首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The microzonation of O2 respiration, H2S oxidation, and SO42- reduction in aerobic trickling-filter biofilms was studied by measuring concentration profiles at high spatial resolution (25 to 100 μm) with microsensors for O2, S2-, and pH. Specific reaction rates were calculated from measured concentration profiles by using a simple one-dimensional diffusion reaction model. The importance of electron acceptor and electron donor availability for the microzonation of respiratory processes and their reaction rates was investigated. Oxygen respiration was found in the upper 0.2 to 0.4 mm of the biofilm, whereas sulfate reduction occurred in deeper, anoxic parts of the biofilm. Sulfate reduction accounted for up to 50% of the total mineralization of organic carbon in the biofilms. All H2S produced from sulfate reduction was reoxidized by O2 in a narrow reaction zone, and no H2S escaped to the overlying water. Turnover times of H2S and O2 in the reaction zone were only a few seconds owing to rapid bacterial H2S oxidation. Anaerobic H2S oxidation with NO3- could be induced by addition of nitrate to the medium. Total sulfate reduction rates increased when the availability of SO42- or organic substrate increased as a result of deepening of the sulfate reduction zone or an increase in the sulfate reduction intensity, respectively.  相似文献   

2.
滇西北高原纳帕海湿地土壤氮矿化特征   总被引:4,自引:4,他引:4  
解成杰  郭雪莲  余磊朝  许静 《生态学报》2013,33(24):7782-7787
采用树脂芯原位培育法,研究了纳帕海沼泽、沼泽化草甸和草甸土壤氮的矿化特征。结果表明,铵态氮(NH4+-N)为沼泽、沼泽化草甸土壤中无机氮的主要存在形式,分别占无机氮含量的96.76%和75.24%,而硝态氮(NO3--N)为草甸土壤中无机氮的主要存在形式,占无机氮含量的58.77%。植物生长期内,纳帕海湿地土壤的净氮矿化速率表现为沼泽化草甸 > 草甸 > 沼泽,表明干湿交替的土壤环境更利于土壤氮矿化作用的进行,土壤中氮素有效性和维持植物可利用氮素的能力更强。整个生长季,沼泽和草甸土壤氮矿化为硝化作用,而沼泽化草甸土壤氮矿化为氨化作用。土壤硝态氮含量、有机质含量、碳氮比和含水量均对纳帕海沼泽、沼泽化草甸和草甸土壤的氮矿化产生显著影响。  相似文献   

3.
Epilimnetic sulfate reduction and its relationship to lake acidification   总被引:2,自引:11,他引:2  
Sulfate reduction occurred from 0–3 cm below the surface of the epilimnetic sediments of three northwestern Ontario lakes, including L.223, which has been experimentally acidified by additions of sulfuric acid. Shallow water sites were conducive to SO4 2– reduction because decomposition in these predominantly sandy sediments caused oxygen concentrations to decrease rapidly within mm below the interface. The occurrence of methanogenesis just below the depth of minimum SO4 2- concentration demonstrated that availability of organic carbon was not a limiting factor for sulphate reduction.Laboratory studies showed that SO4 2- reduction rates in mixed sediments were lower at pH 4 than at pH 6. However, sulfate gradients in sediments indicated that there was no effect of acidification on sulfate reduction in situ. This was probably because microbial H+ consumption in the epilimnetic sediments maintained steep pH gradients below the sediment-water interface. The pH increased from = 5.0 to 6.5 or higher by a depth of 3.0 cm into the sediments.  相似文献   

4.
张逸飞  刘小慧  杨平  黄佳芳  郭谦谦  仝川 《生态学报》2018,38(13):4715-4723
2015年12月—2016年10月,每月小潮日原位定期向闽江口塔礁洲淡水感潮野慈姑(Sagittaria trifolia L.)湿地施加剂量为60、120 kg S hm~(-2)a~(-1)的K_2SO_4溶液(分别记做S-60和S-120),探讨模拟硫酸根(SO_4~(2-))沉降对河口淡水感潮湿地甲烷(CH4)排放通量及间隙水SO_4~(2-)浓度的影响。对照、S-60和S-120处理组CH_4排放通量年均值分别为(7.88±1.00)mg h~(-1)m~(-2)、(6.55±0.97)mg h~(-1)m~(-2)和(6.66±1.49)mg h~(-1)m~(-2)。在年尺度上,两个高强度模拟SO_4~(2-)沉降处理组均未显著降低闽江口淡水感潮野慈姑湿地CH_4排放通量(P0.05),即高强度SO_4~(2-)沉降不会对河口淡水感潮湿地CH_4排放通量产生类似于其对泥炭湿地和水稻田的显著抑制效应。在年尺度以及秋、冬季,两个施加K_2SO_4溶液处理显著增加了野慈姑湿地10 cm深度土壤间隙水SO_4~(2-)浓度。对于各个处理组,温度较高的夏、秋季CH_4排放通量均显著高于温度相对较低的冬、春季(P0.05)。不同处理组CH_4排放通量均与土壤温度呈显著正相关关系,温度仍然是影响亚热带河口淡水感潮湿地CH_4排放通量的重要环境因子。  相似文献   

5.
Cermelj  Branko  Faganeli  Jadran 《Hydrobiologia》2003,494(1-3):193-199
Anoxic degradation of sedimentary biogenic debris using closed sediment incubation experiments was studied in eutrophic subalpine Lake Bled (NW Slovenia) which, for most of the year, has an anoxic hypolimnion. Production rates of dissolved inorganic carbon (DIC), NH4 +, PO4 3- and dissolved Si, and reduction rates of SO4 2- were measured and anoxic mineralization rates were modelled using G-model. The depth profiles indicated major mineralization of biogenic debris and SO4 2- reduction near the sediment surface. A comparison between depth integrated anoxic mineralization rates and diffusive benthic fluxes of DIC, NH4 + and PO4 3- showed that the anoxic incubation experiments provide a good estimate of N degradation of biogenic debris. The contributions of SO4 2- reduction and acetate fermentation in NH4 + production are about 30 and 70%, respectively. The DIC production accounted for only 15% of DIC benthic flux, indicating that methanogenesis and oxidation of methane provides 80% of this flux. Only about 30% of PO4 3- was released because phosphate precipitated in the closed incubation experiments. The depth integrated production of Si accounts for 70–80% of Si benthic fluxes indicating intense dissolution of biogenic Si in the surficial lake sediment.  相似文献   

6.
淹水条件下控释氮肥对污染红壤中重金属有效性的影响   总被引:2,自引:0,他引:2  
采用淹水培养方法研究了不同氮水平(100、200和400 mg/kg,分别记为1、2、3)下普通尿素(PU)、硫包膜尿素(SCU)、树脂包膜尿素(PCU)和硫加树脂双层包膜尿素(SPCU)对污染红壤中Cd、Pb、Cu、Zn有效性的影响.结果表明,不同包膜尿素对土壤pH值和水溶性SO42-含量有较大影响.各施氮处理红壤pH值随着施氮量的增加(除5d时PU和60 d时SCU)而增加,不同包膜尿素对土壤中水溶性SO42-含量有较大影响,在同一施氮水平下不同包膜尿素处理间土壤pH值和土壤中水溶性SO42-含量差异较大.60 d培养期间PU、SCU、PCU和SPCU处理pH值比对照分别升高0.17-0.38、0.08-0.27、0.07-0.36和0.10-0.21;水溶性SO42-含量PU、SCU和PCU处理比对照分别升高39.5%-157.3%、40.9%-94.5%和7.55%-55.8%,而SPCU处理降低5.67%-90.7%.不同尿素类型和氮肥的施用量对红壤Cd、Pb、Cu和Zn有效性的影响均存在显著差异.60 d培养期间红壤有效态Cd含量以树脂包膜尿素100 mg N/kg下最低,其有效态Cd含量比对照显著降低20.7%-69.8%;有效态Pb、Cu和Zn含量以普通尿素400 mg N/kg下最低,其有效态Pb、Cu和Zn含量比对照分别显著降低17.0%-54.2%、18.5%-34.6%和15.6%-59.5%.随施氮量提高,PU处理有效态Cd含量先升高后降低,有效态Pb、Cu和Zn含量逐渐降低;SCU处理有效态Pb含量逐渐降低,有效态Cd、Cu和Zn含量变化规律不一致;PCU处理有效态Cd含量逐渐升高,有效态Pb、Cu和Zn含量变化规律不一致;SPCU处理有效态Cd、Pb、Cu和Zn含量逐渐降低.有效态Pb和Zn含量与pH值和水溶性SO42-含量呈显著负相关,有效态Cd与水溶性SO42-含量呈显著正相关.在多重金属污染红壤中,可考虑不同控释氮肥的配合使用,降低土壤中重金属的有效性.  相似文献   

7.
We investigated whether groundwater abstraction for urban water supply diminishes the storage of carbon (C), nitrogen (N), and organic matter in the soil of rural wetlands. Wetland soil organic matter (SOM) benefits air and water quality by sequestering large masses of C and N. Yet, the accumulation of wetland SOM depends on soil inundation, so we hypothesized that groundwater abstraction would diminish stocks of SOM, C, and N in wetland soils. Predictions of this hypothesis were tested in two types of subtropical, depressional‐basin wetland: forested swamps and herbaceous‐vegetation marshes. In west‐central Florida, >650 ML groundwater day?1 are abstracted for use primarily in the Tampa Bay metropolis. At higher abstraction volumes, water tables were lower and wetlands had shorter hydroperiods (less time inundated). In turn, wetlands with shorter hydroperiods had 50–60% less SOM, C, and N per kg soil. In swamps, SOM loss caused soil bulk density to double, so areal soil C and N storage per m2 through 30.5 cm depth was diminished by 25–30% in short‐hydroperiod swamps. In herbaceous‐vegetation marshes, short hydroperiods caused a sharper decline in N than in C. Soil organic matter, C, and N pools were not correlated with soil texture or with wetland draining‐reflooding frequency. Many years of shortened hydroperiod were probably required to diminish soil organic matter, C, and N pools by the magnitudes we observed. This diminution might have occurred decades ago, but could be maintained contemporarily by the failure each year of chronically drained soils to retain new organic matter inputs. In sum, our study attributes the contraction of hydroperiod and loss of soil organic matter, C, and N from rural wetlands to groundwater abstraction performed largely for urban water supply, revealing teleconnections between rural ecosystem change and urban resource demand.  相似文献   

8.
The fate of immobilized N in soils is one of the great uncertainties in predicting C sequestration at increased CO2 and N deposition. In a dual isotope tracer experiment (13C, 15N) within a 4‐year CO2 enrichment (+200 ppmv) study with forest model ecosystems, we (i) quantified the effects of elevated CO2 on the partitioning of N; (ii) traced immobilized N into physically separated pools of soil organic matter (SOM) with turnover rates known from their 13C signals; and (iii) estimated the remobilization and thus, the bio‐availability of newly sequestered C and N. (1) CO2 enrichment significantly decreased NO3? concentrations in soil waters and export from 1.5 m deep lysimeters by 30–80%. Consequently, elevated CO2 increased the overall retention of N in the model ecosystems. (2) About 60–80% of added 15NH415NO3 were retained in soils. The clay fraction was the greatest sink for the immobilized 15N sequestering 50–60% of the total new soil N. SOM associated with clay contained only 25% of the total new soil C pool and had small C/N ratios (<13), indicating that it consists of humified organic matter with a relatively slow turn over rate. This implies that added 15N was mainly immobilized in stable mineral‐bound SOM pools. (3) Incubation of soils for 1 year showed that the remobilization of newly sequestered N was three to nine times smaller than that of newly sequestered C. Thus, inorganic inputs of N were stabilized more effectively in soils than C. Significantly less newly sequestered N was remobilized from soils previously exposed to elevated CO2. In summary, our results show firstly that a large fraction of inorganic N inputs becomes effectively immobilized in relative stable SOM pools and secondly that elevated CO2 can increase N retention in soils and hence it may tighten N cycling and diminish the risk of nitrate leaching to groundwater.  相似文献   

9.
Solute concentrations in atmospheric deposition and stream water were measuredfrom 1984 through 1993 to determine the fate and mobility of solutes in twogauged mixed-conifer catchments (Tharp's and Log creeks) located in theSierra Nevada, California. The two catchments contain mature forest standsdominated by Abies concolor (white fir), Sequoiadendron giganteum (giantsequoia), Abies magnifica (red fir) and Pinus lambertiana (sugar pine).Ammonium, Cl-, Ca2+ and NO- 3were highest in concentration of the solutes measured in wet deposition;bulk deposition was highest in SO2- 4, NH+ 4,Cl- and H+. Net retention ofH+, NO3 -, NH4 +,SO4 2- and Cl- occurred in both catchments.Discharge was dominated by spring snowmelt with the largest export yieldsfor acid neutralizing capacity (ANC), SiO2, andCa2+. Export yields of H+,NO3 -, NH4 + and PO4 3-were relatively small (0.5 kg ha-1 y-1).Discharge-concentration relationships for ANC, SiO2,Na+, K+, Ca2+ andMg2+ were inverse and their concentrations in stream waterwere primarily influenced by discharge and annual differences in the relativecontributions of snowmelt and groundwater. The mobility of these solutes iscontrolled by the rates of mineral weathering and ion exchange. The positiverelationship of SO4 2- concentration with increasingdischarge suggests that atmospherically deposited SO4 2-is temporarily stored and that its release is controlled by the extent of soilwater flushing.  相似文献   

10.
The presence of up to 500 μg sulfur·l?1 of an equimolar mixture of cysteine and methionine had virtually no effect on the SO42- uptake rate of Navicula pelliculosa, (Bréb.) Hilse whereas the rate of Ankistrodesmus falcatus (Corda) Ralfs was decreased by the presence of 500 μg S· l?1 and Anabaena flos-aquae (Lyngbye) Bréb. by 50 μg S·l?1. Primary productivity in these axenic cultures was affected (decreased) only in A. falcatus. The C:S uptake ratio was lowest in N. pelliculosa and highest in A. falcatus. Considering these species as representative of groups of naturally occurring algae, patterns of SO42- uptake and primary productivity in a eutrophic and a moderately oligotrophic lake reflected the results of the algal culturing experiments: SO42- uptake rates, relative to primary productivity, were higher in the presence of diatoms and bluegreen algae and lower when green algae were present; the addition of the cysteine I methionine mixture to the lake waters decreased the rate of microplankton SO42- uptake in correlation with the makeup of the algal community; primary productivity decreased upon the addition of cysteine I methionine when green algae were relatively abundant. It is concluded that, in most fresh water systems, the effects of organic sulfur pollution on algal SO42- uptake and primary productivity are insignificant as compared to other ecological changes that occur due to that pollution.  相似文献   

11.
We examined the effects of elevated atmospheric CO2 on soil carbon decomposition in an experimental anaerobic wetland system. Pots containing either bare C4‐derived soil or the C3 sedge Scirpus olneyi planted in C4‐derived soil were incubated in greenhouse chambers at either ambient or twice‐ambient atmospheric CO2. We measured CO2 flux from each pot, quantified soil organic matter (SOM) mineralization using δ13C, and determined root and shoot biomass. SOM mineralization increased in response to elevated CO2 by 83–218% (P<0.0001). In addition, soil redox potential was significantly and positively correlated with root biomass (P= 0.003). Our results (1) show that there is a positive feedback between elevated atmospheric CO2 concentrations and wetland SOM decomposition and (2) suggest that this process is mediated by the release of oxygen from the roots of wetland plants. Because this feedback may occur in any wetland system, including peatlands, these results suggest a limitation on the size of the carbon sink presented by anaerobic wetland soils in a future elevated‐CO2 atmosphere.  相似文献   

12.
淋洗与植物作用耦合对盐渍化土壤的改良效应   总被引:2,自引:0,他引:2  
唐让云  曹靖  董放  董利苹  孔晓乐 《生态学报》2015,35(17):5686-5694
以甘肃秦王川引大灌区盐渍化土壤为背景,以当地5种耐盐植物为材料,采用根袋法盆栽试验动态研究了淋洗结合植物种植对盐渍化土壤改良的效应。结果表明:与种前相比,单纯的淋洗作用对土壤pH值影响不大,而淋洗结合植物种植明显降低了土壤pH值,且根际土壤pH值小于非根际土壤的,5种耐盐植物中霸王根际土壤pH值降低幅度最大,达0.6个单位。K+、Ca2+、Na+、Mg2+、Cl-和SO2-4在5种植物根际土壤中均有不同程度的富集,富集程度因物种的不同而不同,随培养时间的延长而呈波动状态。5种供试植物和对照组土壤中的6种主要的可溶性盐分离子随淋洗次数和培养时间的延长呈下降趋势。在培养120d后,单纯淋洗的土壤中K+、Ca2+、Na+、Mg2+、Cl-和SO2-4的含量相比种前平均分别降低了33.3%、26.1%、35.6%、32.5%、35.5%和36.3%,植物吸收带走的上述各离子的含量平均分别占种前的46.2%、8.1%、30.2%、7.2%和21.6%,其中霸王吸收带走的盐分离子最多,而淋洗结合种植植物的土壤中上述各离子的含量与种前相比平均分别降低了67.25%、63.73%、83.8%、67.5%、81.55%和78.46%,由此可见,淋洗结合植物种植的脱盐效果优于单纯淋洗,且土壤中主要的盐分离子Na+、Cl-和SO2-4的含量降低幅度最大,通过计算得出,在Cl-、SO2-4和Na+减少的总量中还有37.73%的Na+、38.22%的Cl-和35.14%的SO2-4的减少量是由植物根系的物理化学作用机制引起的。  相似文献   

13.
镉是土壤环境中对土壤质量有着极其重要影响的污染物之一,低含量下就能对人体和动物产生危害.镉在土壤中的有效态既决定了它的生物有效性及对环境的危害程度,又是人们对受污染土壤进行治理和修复的基础.作为盐化土壤中的典型组分,无机盐不可避免对镉的有效态及生物有效性等地球化学行为产生明显影响.研究了碱性土壤盐化过程中无机盐阴离子对土壤中镉有效态和植物吸收镉影响.研究方法为:以钠盐为例,实验研究了碱性土壤盐化过程中无机盐阴离子对土壤中镉有效态的影响;通过油菜种植试验,分析了无机盐阴离子对土壤中镉生物有效性的影响.研究结果表明,土壤盐化过程中,土壤溶液中Cl-浓度较低时,土壤中镉的有效态含量随Cl-浓度增加而增大,但当土壤中Cl-/Cd的比值大于100∶1时,土壤中镉的有效态含量达到最大值.土壤溶液中SO42-含量对土壤中镉有效态含量的影响不明显;随着土壤溶液中HCO3-含量的增加,土壤中镉的有效态含量明显减少.由于Cl-、SO42-是土壤溶液中的主要成分,随着盐度的增加,镉的有效态含量增加.油菜种植试验显示,当土壤中Cl-的含量增加时,土壤中镉的有效态含量增加,有利于植物对镉的吸收,因此油菜中镉的含量随土壤中Cl-的含量增加而增加,但当土壤有效态含量超过2 mg/kg后,油菜吸收镉已经达到最大.随着土壤溶液中SO42-浓度的增加,油菜中镉含量基本不变;土壤溶液中HCO3-的含量增加,植物中镉的含量随土壤中HCO3-含量增加而减少.这些特征与土壤镉有效态变化相吻合.通过各种措施控制土壤盐度和调节阴离子类型和含量,有利于降低土壤中镉的有效态含量,减轻镉的活化;农业生产中适当调整无机肥料的种类,可以减少农作物对镉的吸收.  相似文献   

14.
Field data on the sulphur and cation budget of growing Norway spruce canopies (Picea abies [L.] Karst.) are summarized. They are used to test a spruce decline model capable of quantifying effects of chronic SO2 pollution on spruce forests. At ambient SO2 concentrations, acute SO2 damage is rare, but exposure to polluted air produces reversible thinning of the canopy structure with a half-time of a few years. Canopy thinning in the spruce decline model is highest (i) at elevated SO2 pollution, (ii) in the mountains, (iii) at unfertilized sites with poor K+, Mg2+ or Zn2+ supply, (iv) at low spruce litter decomposition rates, and (v) acidic, shallow soils at high annual precipitation rates in the field and vice versa. Model application using field data from Würzburg (moderate SO2 pollution, alkaline soils, no spruce decline) and from the Erzgebirge (extreme SO2 pollution, acidic soils in the mountains, massive spruce decline) predicts canopy thinning by 2–11% in Würzburg and by 45–70% in the Erzgebirge. The model also predicts different SO2-tolerance limits for Norway spruce depending on the site elevation and on the nutritional status of the needles. If needle loss of more than 25% (damage class 2) is taken to indicate ‘real damage’ exceeding natural variances, then for optimum soil conditions SO2 tolerance limits range from (27.3 ± 7.4) μg m?3 to (62.6 ± 16.5) μg m?3. For shallow and acidic soils, SO2 tolerance limits range from (22.0 ± 5.5) μg m?3 to (37.4 ± 7.5) μ m?3. These tolerance limits, which are calculated on an ecophysiological data basis for Norway spruce are close to epidemiological SO2-toIerance limits as recommended by the IUFRO, UN-ECE and WHO. The observed statistical regression slope of the plot (damaged spruce trees vs. SO2-pollution) in west Germany is confirmed by modelling (6% error). Model application to other forest trees allows deduction of the observed sequence of SO2-sensitivity: Abies > Picea > Pinus > Fagus > Quercus. Thus, acute phytotoxicity of SO2 seems not to be involved in ‘forest decline’. Chronic SO2-pollution induces massive canopy thinning of Abies alba and Picea abies only at unfavourable sites, where natural stress factors and secondary effects of SO2pollution act together to produce tree decline.  相似文献   

15.
The development of SO42- influx in roots and sulfur transport to shoots was followed in 35S-tracer experiments for sulfur-deficient spring wheat (Triticum aestivum L. cv. Svenno) seedlings pretreated for various time periods (0–24 h) in nutrient solutions with SO42-. Effects of the metabolic inhibitor 2,4-dinitrophenol (DNP) and the protein synthesis inhibitor cycloheximide (CH) on SO42- influx were also evaluated. The SO42- influx appears feedback-regulated by the internal sulfur level of the roots. Regulation may be achieved solely by a rapidly changed SO42- carrier activity through an allosteric effect by the intracellular SO42- concentration of the roots, followed first by induction of carrier synthesis and then by repression of carrier synthesis after transfer of the roots from SO42--deficient nutrient solutions to solutions with SO42-. A Hill plot of the partly sigmoidal relationship between SO42- influx and intracellular sulfur concentration in the roots gave a Hill coefficient of -4.2, indicating negative cooperativity between a minimum number of four interacting allosteric binding sites for sulfur on each carrier entity. DNP-experiments showed that SO42- influx was mainly metabolic, especially after short pretreatment in SO42- at an external SO42- concentration of 0.1 mM. Pretreatment with CH rapidly prevented new SO42- carriers from being formed. Long CH pretreatment (24 h) and different SO42- pretreatments reduced SO42- influx below the non-metabolic level obtained by uptake experiments with DNP, indicating the existence of SO42- carriers mediating passive SO42- transport across the plasmalemma of the root cells. SO42- influx was further decreased for the CH pretreated (24 h) plants by the presence of both CH and DNP in the experimental nutrient solution. This probably indicates the diffusive part of the non-metabolic SO42- influx in the present experiments. Finally, it is suggested that there is a feedback signal between root and shoot, regulating sulfur transport upwards.  相似文献   

16.
Illuminated intact pea chloroplasts in the presence of O-acetylserine (OAS) catalysed incorporation of SeO32- and SO32- into selenocysteine and cysteine at rates of ca 0.36 and 6 μmol/mg Chl per hr respectively. Sonicated chloroplasts catalysed SeO32- and SO32- incorporation at ca 3.9 and 32% respectively of the rates of intact chloroplasts. Addition of GSH and NADPH increased the rates to ca 91 and 98% of the intact rates, but SeO32- incorporation under these conditions was essentially light-independent. In the absence of OAS, intact chloroplasts catalysed reduction of SO32- to S2- at rates of ca 5.8 μmol/mg Chl per hr. In the presence of OAS, S2- did not accumulate. Glutathione (GSH) reductase was purified from peas and was inhibited by ZnCl2. This enzyme, in the presence of purified clover cysteine synthase, OAS, GSH and NADPH, catalysed incorporation of SeO32- into selenocysteine (but not SO32- into cysteine). The reaction was inhibited by ZnCl2. Incorporation of SeO32- into selenocysteine by illuminated intact chloroplasts and sonicated chloroplasts (with NADPH and GSH) was also inhibited by ZnCl2 but not by KCN. Conversely, incorporation of SO32- into cysteine was inhibited by KCN but not by ZnCl2. It was concluded that SeO32- and SO32- are reduced in chloroplasts by independent light-requiring mechanisms. It is proposed that SeO32- is reduced by light-coupled GSH reductase and that the Se2- produced is incorporated into selenocysteine by cysteine synthase.  相似文献   

17.
Sulfate reducers and related organisms which had previously been found to reduce Fe(III) with H2 or organic electron donors oxidized S0 to sulfate when Mn(IV) was provided as an electron acceptor. Organisms catalyzing this reaction in washed cell suspensions included Desulfovibrio desulfuricans, Desulfomicrobium baculatum, Desulfobacterium autotrophicum, Desulfuromonas acetoxidans, and Geobacter metallireducens. These organisms produced little or no sulfate from S0 with Fe(III) as a potential electron acceptor or in the absence of an electron acceptor. In detailed studies with Desulfovibrio desulfuricans, the stoichiometry of sulfate and Mn(II) production was consistent with the reaction S0 + 3 MnO2 + 4H+→SO42- + 3Mn(II) + 2H2O. None of the organisms evaluated could be grown with S0 as the sole electron donor and Mn(IV) as the electron acceptor. In contrast to the other sulfate reducers evaluated, Desulfobulbus propionicus produced sulfate from S0 in the absence of an electron acceptor and Fe(III) oxide stimulated sulfate production. Sulfide also accumulated in the absence of Mn(IV) or Fe(III). The stoichiometry of sulfate and sulfide production indicated that Desulfobulbus propionicus disproportionates S0 as follows: 4S0 + 4H2O→SO42- + 3HS- + 5 H+. Growth of Desulfobulbus propionicus with S0 as the electron donor and Fe(III) as a sulfide sink and/or electron acceptor was very slow. The S0 oxidation coupled to Mn(IV) reduction described here provides a potential explanation for the Mn(IV)-dependent sulfate production that previous studies have observed in anoxic marine sediments. Desulfobulbus propionicus is the first example of a pure culture known to disproportionate S0.  相似文献   

18.
The effects of enhanced (NH4 2SO4deposition on soil solution cation and anion concentrations and annualionic fluxes were followed using a standardised experimental protocolin six European coniferous forests with contrasting soil types, pollutioninputs and climate. Native soil cores containing a ceramic suction cupwere installed in the field, roofed and watered every two weeks withlocal throughfall or local throughfall with added(NH4)2SO4 at 75 kgNH4 +-N ha-1 a-1. Livingroot systems were established in half of the lysimeters.Untreated throughfall NH4 +-N deposition at thesites ranged from 3.7 to 29 kg ha-1 a-1Soil leachates were collected at two weekly intervalsover 12 months and analysed for volume, andconcentrations of major anions and cations. Increasesin soil solution NO3 - concentrations inresponse to N additions were observed after 4–9months at three sites, whilst one sandy soil with highC:N ratio failed to nitrify under any of thetreatments. Changes in NO3 - concentrationsin soil solution controlled soil solution cationconcentrations in the five nitrifying soils, withAl3+ being the dominant cation in the more acidsoils with low base saturation. The acidification responses ofthe soils to the (NH4 2SO4additions were primarily related to the ability of thesoils to nitrify the added NH4 +. pH and soiltexture seemed important in controllingNH4 + leaching in response to the treatments,with two less acidic, clay/clay loam sites showingalmost total retention of added NH4 +, whilstnearly 75% of the added N was leached asNH4 + at the acid sandy soils. The presenceof living roots significantly reduced soil solutionNO3 - and associated cation concentrations attwo of the six sites. The very different responses of the sixsoils to increased (NH4)2SO4deposition emphasise that the establishment of N critical loadsfor forest soils need to allow for differences in N storagecapacity and nitrification potential.  相似文献   

19.
We obtained soil samples from geographically diverse switchgrass (Panicum virgatum L.) and sorghum (Sorghum bicolor L.) crop sites and from nearby reference grasslands and compared their edaphic properties, microbial gene diversity and abundance, and active microbial biomass content. We hypothesized that soils under switchgrass, a perennial, would be more similar to reference grassland soils than sorghum, an annual crop. Sorghum crop soils had significantly higher NO3 ? -N, NH4 + -N, SO4 2? -S, and Cu levels than grassland soils. In contrast, few significant differences in soil chemistry were observed between switchgrass crop and grassland soils. Active bacterial biomass was significantly lower in sorghum soils than switchgrass soils. Using GeoChip 4.0 functional gene arrays, we observed that microbial gene diversity was significantly lower in sorghum soils than grassland soils. Gene diversity at sorghum locations was negatively correlated with NO3 ? -N, NH4 + -N, and SO4 2? -S in C and N cycling microbial gene categories. Microbial gene diversity at switchgrass sites varied among geographic locations, but crop and grassland sites tended to be similar. Microbial gene abundance did not differ between sorghum crop and grassland soils, but was generally lower in switchgrass crop soils compared to grassland soils. Our results suggest that switchgrass has fewer adverse impacts on microbial soil ecosystem services than cultivation of an annual biofuel crop such as sorghum. Multi-year, multi-disciplinary regional studies comparing these and additional annual and perennial biofuel crop and grassland soils are recommended to help define sustainable crop production and soil ecosystem service practices.  相似文献   

20.
Conversion, drainage, and cultivation of tropical peatlands can change soil conditions, shifting the C balance of these systems, which is important for the global C cycle. We examined the effect of soil organic matter (SOM) quality and nutrients on CO2 production from peat decomposition using laboratory incubations of Indonesian peat soils from undrained forest in Kalimantan and drained oil palm plantations in Kalimantan and Sumatra. We found that oil palm soils had higher C/N and lower SOM quality than forest soils. Higher substrate quality and nutrient availability, particularly lower ratios of aromatic/aliphatic carbon and C/N, rather than total SOM or carbon, explained the higher rate of CO2 production by forest soils (10.80 ± 0.23 µg CO2–C g C h?1) compared to oil palm soils (5.34 ± 0.26 µg CO2–C g C h?1) from Kalimantan. These factors also explained lower rates in Sumatran oil palm (3.90 ± 0.25 µg CO2–C g C h?1). We amended peat with nitrogen (N), phosphorus (P), and glucose to further investigate observed substrate and nutrient constraints across the range of observed peat quality. Available N limited CO2 production, in unamended and amended soils. P addition raised CO2 production when substrate quality was high and initial P state was low. Glucose addition raised CO2 production in the presence of added N and P. Our results suggest that decline in SOM quality and nutrients associated with conversion may decrease substrate-driven rates of CO2 production from peat decomposition over time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号