首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrogenation from C60 to C60H60 was studied by an unrestricted broken spin symmetry Hartree–Fock approach implemented in semiempirical codes based on the AM1 technique. The calculations focused on the successive addition of hydrogen molecules to the fullerene cage following the identification of the cage target atoms by calculating the highest atomic chemical susceptibility at each step. The results obtained are analyzed from energy, symmetry, and composition perspectives.  相似文献   

2.
Physical, chemical, and regulatory properties of glycolate oxidase (GO) isolated from the leaves of C4 and C3 plants (Zea mays L., cv. Voronezhskaya 76 and Glycine max (L.) Merr., cv. Pripyat’, respectively) were studied. The homogenous preparations were obtained by multistage enzyme purification from soybean leaves and maize mesophyll and bundle sheath. The glycolate oxidase (GO) preparations obtained consisted of two types of subunits, 37 and 44 kD. The GO isolated from C3 plant leaves had many in common with that extracted from C4 plant bundle sheath as regards physical, chemical, and catalytic properties. The primary function of GO in both plant types is metabolism of glycolate, which is a product of ribulosebisphosphate oxalacetic acid oxidation and is used by plants for biosynthesis of hydrocarbons and amino acids.  相似文献   

3.
R.Z. Wang 《Photosynthetica》2005,43(4):535-549
Of the total 570 species, 194 species in 116 genera and 52 families were found with C3 photosynthesis, 24 species in 17 genera and 6 families with C4 photosynthesis, and 2 species in 1 genera and 1 family with CAM photosynthesis. 90 % of the total species can be found in Changbai Mountain flora, more a half (69 %) in North China flora, and about 1/3 in Mongolian flora and Xinan flora, respectively. The occurrence of C4 species was not as common as that in adjacent grasslands and deserts, but relatively more than in the adjacent forests. Of the total 24 C4 species, 63 % C4 species (15 of 24) was found in Gramineae. Nine life form types can be found, reflecting the moist climate in the region, especially the occurrence of epiphyte and liana forms. Relatively more geophyte life form plants suggested the winter in the region was much colder than in grasslands. These indicated that both ecological studies and land management decisions must take into account plant photosynthetic pathway and life form patterns, for both of them are closely related to climatic changes and land use.  相似文献   

4.
5.
Density functional theory (B3LYP, B3LYP-D2 and wB97XD functionals) was used in finite models of zigzag carbon nanotubes (CNT), (n,0)×k with n?=?6–9 and k?=?2–4, to systematically investigate the effects of size on their structural and electronic properties. We found that the ratio between the length (L t) and the diameter (d t) of the pristine CNT has to be larger than 2, i.e., L t/d t?>?2, in order to provide the observed experimental trends of C=C bond distances, as well as to maintain the atomic charges nearly constant and zero around the center of the tube. Therefore, the concepts of useful length and volume were developed and tested for the encapsulation process of HCN and C2H2 into CNTs. The energies involved in these processes, as well as the changes in molecular structure and electronic properties of the dopants and the CNTs are discussed and rationalized by the amount of charge transferred between dopant and CNT.
Graphical Abstract Illustration of zigzag CNT length and diameter ratio in order to represent C=C bond experimental trend
  相似文献   

6.
Hydrogen gas (60% H2) was produced in a continuous flow bioreactor inoculated with heat-treated soil, and fed synthetic wastewater containing glucose (9.5 g l–1). The pH in the bioreactor was maintained at 5.5 to inhibit consumption of H2 by methanogens. The objective of this study was to characterize bacterial communities in the reactor operated under two different hydraulic retention times (HRTs of 30-h and 10-h) and temperatures (30°C and 37°C). At 30-h HRT, the H2 production rate was 80 ml h–1 and yield was 0.91 mol H2/mol glucose. At 10-h HRT, the H2 production rate was more than 5 times higher at 436 ml h–1, and yield was 1.61 mol H2/mol glucose. Samples were removed from the reactor under steady-state conditions for PCR-based detection of bacterial populations by ribosomal intergenic spacer analysis (RISA). Populations detected at 30-h HRT were more diverse than at 10-h HRT and included representatives of Bacillaceae, Clostridiaceae, and Enterobacteriaceae. At 10-h HRT, only Clostridiaceae were detected. When the temperature of the 10-h HRT reactor was increased from 30°C to 37°C, the steady-state H2 production rate increased slightly to 463 ml h–1 and yield was 1.8 mol H2/mol glucose. Compared to 30°C, RISA fingerprints at 37°C from the 10-h HRT bioreactor exhibited a clear shift from populations related to Clostridium acidisoli (subcluster Ic) to populations related to Clostridium acetobutylicum (subcluster Ib).  相似文献   

7.
8.
Studying the interaction of some atmospheric gases (H2O, HCN, NH3, SO3 and H2S) with 3PT oligomers is important in the development of polymeric sensors for gas detection. In the present study, we studied the relaxed geometries, interaction energies, charge analysis, HOMO–LUMO orbital analysis, and UV–vis spectra of all interacted systems using first-principles density functional theory (DFT). All these analyses indicated the potential of polythiophene as an inexpensive polymeric sensor for the analytes mentioned. Interaction energy values of ?19.90, ?19.66, ?14.01, ?8.70, and ?4.76 kJ mol?1 were achieved for adsorption of SO3, H2O, NH3, HCN, and H2S on 3PT, respectively. Consequently, clarification of their physical parameters became the major focus of this study.  相似文献   

9.

Key message

In hulless barley, H 2 S mediated increases in H 2 O 2 induced by putrescine, and their interaction enhanced tolerance to UV-B by maintaining redox homeostasis and promoting the accumulation of UV-absorbing compounds.

Abstract

This study investigated the possible relationship between putrescence (Put), hydrogen sulfide (H2S) and hydrogen peroxide (H2O2) as well as the underlying mechanism of their interaction in reducing UV-B induced damage. UV-B radiation increased electrolyte leakage (EL) and the levels of malondialdehyde (MDA) and UV-absorbing compounds but reduced antioxidant enzyme activities and glutathione (GSH) and ascorbic acid (AsA) contents. Exogenous application of Put, H2S or H2O2 reduced some of the above-mentioned negative effects, but were enhanced by the addition of Put, H2S and H2O2 inhibitors. Moreover, the protective effect of Put against UV-B radiation-induced damage to hulless barley was diminished by dl-propargylglycine (PAG, a H2S biosynthesis inhibitor), hydroxylamine (HT, a H2S scavenger), diphenylene iodonium (DPI, a PM-NADPH oxidase inhibitor) and dimethylthiourea (DMTU, a ROS scavenger), and the effect of Put on H2O2 accumulation was abolished by HT. Taken together, as the downstream component of the Put signaling pathway, H2S mediated H2O2 accumulation, and H2O2 induced the accumulation of UV-absorbing compounds and maintained redox homeostasis under UV-B stress, thereby increasing the tolerance of hulless barley seedlings to UV-B stress.
  相似文献   

10.
Fumonisin B1 (FB1) is an amphipathic toxin produced by the pathogenic fungus Fusarium verticillioides which causes stem, root and ear rot in maize (Zea mays L.). In this work, we studied the action of FB1 on the plasma membrane H+-ATPase (EC 3.6.1.34) from germinating maize embryos, and on the fluidity and lipid peroxidation of these membranes. In maize embryos the toxin at 40 M inhibited root elongation by 50% and at 30 M decreased medium acidification by about 80%. Irrespective of the presence and absence of FB1, the H+-ATPase in plasma membrane vesicles exhibited non-hyperbolic saturation kinetics by ATPH-Mg, with Hill number of 0.67. Initial velocity studies revealed that FB1 is a total uncompetitive inhibitor of this enzyme with an inhibition constant value of 17.5±1 M. Thus FB1 decreased Vmax and increased the apparent affinity of the enzyme for ATP-Mg to the same extent. Although FB1 increased the fluidity at the hydrophobic region of the membrane, no correlation was found with its effect on enzyme activity, since both effects showed different FB1-concentration dependence. Peroxidation of membrane lipids was not affected by the toxin. Our results suggest that, under in vivo conditions, the plasma membrane H+-ATPase is a potentially important target of the toxin, as it is inhibited not only by FB1 but also by its structural analogs, the sphingoid intermediates, which accumulate upon the inhibition of sphinganine N-acyltransferase by this toxin.  相似文献   

11.
Barbehenn RV  Karowe DN  Chen Z 《Oecologia》2004,140(1):96-103
The increasing CO2 concentration in Earths atmosphere is expected to cause a greater decline in the nutritional quality of C3 than C4 plants. As a compensatory response, herbivorous insects may increase their feeding disproportionately on C3 plants. These hypotheses were tested by growing the grasses Lolium multiflorum C3) and Bouteloua curtipendula C4) at ambient (370 ppm) and elevated (740 ppm) CO2 levels in open top chambers in the field, and comparing the growth and digestive efficiencies of the generalist grasshopper Melanoplus sanguinipes on each of the four plant × CO2 treatment combinations. As expected, the nutritional quality of the C3 grass declined to a greater extent than did that of the C4 grass at elevated CO2; protein levels declined in the C3 grass, while levels of carbohydrates (sugar, fructan and starch) increased. However, M. sanguinipes did not significantly increase its consumption rate to compensate for the lower nutritional quality of the C3 grass grown under elevated CO2. Instead, these grasshoppers appear to use post-ingestive mechanisms to maintain their growth rates on the C3 grass under elevated CO2. Consumption rates of the C3 and C4 grasses were also similar, demonstrating a lack of compensatory feeding on the C4 grass. We also examined the relative efficiencies of nutrient utilization from a C3 and C4 grass by M. sanguinipes to test the basis for the C4 plant avoidance hypothesis. Contrary to this hypothesis, neither protein nor sugar was digested with a lower efficiency from the C4 grass than from the C3 grass. A novel finding of this study is that fructan, a potentially large carbohydrate source in C3 grasses, is utilized by grasshoppers. Based on the higher nutrient levels in the C3 grass and the better growth performance of M. sanguinipes on this grass at both CO2 levels, we conclude that C3 grasses are likely to remain better host plants than C4 grasses in future CO2 conditions.  相似文献   

12.
13.
Several C1-imino conjugates of d-galactose, d-lactose and d-ribose, where the nitrogen center was substituted by the salicylidene or naphthylidene, were synthesized and characterized. Similar C2-imino conjugates of d-glucose have also been synthesized. All the glyco-imino-conjugates, which are transition state analogues, exhibited 100% inhibition of the activity towards glycosidases extracted from soybean and jack bean meal. Among these, a galactosyl-napthyl-imine-conjugate (1c) showed 50% inhibition of the activity of pure α-mannosidase from jack bean at 22 ± 2.5 μM, and a ribosyl-naphthyl-imine-conjugate (3c) showed at 31 ± 5.5 μM and hence these conjugates are potent inhibitors of glycosidases. The kinetic studies suggested non-competitive inhibition by these conjugates. The studies are also suggestive of the involvement of aromatic, imine and carbohydrate moieties of the glyco-imino-conjugates in the effective inhibition. The binding of glyco-imino-conjugate has been established by extensive studies carried out using fluorescence emission and isothermal titration calorimetry. The conformational changes resulted in the enzyme upon interaction of these derivatives has been established by studying the fluorescence quench of the enzyme by KI as well as from the secondary structural changes noticed in CD spectra. All these studies revealed the difference in the binding strengths of the naphthylidene vs. salicylidene as well as galactosyl vs. lactosyl moieties present in these conjugates. The differential inhibition of these glyco-conjugates has been addressed by quantifying the specific interactions present between the glyco-conjugates and the enzyme by using rigid docking studies. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
It was shown that tobacco leaf treatment with 100 mM H2O2 increased their content of endogenous H2O2 and activities of catalase and hydrolases (acid phosphatase, proteases, and RNase) and also caused various changes in the cell structure. In this case, programmed cell death (PCD) occurred in some cells, which was observed as chromatin condensation, cytoplasm collapse, etc. In the meantime, many cells displayed organelle activation rather than PCD. It is suggested that cells that undergo H2O2-dependent PCD release signaling molecules inducing protective mechanisms against oxidative stress in neighboring cells not exhibiting PCD.  相似文献   

15.
A controlled environment experiment was conducted to determine the impact of enhanced carbon dioxide and temperature on competition between the C3 grasses Austrodanthonia eriantha and Vulpia myuros. Plants were grown in mixtures and monocultures to compare the responses both with and without an interspecific competitor. Temperature and CO2 were set at current levels (350 ppm CO2; 20 °C day and 10 °C night temperature), in factorial combination with enhanced levels (700 ppm CO2; 23 °C day and 13 °C night temperature). To examine the potential impact of initial seedling size on competition under elevated CO2 and temperature, the two species were combined in mixtures of differing initial sizes. Above-ground growth of all plants was enhanced by increased CO2 and temperature alone, however the combined temperature and CO2 treatment showed a sub-additive effect, where growth was less than expected based on the responses to each factor independently. Austrodanthonia in mixture with Vulpia plants of the same initial size experienced a 27 reduction in growth. Austrodanthonia grown in the presence of an initially larger Vulpia plant experienced a 58 reduction in growth. When the Vulpia plant was initially smaller than Austrodanthonia, growth of the Austrodanthonia was reduced by 16%. The growth of Vulpia appeared to be largely unaffected by the presence of Austrodanthonia. Variation in the CO2 and temperature environment did not affect the pattern of these interspecific interactions, although there was some evidence to suggest that the degree of suppression of Austrodanthonia by Vulpia was less under elevated CO2. These results do not support the initial advantage hypothesis, as Vulpia was always able to suppress Austrodanthonia, regardless of the initial relative sizes of the competitors. Furthermore, the lack of an effect of changing the CO2 or temperature environment on the direction of interspecific competition suggests that the competitiveness of the invasive Vulpia will be minimally affected by changes in atmospheric CO2 concentration or temperature.  相似文献   

16.
The photosynthetic pathway composition (C3:C4 mixture) of an ecosystem is an important controller of carbon exchanges and surface energy flux partitioning, and therefore represents a fundamental ecophysiological distinction. To assess photosynthetic mixtures at a tallgrass prairie pasture in Oklahoma, we collected nighttime above-canopy air samples along concentration and isotopic gradients throughout the 1999 and 2000 growing seasons. We analyzed these samples for their CO2 concentration and carbon isotopic composition and calculated C3:C4 proportions with a two-source mixing model. In 1999, the C4 percentage increased from 38% in spring (late April) to 86% in early fall (mid-September). The C4 percentages inferred from ecosystem respiration measurements in 2000 indicate a smaller shift, from 67% in spring (early May) to 77% in mid-summer (late July). We also sampled daytime CO2 concentration and carbon isotope gradients above the canopy to determine ecosystem discrimination against 13CO2 during net uptake. These discrimination values were always lower than corresponding nighttime ecosystem respiration isotopic signatures would suggest. After accounting for the isotopic disequilibria between respiration and photosynthesis resulting from seasonal variations in the C3:C4 mixture, we estimated canopy photosynthetic discrimination. The C4 percentage calculated from this approach agrees with the percentage determined from nighttime respiration for sampling periods in both growing seasons. Isotopic imbalances between photosynthesis and respiration are likely to be common in mixed C3:C4 ecosystems and must be considered when using daytime isotopic measurements to constrain ecosystem physiology. Given the global extent of such ecosystems, isotopic imbalances likely contribute to global variations in the carbon isotopic composition of atmospheric CO2.  相似文献   

17.
The theoretical study of the interaction between CH2 and fullerene (C60) suggests the existence of an addition reaction mechanism; this feature is studied by applying an analysis of electronic properties. Several different effects are evident in this interaction as a consequence of the particular electronic transfer which occurs during the procedure. The addition or insertion of the methylene group results in a process, where the inclusion of CH2 into a fullerene bond produces the formation of several geometric deformations. A simulation of these procedures was carried out, taking advantage of the dynamic semi-classical Born-Oppenheimer approximation. Dynamic aspects were analyzed at different speeds, for the interaction between the CH2 group and the two bonds: CC (6, 6) and CC (6, 5) respectively on the fullerene (C60) rings. All calculations which involved electrons employed DFT as well as exchange and functional correlation. The results indicate a tendency for the CH2 fragment to attack the CC (6, 5) bond.  相似文献   

18.
A short review of investigations along a new line: the antiamyloid action of fullerenes C60 and correction of disturbed cognitive processes is presented. The prospects for the development of drugs based on fullerenes acting on the key molecular mechanisms at the early stage of Alzheimer’s disease are discussed.  相似文献   

19.
Two-dimensional numerical simulations of a dc discharge in a CH4/H2/N2 mixture in the regime of deposition of nanostructured carbon films are carried out with account of the cathode electron beam effects. The distributions of the gas temperature and species number densities are calculated, and the main plasmachemical kinetic processes governing the distribution of methyl radicals above the substrate are analyzed. It is shown that the number density of methyl radicals above the substrate is several orders of magnitude higher than the number densities of other hydrocarbon radicals, which indicates that the former play a dominant role in the growth of nanostructured carbon films. The model is verified by comparing the measured optical emission profiles of the H(n ≡ 3), C 2 * , CH*, and CN* species and the calculated number densities of excited species, as well as the measured and calculated values of the discharge voltage and heat fluxes onto the electrodes and reactor walls. The key role of ion–electron recombination and dissociative excitation of H2, C2H2, CH4, and HCN molecules in the generation of emitting species (first of all, in the cold regions adjacent to the electrodes) is revealed.  相似文献   

20.
A horizontal biotrickling filter (HBTF) was used to inoculate autotrophic sulfide-oxidizing and ammonia-oxidizing microbial consortiums over H2S-exhausted carbon for co-treating H2S and NH3 waste gas in a long-term operation. In this study, several aspects (i.e., pH change, shock loading and starvation) of the dynamic behavior of the HBTF were investigated. The metabolic products of N and S bearing species in recycling liquid and biological activities of the biofilm were analyzed to explain the observed phenomena and further explore the fundamentals behind. In the pH range of 4–8.5, although the removal efficiencies of H2S and NH3 remained 96–98% and 100%, respectively, the metabolic products demonstrated different removal mechanisms and pathways. NH4-N and NO2/NO3-N were dominated at pH ≤6 and ≥7, respectively, indicating the differentiated contributions from physical/chemical adsorption and bio-oxidation. Moreover, the HBTF demonstrated a good dynamic stability to withstand shock loadings by recovering immediately to the original. During shock loading, only 15.4% and 17.9% of captured H2S and NH3 was biodegraded, respectively. After 2, 11, and 48 days of starvation, the HBTF system reached a full performance within reasonable re-startup times (2–80 h), possibly due to the consumption of reduced S and N species in biomass or activated carbon thus converted into SO4-S and NO3-N during starvation period. The results helped to understand the fundamental knowledge by revealing the effects of pH and transient loadings linked with individual removal mechanism for H2S and NH3 co-treatment in different conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号