(2'-Phe)H, and C-A(2'H)Phe. T-psi-C-Gp was used as a model of loop IV of tRNA. The EF-T dependent binding of Phe-tRNA to ribosomes (in the presence of either GTP or GMPPCP) and the GTPase activity associated with EF-T dependent binding of the Phe-tRNA were inhibited by C-A-Phe,C-A(2'Phe)H, and C-A(2'H)Phe. These aminoacyl oligonucleotides inhibit both the formation of ternary complex EF-Tu-GTP-AA-tRNA and the interaction of this complex with the ribosomal A site. The uncoupled EF-Tu dependent GTPase (in the absence of AA-tRNA) was also inhibited by C-A-Phe, C-A(2'Phe)H, and C-A(2'H)Phe, while nonenzymatic binding of Phe-tRNA to the ribosomal A site was inhibited by C-A-Phe and C-A(2'-Phe)H, but not by C-A(2'H)Phe. The tetranucleotide T-psi-C-Gp inhibited both enzyme binding of Phe-tRNA and EF-T dependent GTP hydrolysis. However, inhibition of the latter reaction occured at a lower concentration of T-psi-C-Gp suggesting a specific role of T-psi-C-Gp loop of AA-tRNA in the GTPase reaction. The role of the 2' and 3' isomers of AA-tRNA during enzymatic binding to ribosomes is discussed and it is suggested that 2' leads to 3' transacylation in AA-tRNA is a step which follows GTP hydrolysis but precedes peptide bond formation.  相似文献   

4.
The interactions of yeast tRNATyr, spin-labelled at position i6A-37 next to the anticodon, with EF-Tu . GTP and with Escherichia coli tRNAVal (which has a complementary anticodon) have been studied. The immobilization of the spin label upon ternary complex formation shows a conformational change of the anticodon region, although this part of tRNATyr is not in direct contact with the protein, as indicated by RNase T1 digestion. Upon anticodon-anticodon interaction, no conformational change of the anticodon loop of tRNATyr was observed.  相似文献   

5.
The site of interaction of aminoacyl-tRNA with elongation factor Tu   总被引:11,自引:3,他引:8       下载免费PDF全文
We have used RNases T1, T2 and A to digest two aminoacyl-tRNAs, Escherichia coli Phe-tRNAPhe and E. coli Met- tRNAMetm both in the naked forms and in ternary complexes with E. coli elongation factor Tu (EF-Tu) and GTP. An analysis of the 'footprinting' results has led to an interpretation that has localized the part of the three-dimensional structure of aminoacyl-tRNA covered by the protein in the ternary complex. In terms of the three-dimensional structure of tRNA established for yeast tRNAPhe, EF-Tu covers the aa-end, aa-stem, T-stem, and extra loop on the side of the L-shaped tRNA that exposes the extra loop.  相似文献   

6.
The interaction of Escherichia coli elongation factor Tu (EF-Tu) with elongation factor Ts (EF-Ts) and guanine nucleotides was studied by the stopped-flow technique, monitoring the fluorescence of tryptophan 184 in EF-Tu or of the mant group attached to the guanine nucleotide. Rate constants of all association and dissociation reactions among EF-Tu, EF-Ts, GDP, and GTP were determined. EF-Ts enhances the dissociation of GDP and GTP from EF-Tu by factors of 6 x 10(4) and 3 x 10(3), respectively. The loss of Mg(2+) alone, without EF-Ts, accounts for a 150-300-fold acceleration of GDP dissociation from EF-Tu.GDP, suggesting that the disruption of the Mg(2+) binding site alone does not explain the EF-Ts effect. Dissociation of EF-Ts from the ternary complexes with EF-Tu and GDP/GTP is 10(3)-10(4) times faster than from the binary complex EF-Tu.EF-Ts, indicating different structures and/or interactions of the factors in the binary and ternary complexes. Rate constants of EF-Ts binding to EF-Tu in the free or nucleotide-bound form or of GDP/GTP binding to the EF-Tu.EF-Ts complex range from 0.6 x 10(7) to 6 x 10(7) M(-1) s(-1). At in vivo concentrations of nucleotides and factors, the overall exchange rate, as calculated from the elemental rate constants, is 30 s(-1), which is compatible with the rate of protein synthesis in the cell.  相似文献   

7.
The influence of kirromycin on the elongation factor Tu (EF-Tu) in its binary and ternary complexes was investigated. The equilibrium constant for the binding of the antibiotic to EF-Tu . GDP and EF-Tu . GTP was determined by circular dichroism titrations to be 4 x 10(6) M-1, and to EF-Tu . GTP . aa-tRNA by a combination of circular dichroism titrations and hydrolysis protection experiments to be 2 x 10(6) M-1. In the presence of kirromycin the binding of aminoacyl-tRNAs to EF-Tu . GTP is weakened by a factor of two. The antibiotic changes the conformation of the ternary complex in such a way that the aminoacyl moiety of the aminoacyl-tRNA is more accessible to the non-enzymatic hydrolysis. It is concluded that this structural alteration is responsible for the inhibitory action of the antibiotic.  相似文献   

8.
The new thiazolyl peptide antibiotic GE2270 A, isolated from Planobispora rosea strain ATCC 53773, is shown to inhibit bacterial protein biosynthesis in vitro by affecting specifically the GTP-bound form of elongation factor Tu (EF-Tu). The 'off' rate of EF-Tu.GTP is slowed down 400-fold, locking GTP on EF-Tu, whereas EF-Tu.GDP is unaffected. Therefore, on the EF-Tu.guanine nucleotide interaction, GE2270 A mimicks the effect of aa-tRNA. In line with this, the binding of aa-tRNA to EF-Tu.GTP is hindered by the antibiotic, as shown by the absence of a stable ternary complex and the inhibition of the enzymatic binding of aa-tRNA to the ribosome. This blocks the elongation cycle. GE2270 A does not essentially modify the intrinsic GTPase activity of EF-Tu, but impairs the stimulation by ribosomes of this reaction. The negative effect of GE2270 A on the EF-Tu.GTP interaction with aa-tRNA bears similarities with that of the structurally unrelated pulvomycin, whereas marked differences were found by comparing the effects of these two antibiotics on EF-Tu.GDP. This work emphasizes the varieties of the transitional conformations which tune the EF-Tu interaction with GTP and GDP.  相似文献   

9.
tRNAPheE.coli was modified at accessible guanosine, cytidine, and adenosine residues using the chemical modification method described by Peattie and Gilbert [Proc. Natl Acad. Sci. USA, 77, 4679-4689 (1980)]. Modification characteristics of the tRNA in the free state, in the ternary complex with elongation factor EF-Tu and GTP and in the ribosomal A and P sites were compared. A special procedure was devised to monitor, exclusively, tRNA molecules in the aminoacylated state. In the free tRNA, the most reactive bases are confined to the A73-C-C-A sequence of the aminoacyl stem, the anticodon loop, the D-loop and the extra loop and the results correlate well with the three-dimensional structure of tRNAPheyeast determined by X-ray studies. The pattern of reactivity was not affected either by charging the tRNA with phenylalanine or by labelling the 3' terminus with pCp. In the ternary complex, with elongation factor EF-Tu and GTP, changes in modification were observed at two sites, A73-C-C-A at the 3' terminus and C-13 and C-17 in the D-loop region, which are about 6 nm apart; no difference was observed in the anticodon loop. tRNAPhe bound at the ribosomal A or P sites exhibited similar, but not identical, modification patterns. Whereas nucleotides C-74 and C-75 were strongly protected at both sites, the adjacent A-73 showed an enhanced reactivity in the A site. The anticodon region G34-A-A-ms2.6(1)A was also strongly protected at both sites. In addition, nucleotide A-21 was protected during A-site, but not P-site, binding.  相似文献   

10.
Time-resolved fluorescence spectroscopy was used to investigate the solution dynamics of Escherichia coli tRNAPhe, Phe-tRNAPhe, and Phe-tRNAPhe associated with GTP and elongation factor Tu (EF-Tu) in a ternary complex. Two fluorescence probes were employed: fluorescein, covalently bound to Phe-tRNAPhe at the s4U8 base (Phe-tRNAPhe-Fl8), and ethidium bromide, noncovalently associated with the tRNA (EB.Phe-tRNAPhe). The lifetimes observed for ethidium bromide were 1.89 ns, free in solution, and 26.3 ns, bound to its tight binding site on tRNA. Fluorescein-labeled tRNA had a lifetime of 4.3 ns, with no significant difference among the values for aminoacylated, unacylated, and EF-Tu-bound Phe-tRNAPhe-Fl8. Differential phase and modulation data for each fluorophore-tRNA system were fit with local and global Debye rotational relaxation times. Local motion of the labeled fluorescein in Phe-tRNAPhe-Fl8, tRNAPhe-Fl8, and Phe-tRNAPhe-Fl8.EF-Tu.GTP was characterized by rotational relaxation times of 2.7 +/- 0.5, 2.4 +/- 0.4, and 2.4 +/- 0.1 ns, respectively. These values are equal, within experimental error, and suggest that the rotational mobility of the s4U8-conjugated dye is unaffected by either tRNAPhe aminoacylation or ternary complex formation. Global rotational relaxation times for Phe-tRNAPhe-Fl8, 97 ns, and EB.Phe-tRNAPhe, 140 ns, were equivalent to those determined for the unacylated species, denoting little change in the overall size or shape of the tRNA molecule upon aminoacylation. These values for (Phe-)tRNA were larger than expected for a hydrated sphere of equivalent volume, 83 ns, and therefore confirm the asymmetric nature of the tRNA structure in solution.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
A fluorescence titration assay was used to detect the effects of various modifications of E.coli elongation factor Tu on the formation of the ternary complex with aminoacyl-tRNAs. The treatment of EF-Tu.GDP with TPCK, an analogue of the 3'terminus of aminoacyl-tRNA, was found to have no influence on the conversion of EF-Tu.GDP to 'active' EF-Tu.GTP, but does decrease the affinity of the activated protein for yeast aminoacyl-tRNA by more than three orders of magnitude. Modification of the elongation factor by limited cleavage with trypsin, leading to the excision of amino acid residues 45-58, has only a minor influence on ternary complex formation. The equilibrium dissociation constant of the ternary complex with this trypsin-treated EF-Tu.GTP and E.coli Phe-tRNA(Phe) is only one order of magnitude higher than that of the ternary complex with native EF-Tu. Mutations in the amino acid residues 222 and 375 of EF-Tu also have little effect on ternary complex formation. Compared with TPCK-treated EF-Tu, the affinities of the two mutant species, designated EF-tuAR and EF-TuBO respectively, for [AEDANS-s2C]Tyr-tRNA(Tyr) are only slightly reduced and in the same range as trypsin-cleaved EF-Tu.  相似文献   

12.
It has recently been shown that the non-formylated initiator Met-tRNAfMet from E. coli can form a stable ternary complex with the elongation factor EF-Tu and GTP. Using the protection of EF-Tu:GTP against spontaneous hydrolysis of the aminoacylester bond of Met-tRNAfMet, we confirm these results, and show that the protection is specific for the non-formylated form of the initiator tRNA. The ternary complex Met-tRNAfMet:EF-Tu:GTP can be isolated by column chromatography in a way similar to that demonstrated previously with EF-Tu complexed to the elongator Met-tRNAmMet. 32P-labeled Met-tRNAfMet within the ternary complex was analyzed by the footprinting technique. The pattern of initiator tRNA protection by EF-Tu against ribonuclease digestion is not significantly different from the one found previously for elongator tRNAs. These results lead us to suggest that the initiator tRNAfMet, under growth conditions which do not permit formylation, may to some extent function as an elongator tRNA.  相似文献   

13.
The ubiquity of elongation factor Tu (EF-Tu)-dependent conformational changes in amino-acyl-tRNA (aa-tRNA) and the origin of the binding energy associated with aa-tRNA.EF-Tu.GTP ternary complex formation have been examined spectroscopically. Fluorescein was attached covalently to the 4-thiouridine base at position 8 (s4U-8) in each of four elongator tRNAs (Ala, Met-m, Phe, and Val). Although the probes were chemically identical, their emission intensities in the free aa-tRNAs differed by nearly 3-fold, indicating that the dyes were in different environments and hence that the aa-tRNAs had different tertiary structures near s4U-8. Upon association with EF-Tu.GTP, the emission intensities increased by 244%, 57%, or 15% for three aa-tRNAs due to a change in tRNA conformation; the fourth aa-tRNA exhibited no fluorescence change upon binding to EF-Tu.GTP. Despite the great differences in the emission intensities of the free aa-tRNAs and in the magnitudes of their EF-Tu-dependent intensity increases, the emission intensity per aa-tRNA molecule was nearly the same (within 9% of the average) for the four aa-tRNAs when bound to EF-Tu-GTP. Thus, the binding of EF-Tu.GTP induced or selected a tRNA conformation near s4U-8 that was very similar, and possibly the same, for each aa-tRNA species. It therefore appears that EF-Tu functions, at least in part, by minimizing the conformational diversity in aa-tRNAs prior to their beginning the recognition and binding process at the single decoding site on the ribosome. Since an EF-Tu-dependent fluorescence change was also observed with fluorescein-labeled tRNA(Phe), the protein-dependent structural change is effected by direct interactions between EF-Tu and the tRNA and does not require the aminoacyl group. The Kd of the tRNA(Phe).EF-Tu.GTP ternary complex was determined, at equilibrium, to be 2.6 microM by the ability of the unacylated tRNA to compete with fluorescent Phe-tRNA for binding to the protein. Comparison of this Kd with that of the Phe-tRNA ternary complex showed that in this case the aminoacyl moiety contributed 4.3 kcal/mol toward ternary complex formation at 6 degrees C but that the bulk of the binding energy in the ternary complex was derived from direct protein-tRNA interactions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
The effects of GDP and of aurodox (N-methylkirromycin) on the affinity of elongation factor Tu (EF-Tu) for aminoacyl-tRNA (aa-tRNA) have been quantified spectroscopically by using Phe-tRNA(Phe)-Fl8, a functionally active analogue of Phe-tRNA(Phe) with a fluorescein dye convalently attached to the s4U-8 base. The association of EF-Tu.GDP with Phe-tRNA(Phe)-Fl8 resulted in an average increase of 33% in fluorescein emission intensity. This spectral change was used to monitor the extent of ternary complex formation as a function of EF-Tu.GDP concentration, and hence to obtain a dissociation constant, directly and at equilibrium, for the EF-Tu.GDP-containing ternary complex. The Kd for the Phe-tRNA(Phe)-Fl8.EF-Tu.GDP complex was found to average 28.5 microM, more than 33,000-fold greater than the Kd of the Phe-tRNA(Phe)-Fl8.EF-Tu.GTP complex under the same conditions. In terms of free energy, the delta G degree for ternary complex formation at 6 degrees C was -11.5 kcal/mol with GTP and -5.8 kcal/mol with GDP. Thus, the hydrolysis of the ternary complex GTP results in a dramatic decrease in the affinity of EF-Tu for aa-tRNA, thereby facilitating the release of EF-Tu.GDP from the aa-tRNA on the ribosome. Aurodox (200 microM) decreased the Kd of the GDP complex by nearly 20-fold, to 1.46 microM, and increased the Kd of the GTP complex by at least 6-fold. The binding of aurodox to EF-Tu therefore both considerably strengthens EF-Tu.GDP affinity for aa-tRNA and also weakens EF-Tu.GTP affinity for aa-tRNA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
T Pape  W Wintermeyer    M V Rodnina 《The EMBO journal》1998,17(24):7490-7497
The kinetic mechanism of elongation factor Tu (EF-Tu)-dependent binding of Phe-tRNAPhe to the A site of poly(U)-programmed Escherichia coli ribosomes has been established by pre-steady-state kinetic experiments. Six steps were distinguished kinetically, and their elemental rate constants were determined either by global fitting, or directly by dissociation experiments. Initial binding to the ribosome of the ternary complex EF-Tu.GTP.Phe-tRNAPhe is rapid (k1 = 110 and 60/micromM/s at 10 and 5 mM Mg2+, 20 degreesC) and readily reversible (k-1 = 25 and 30/s). Subsequent codon recognition (k2 = 100 and 80/s) stabilizes the complex in an Mg2+-dependent manner (k-2 = 0.2 and 2/s). It induces the GTPase conformation of EF-Tu (k3 = 500 and 55/s), instantaneously followed by GTP hydrolysis. Subsequent steps are independent of Mg2+. The EF-Tu conformation switches from the GTP- to the GDP-bound form (k4 = 60/s), and Phe-tRNAPhe is released from EF-Tu.GDP. The accommodation of Phe-tRNAPhe in the A site (k5 = 8/s) takes place independently of EF-Tu and is followed instantaneously by peptide bond formation. The slowest step is dissociation of EF-Tu.GDP from the ribosome (k6 = 4/s). A characteristic feature of the mechanism is the existence of two conformational rearrangements which limit the rates of the subsequent chemical steps of A-site binding.  相似文献   

16.
Transfer ribonucleic acids containing 2-thiocytidine in position 75 ([s2C]tRNAs) were prepared by incorporation of the corresponding cytidine analogue into 3'-shortened tRNA using ATP(CTP):tRNA nucleotidyltransferase. [s2C]tRNA was selectively alkylated with fluorescent N-iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine (1,5-I-AEDANS) on the 2-thiocytidine residue. The product [AEDANS-s2C]aminoacyl-tRNA, forms a ternary complex with Escherichia coli elongation factor Tu and GTP, leading to up to 130% fluorescence enhancement of the AEDANS chromophore. From fluorescence titration experiments, equilibrium dissociation constants of 0.24 nM, 0.22 nM and 0.60 nM were determined for yeast [AEDANS-s2C]Tyr-tRNATyr, yeast Tyr-tRNATyr, and the homologous E. coli Phe-tRNAPhe, respectively, interacting with E. coli elongation factor Tu.GTP. The measurement of the association and dissociation rates of the interaction of [AEDANS-s2C]Tyr-tRNATyr with EF-Tu.GTP and the temperature dependence of the resulting dissociation constants gave values of 55 J mol-1 K-1 for delta S degrees' and -34.7 kJ mol-1 for delta H degrees' of this reaction.  相似文献   

17.
Anborgh PH  Okamura S  Parmeggiani A 《Biochemistry》2004,43(49):15550-15556
The antibiotic pulvomycin is an inhibitor of protein synthesis that prevents the formation of the ternary complex between elongation factor (EF-) Tu.GTP and aminoacyl-tRNA. In this report, novel aspects of its action on EF-Tu are described. Pulvomycin markedly affects the equilibrium and kinetics of the EF-Tu-nucleotide interaction, particularly of the EF-Tu.GTP complex. The binding affinity of EF-Tu for GTP is increased 1000 times, mainly as the consequence of a dramatic decrease in the dissociation rate of this complex. In contrast, the affinity for GDP is decreased 10-fold due to a marked increase in the dissociation rate of EF-Tu.GDP (25-fold) that mimics the action of EF-Ts, the GDP/GTP exchange factor of EF-Tu. The effects of pulvomycin and EF-Ts can coexist and are simply additive, supporting the conclusion that these two ligands interact with different sites of EF-Tu. This is further confirmed on native PAGE by the ability of EF-Tu to bind the EF-Ts and the antibiotic simultaneously. Pulvomycin enhances the intrinsic EF-Tu GTPase activity, like kirromycin, though to a much more modest extent. As with kirromycin, this stimulation depends on the concentration and nature of the monovalent cations, Li(+) being the most effective one, followed by Na(+), K(+), and NH(4)(+). In the presence of pulvomycin (in contrast to kirromycin), aa-tRNA and/or ribosomes do not enhance the GTPase activity of EF-Tu. The property of pulvomycin to modify selectively the conformation(s) of EF-Tu is also supported by its effect on heat- and urea-dependent denaturation, and tryptic digestion of the protein. Specific differences and similarities between the action of pulvomycin and the other EF-Tu-specific antibiotics are described and discussed.  相似文献   

18.
A method is proposed for analysis of natural and chemically modified polynucleotides which consists in enzymatic conversion of the polymer or oligomer into nucleosides followed by cation-exchange chromotography on the microcolumns. By using the method developed it was shown that after treatment of the yeast tRNAVal and tRNAPhe with monoperphthalic acid N-oxides of adenosine and cytidine were formed. Poly (U, G) was not modified at a measurable extent whereas GMP was decomposed. In tRNAVal (yeast)the adenosines and cytosines of the anticodon loop and 3'-end are most reactive; it is the case for the C17 of the diHU-loop as well. These data are in agreement with the results obtained for tRNA modification with other reagents and for limited enzymatic hydrolysis of the tRNAVal. The limitations of the reaction of the monoperphthalate with nucleic acids are briefly discussed.  相似文献   

19.
M V Rodnina  R Fricke  L Kuhn    W Wintermeyer 《The EMBO journal》1995,14(11):2613-2619
The mechanisms by which elongation factor Tu (EF-Tu) promotes the binding of aminoacyl-tRNA to the A site of the ribosome and, in particular, how GTP hydrolysis by EF-Tu is triggered on the ribosome, are not understood. We report steady-state and time-resolved fluorescence measurements, performed in the Escherichia coli system, in which the interaction of the complex EF-Tu.GTP.Phe-tRNAPhe with the ribosomal A site is monitored by the fluorescence changes of either mant-dGTP [3'-O-(N-methylanthraniloyl)-2-deoxyguanosine triphosphate], replacing GTP in the complex, or of wybutine in the anticodon loop of the tRNA. Additionally, GTP hydrolysis is measured by the quench-flow technique. We find that codon-anticodon interaction induces a rapid rearrangement within the G domain of EF-Tu around the bound nucleotide, which is followed by GTP hydrolysis at an approximately 1.5-fold lower rate. In the presence of kirromycin, the activated conformation of EF-Tu appears to be frozen. The steps following GTP hydrolysis--the switch of EF-Tu to the GDP-bound conformation, the release of aminoacyl-tRNA from EF-Tu to the A site, and the dissociation of EF-Tu-GDP from the ribosome--which are altogether suppressed by kirromycin, are not distinguished kinetically. The results suggest that codon recognition by the ternary complex on the ribosome initiates a series of structural rearrangements resulting in a conformational change of EF-Tu, possibly involving the effector region, which, in turn, triggers GTP hydrolysis.  相似文献   

20.
Catalytic properties of the elongation factors from Thermus thermophilus HB8 have been studied and compared with those of the factors from Escherichia coli. 1. The formation of a ternary guanine-nucleotide . EF-Tu . EF-Ts complex was demonstrated by gel filtration of the T. thermophilus EF-Tu . EF-Ts complex on a Sephadex G-150 column equilibrated with guanine nucleotide. The occurrence of this type of complex has not yet been proved with the factors from E. coli. 2. The dissociation constants for the complexes of T. thermophilus EF-Tu . EF-Ts with GDP and GTP were 6.1 x 10(-7) M and 1.9 x 10(-6) M respectively. On the other hand, T. thermophilus EF-Tu interacted with GDP and GTP with dissociation constants of 1.1 x 10(-9) M and 5.8 x 10(-8) M respectively. This suggests that the association of EF-Ts with EF-Tu lowered the affinity of EF-Tu for GDP by a factor of about 600 and facilitated the nucleotide exchange reaction. 3. Although the T. thermophilus EF-Tu . EF-Ts complex hardly dissociates into EF-Tu and EF-Ts, a rapid exchange was observed between free EF-Ts and the EF-Tu . EF-Ts complex using 3H-labelled EF-Ts. The exchange reaction was independent on the presence or absence of guanine nucleotides. 4. Based on the above findings, an improved reaction mechanism for the regeneration of EF-Tu . GTP from EF-Tu . GDP is proposed. 5. Studies on the functional interchangeability of EF-Tu and EF-Ts between T. thermophilus and E. coli has revealed that the factors function much more efficiently in the homologous than in the heterologous combination. 6. T. thermophilus EF-Ts could bind E. coli EF-Tu to form an EF-Tu (E. coli) . EF-Ts (T. thermophilus hybrid complex. The complex was found to exist in a dimeric form indicating that the property to form a dimer is attributable to T. thermophilus EF-Ts. On the other hand, no stable complex between E. coli EF-Ts and T. thermophilus EF-Tu has been isolated. 7. The uncoupled GTPase activity of T. thermophilus EF-G was much lower than that of E. coli EF-G. T. thermophilus EF-G formed a relatively stable binary EF-G . GDP complex, which could be isolated on a nitrocellulose membrane filter. The Kd values for EF-G . GDP and EF-G . GTP were 6.7 x 10(-7) M and 1.2 x 10(-5) M respectively. The ternary T. thermophilus EF-G . GDP . ribosome complex was again very stable and could be isolated in the absence of fusidic acid. The stability of the latter complex is probably the cause of the low uncoupled GTPase activity of T. thermophilus EF-G.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号