首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electron spin resonance (ESR) spectroscopy using spin-labeled ATP was used to study nucleotide binding to and structural transitions within the multidrug resistance P-glycoprotein, P-gp. Spin-labeled ATP (SL-ATP) with the spin label attached to the ribose, was observed to be an excellent substrate analogue for P-gp. SL-ATP was hydrolyzed in a drug-stimulated fashion at about 14% of the rate for normal ATP and allowed reversible trapping of the enzyme in transition and ground states. Equilibrium binding of a total of two nucleotides per P-gp was observed with a binding affinity of 366 microM in the presence of Mg2+ but in the absence of transport substrates such as verapamil. Binding of SL-ATP to wild-type P-gp in the presence of verapamil resulted in reduction of the protein-bound spin-label moiety, most likely due to a conformational transition within P-gp that positioned cysteines in close proximity to the spin label to allow chemical reduction of the radical. We circumvented this problem by using a mutant of P-gp in which all naturally occurring cysteines were substituted for alanines. Equilibrium binding of SL-ATP to this mutant P-gp resulted in maximum binding of two nucleotides; the binding affinity was 223 microM in the absence and 180 microM in the presence of verapamil. The corresponding ESR spectra of wild-type and Cys-less P-gp in the presence of SL-ATP indicate that a cysteine side chain of P-gp is located close to the ribose of the bound nucleotide. Trapping SL-ATP as an AlF(x)-adduct resulted in ESR spectra that showed strong immobilization of the radical, supporting the formation of a closed conformation of P-gp in its transition state. This study is the first to employ ESR spectroscopy with the use of spin-labeled nucleotide analogues to study P-glycoprotein. The study shows that SL-ATP is an excellent substrate analogue that will allow further exploration of structure and dynamics within the nucleotide binding domains of this important enzyme.  相似文献   

2.
The synthesis is described of a spin-labeled analog of ATP, 2',3'-O-(1-oxy-2,2,6,6-tetramethyl-4-piperidylidene)adenosine 5'-triphosphate (SL-ATP). The spin-label moiety is attached by two bonds to the ribose ring as a spiroketal and hence has restricted conformational mobility relative to the ribose moiety of ATP. The synthesis proceeds via an acid-catalyzed addition of adenosine 5'-monophosphate to 1-acetoxy-4-methoxy-2,2,6,6-tetramethyl-1,2,5,6-tetrahydropyridine in acetonitrile. The spiroketal product is pyrophosphorylated, and alkaline hydrolysis with concomitant aerial oxidation gives the required product. The spin-labeled moiety probably takes up two rapidly interconverting conformations with respect to the ribose ring on the basis of the 1H NMR spectra of its precursors and related uridine derivatives [Alessi et al. (1991) J. Chem. Soc., Perkin Trans.1,2243-2247]. SL-ATP is a substrate for myosin and actomyosin with similar kinetic parameters to ATP during triphosphatase activity. SL-ATP supports muscle contraction and permits relaxation of permeabilized rabbit skeletal muscle fibers. SL-ADP is a substrate for yeast 3-phosphoglycerate kinase, thus permitting regeneration of SL-ATP from SL-ADP within muscle fibers. Electron paramagnetic resonance (EPR) studies of SL-ADP bound to myosin filaments and to myofibrils show a degree of nanosecond motion independent of that of the protein, which may be due to conformational flexibility of the ribose moiety of ATP bound to myosin's active site. This nanosecond motion is more restricted in myofibrils than in myosin filaments, suggesting that the binding of actin affects the ribose binding site in myosin. EPR studies on SL-ADP bound to rigor cross-bridges in muscle fiber bundles showed the nucleotide to be highly oriented with respect to the fiber axis.  相似文献   

3.
Multidrug resistance protein 4 (MRP4/ABCC4), transports cyclic nucleoside monophosphates, nucleoside analog drugs, chemotherapeutic agents, and prostaglandins. In this study we characterize ATP hydrolysis by human MRP4 expressed in insect cells. MRP4 hydrolyzes ATP (Km, 0.62 mm), which is inhibited by orthovanadate and beryllium fluoride. However, unlike ATPase activity of P-glycoprotein, which is equally sensitive to both inhibitors, MRP4-ATPase is more sensitive to beryllium fluoride than to orthovanadate. 8-Azido[alpha-32P]ATP binds to MRP4 (concentration for half-maximal binding approximately 3 microm) and is displaced by ATP or by its non-hydrolyzable analog AMPPNP (concentrations for half-maximal inhibition of 13.3 and 308 microm). MRP4 substrates, the prostaglandins E1 and E2, stimulate ATP hydrolysis 2- to 3-fold but do not affect the Km for ATP. Several other substrates, azidothymidine, 9-(2-phosphonylmethoxyethyl)adenine, and methotrexate do not stimulate ATP hydrolysis but inhibit prostaglandin E2-stimulated ATP hydrolysis. Although both post-hydrolysis transition states MRP4.8-azido[alpha-32P]ADP.Vi and MRP4.8-azido[alpha-32P]ADP.beryllium fluoride can be generated, nucleotide trapping is approximately 4-fold higher with beryllium fluoride. The divalent cations Mg2+ and Mn2+ support comparable levels of nucleotide binding, hydrolysis, and trapping. However, Co2+ increases 8-azido[alpha-32P]ATP binding and beryllium fluoride-induced 8-azido[alpha-32P]ADP trapping but does not support steady-state ATP hydrolysis. ADP inhibits basal and prostaglandin E2-stimulated ATP hydrolysis (concentrations for half-maximal inhibition 0.19 and 0.25 mm, respectively) and beryllium fluoride-induced 8-azido[alpha-32P]ADP trapping, whereas Pi has no effect up to 20 mm. In aggregate, our results demonstrate that MRP4 exhibits substrate-stimulated ATP hydrolysis, and we propose a kinetic scheme suggesting that ADP release from the post-hydrolysis transition state may be the rate-limiting step during the catalytic cycle.  相似文献   

4.
Multidrug resistance protein 1 (MRP1) and P-glycoprotein, which are ATP-dependent multidrug efflux pumps and involved in multidrug resistance of tumor cells, are members of the ATP binding cassette proteins and contain two nucleotide-binding folds (NBFs). P-glycoprotein hydrolyzes ATP at both NBFs, and vanadate-induced nucleotide trapping occurs at both NBFs. We examined vanadate-induced nucleotide trapping in MRP1 stably expressed in KB cell membrane by using 8-azido-[alpha-(32)P]ATP. Vanadate-induced nucleotide trapping in MRP1 was found to be stimulated by reduced glutathione, glutathione disulfide, and etoposide and to be synergistically stimulated by the presence of etoposide and either glutathione. These results suggest that glutathione and etoposide interact with MRP1 at different sites and that those bindings cooperatively stimulate the nucleotide trapping. Mild trypsin digestion of MRP1 revealed that vanadate-induced nucleotide trapping mainly occurs at NBF2. Our results suggest that the two NBFs of MRP1 might be functionally nonequivalent.  相似文献   

5.
The distance separating the high-affinity binding sites of actin for a divalent metal ion and nucleotide was evaluated by using high-resolution proton NMR and EPR spectroscopy. Replacement of the Ca2+ or Mg2+ bound to the high-affinity divalent cation site of G-actin by trivalent lanthanide ions such as La3+, EU3+, or Gd3+ results in an increase in the mobility of the bound ATP as observed in the NMR spectra of G-actin monomers. Little difference was observed between the spectra obtained in the presence of the diamagnetic La3+ control and the paramagnetic ions Eu3+ and Gd3+ which respectively shift and broaden the proton resonances of amino acids in the vicinity of the binding site. Analysis of the NMR spectra indicates that the metal and nucleotide binding sites are separated by a distance of at least 16 A. In the past, the metal and ATP have been widely assumed to bind as a complex. Further verification that the two sites on actin are physically separated was obtained by using an ATP analogue with a nitroxide spin-label bound at the 6' position of the purine ring. An estimate of the distance was made between the site containing the ATP analogue and the paramagnetic ion, Mn2+, bound to the cation binding site. These EPR experiments were not affected by the state of polymerization of the actin. The data obtained by using this technique support the conclusion stated above, namely, that the cation and nucleotide sites on either G- or F-actin are well separated.  相似文献   

6.
Gelsolin is a Ca(2+)-regulated actin-modulating protein found in a variety of cellular cytoplasm and also in blood plasma. Affinity separation of human plasma gelsolin was successfully accomplished by eluting the protein with a low concentration of nucleoside polyphosphate from immobilized Cibacron Blue F3GA (1, 2). This finding was followed by the demonstration that the protein had one class of ATP binding site with Kd = 2.8 x 10(-7) M, which saturated at an ATP/gelsolin ratio of 0.6 in the absence of Ca2+ (3). To obtain further information on the nucleotide binding properties of gelsolin, binding studies were done in the presence of EGTA with GTP, ADP, and GDP by equilibrium dialysis. Incubation of plasma gelsolin with GTP resulted in binding of 0.6 mol of GTP per mol of protein with a dissociation constant of 1.8 x 10(-6) M, indicating that ATP binds to gelsolin with higher affinity than GTP. Neither ADP nor GDP at up to 100 microM appreciably bound to gelsolin at a physiological salt concentration. Then, the effects of divalent metal ions on the ATP binding to plasma gelsolin were examined. Gelsolin bound to ATP with Kd = 2.4 x 10(-6) M in a solution containing 2 mM MgCl2, whereas micromolar free Ca2+ concentrations inhibited ATP binding. Furthermore, addition of Ca2+ rapidly reversed the preformed nucleotide binding to gelsolin, suggesting that Ca2+ binding to gelsolin leads to a conformational change which disrupts a nucleotide binding fold in the protein molecule.  相似文献   

7.
We have used electron paramagnetic probes attached to the ribose of ATP (SL-ATP) to monitor conformational changes in the nucleotide pocket of myosin. Spectra for analogs bound to myosin in the absence of actin showed a high degree of immobilization, indicating a closed nucleotide pocket. In the Actin.Myosin.SL-AMPPNP, Actin.Myosin.SL-ADP.BeF(3), and Actin.Myosin.SL-ADP.AlF(4) complexes, which mimic weakly binding states near the beginning of the power stroke, the nucleotide pocket remained closed. The spectra of the strongly bound Actin.Myosin.SL-ADP complex consisted of two components, one similar to the closed pocket and one with increased probe mobility, indicating a more open pocket, The temperature dependence of the spectra showed that the two conformations of the nucleotide pocket were in equilibrium, with the open conformation more favorable at higher temperatures. These results, which show that opening of the pocket occurs only in the strongly bound states, appear reasonable, as this would tend to keep ADP bound until the end of the power stroke. This conclusion also suggests that force is initially generated by a myosin with a closed nucleotide pocket.  相似文献   

8.
Electron paramagnetic resonance (EPR) spectroscopy of paramagnetic derivatives of ATP has been used to probe the angular distribution of myosin in glycerinated muscle fibers. Three nucleotide spin labels have been prepared with the nitroxide free radical moiety attached, via an ester linkage to either: the 2' or 3' positions of the ribose unit of ATP (SL-ATP), the 2' position of 3' deoxy ATP (2'SL-dATP), or the 3' position of 2' deoxy ATP (3'SL-dATP). In muscle fibers, these nucleotides are quickly hydrolyzed to their diphosphate forms. All three diphosphate analogues bind to the nucleotide site of myosin with similar affinities: rabbit psoas fibers, 7 X 10(3)/M; insect flight muscle, 5 X 10(3)/M; and rabbit soleus muscle, 2 X 10(4)/M. Analysis of the spectra showed that the principal z-axis of the nitroxide attached to bound nucleotides was oriented with respect to the filament axis. The principal axes of 3'SL-dADP and 2'SL-dADP appeared to be preferentially aligned at mean angles of 67 degrees +/- 4 degrees and 55 degrees +/- 5 degrees, respectively. The distribution of probes about these angles can be described by Gaussians with widths of 16 degrees +/- 4 degrees and 13 degrees +/- 5 degrees, respectively. The spectrum of bound SL-ADP was a linear combination of the spectra of the two deoxy analogues. These orientations were the same in the three muscle types examined, indicating a high degree of homology in the nucleotide binding site. Applying static strains as high as 0.2 N/mm2 to muscle fibers caused no change in the orientation of myosin-bound, spin-labeled nucleotides. When muscle fibers were stretched to decrease actin and myosin filament overlap, bound SL-ADP produced EPR spectra indicative of probes with a highly disordered angular distribution. Sodium vanadate and SL-ATP caused fiber stiffness to decrease, and the EPR spectrum of the bound analogue indicated an increase in the fraction of disoriented probes with a concomitant decrease in the fraction of oriented probes. These findings indicate that when myosin is bound to actin its nucleotide site is highly oriented relative to the fiber axis, and when this interaction is removed the orientation of the nucleotide site becomes highly disordered.  相似文献   

9.
MRP1 (multidrug resistance protein 1) couples ATP binding/hydrolysis at its two non-equivalent NBDs (nucleotide-binding domains) with solute transport. Some of the NBD1 mutants, such as W653C, decreased affinity for ATP at the mutated site, but increased the rate of ATP-dependent solute transport. In contrast, other NBD1 mutants, such as K684L, had decreased ATP binding and rate of solute transport. We now report that mutations of the Walker A lysine residue, K684L and K1333L, significantly alter the tertiary structure of the protein. Due to elimination of the positively charged group and conformational alterations, the K684L mutation greatly decreases the affinity for ATP at the mutated NBD1 and affects ATP binding at the unmutated NBD2. Although K684L-mutated NBD1 can bind ATP at higher concentrations, the bound nucleotide at that site is not efficiently hydrolysed. All these alterations result in decreased ATP-dependent solute transport to approx. 40% of the wild-type. In contrast, the K1333L mutation affects ATP binding and hydrolysis at the mutated NBD2 only, leading to decreased ATP-dependent solute transport to approx. 11% of the wild-type. Consistent with their relative transport activities, the amount of vincristine accumulated in cells is in the order of K1333L> or =CFTR (cystic fibrosis transmembrane conductance regulator)>K684L>wild-type MRP1. Although these mutants retain partial solute transport activities, the cells expressing them are not multidrug-resistant owing to inefficient export of the anticancer drugs by these mutants. This indicates that even partial inhibition of transport activity of MRP1 can reverse the multidrug resistance caused by this drug transporter.  相似文献   

10.
The multidrug resistance proteins P-glycoprotein (Pgp) and MRP1 are drug-efflux pumps. In this study, we compared the nucleotide triphosphatase activities of the isolated N-terminal nucleotide binding domains (NBD1) of Pgp and MRP1, and explored the potential role of the phosphorylation target domain of Pgp on the regulation of Pgp NBD1 ATPase activity. We found that: (1) the NBD1s of Pgp and MRP1 have ATPase and GTPase activities, (2) the K(m)s of Pgp NBD1 for ATP and GTP hydrolysis are identical, while the K(m) of MRP1 NBD1 for ATP is lower than that for GTP, and (3) phosphorylation of MLD by PKA or PKC produces a marginal increase of V(max) for ATP hydrolysis, without affecting the affinity for ATP. These results show efficient GTP hydrolysis by the NBD1s of Pgp and MRP1, and a minor role of phosphorylation in the control of Pgp NBD1 ATPase activity.  相似文献   

11.
Spin-labelled ATP [3'-O-(1-oxyl-2,2,5,5-tetramethyl-3-carbonyl pyrrolidine)-adenosine 5'-triphosphate], abbreviated SL-ATP, is used to study firstly the occurrence of an associative phosphorane mechanism for the phosphoryl transfer from ATP to the transport-ATPase protein, and secondly the presence of two geometrically unequal catalytic centres in the two catalytic peptide chains deduced to explain the existence of two KD'(ATP) values under equilibrium conditions and two Km(ATP) values under turnover conditions. 1. In the presence of Na+, K+ and Mg2+, SL-ATP is not hydrolysed by transport-ATPase from three different sources. In the presence of Na+ and Mg2+, SL-ATP reacts initially like ATP with the enzyme, as indicated by the production of a similar ouabain-binding protein conformation. With both nucleotides, this initial reaction includes the formation of the covalent enzyme-nucleotide complex through nucleophilic attack of the aspartate carboxyanion of the catalytic centre on the terminal phosphorus atom of the triphosphate chain. This produces the ouabain-binding conformation of the enzyme. Unlike ATP, the covalent enzyme-SL-ATP complex resists further transformation. 2. In the presence of Na+, K+ and Mg2+, the influence of SL-ATP on ATP hydrolysis by transport-ATPase depends on the ATP concentration chosen. At low ATP concentration, when the enzyme works as Na+-ATPase, SL-ATP does not affect the rate of ATP cleavage. At high ATP concentration, however, when the enzyme works as (Na+ + K+)-ATPase, SL-ATP reduces the rate of ATP hydrolysis to the level of Na+-ATPase activity, apparently due to the formation of the covalent enzyme-SL-ATP complex. 3. SL-ATP in the covalent enzyme-SL-ATP complex shows an ESR spectrum which is indistinguishable regarding the overall shape, the rotational correlation time, tau, and the hyperfine coupling constant, aN, from the ESR spectrum of free SL-ATP. Consequently, the dimensions of the catalytic centre cleft of transport-ATPase provide the labelled group of SL-ATP, opposite to its 3'-O-esterification site at the ribose moiety, in a wide-cleft groove, enough free space for an essentially unhindered rotational mobility within an aqueous environment like that of the bulk medium. Judged from literature data, similarly wide grooves exist in the catalytic centre clefts of mitochondrial and myosin ATPases. 4. In the framework of present knowledge, the idea is put forward that the structural unit forming the binding site for the AMP moiety of ATP in ATPases is similar to the structural unit forming the binding site for the AMP moiety of NAD and ADP in several dehydrogenases and kinases.  相似文献   

12.
3'-O-(4-Benzoyl)benzoyl ADP (BzADP) was used as a photoaffinity label for covalent binding of adenine nucleotide analogs to the nucleotide binding site(s) of the thermophilic bacterium PS3 ATPase (TF1). As with the CF1-ATPase (Bar-Zvi, D. and Shavit, N. (1984) Biochim. Biophys. Acta 765, 340-356) noncovalently bound BzADP is a reversible inhibitor of the TF1-ATPase. BzADP changes the kinetics of ATP hydrolysis from noncooperative to cooperative in the same way as ADP does, but, in contrast to the effect on the CF1-ATPase, it has no effect on the Vmax. In the absence of Mg2+ 1 mol BzADP binds noncovalently to TF1, while with Mg2+ 3 mol are bound. Photoactivation of BzADP results in the covalent binding of the analog to the nucleotide binding site(s) on TF1 and correlates with the inactivation of the ATPase. Complete inactivation of the TF1-ATPase occurs after covalent binding of 2 mol BzADP/mol TF1. Photoinactivation of TF1 by BzADP is prevented if excess of either ADP or ATP is present during irradiation. Analysis by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate of the Bz[3H]ADP-labeled TF1-ATPase shows that all the radioactivity is incorporated into the beta subunit.  相似文献   

13.
Membrane transporters of the adenine nucleotide binding cassette (ABC) superfamily utilize two either identical or homologous nucleotide binding domains (NBDs). Although the hydrolysis of ATP by these domains is believed to drive transport of solute, it is unknown why two rather than a single NBD is required. In the well studied P-glycoprotein multidrug transporter, the two appear to be functionally equivalent, and a strongly supported model proposes that ATP hydrolysis occurs alternately at each NBD (Senior, A. E., al-Shawi, M. K., and Urbatsch, I. L. (1995) FEBS Lett 377, 285-289). To assess how applicable this model may be to other ABC transporters, we have examined adenine nucleotide interactions with the multidrug resistance protein, MRP1, a member of a different ABC family that transports conjugated organic anions and in which sequences of the two NBDs are much less similar than in P-glycoprotein. Photoaffinity labeling experiments with 8-azido-ATP, which strongly supports transport revealed ATP binding exclusively at NBD1 and ADP trapping predominantly at NBD2. Despite this apparent asymmetry in the two domains, they are entirely interdependent as substitution of key lysine residues in the Walker A motif of either impaired both ATP binding and ADP trapping. Furthermore, the interaction of ADP at NBD2 appears to allosterically enhance the binding of ATP at NBD1. Glutathione, which supports drug transport by the protein, does not enhance ATP binding but stimulates the trapping of ADP. Thus MRP1 may employ a more complex mechanism of coupling ATP utilization to the export of agents from cells than P-glycoprotein.  相似文献   

14.
Reversible binding of Pi by beef heart mitochondrial adenosine triphosphatase.   总被引:110,自引:0,他引:110  
Beef heart mitochondrial ATPase (F1) exhibited a single binding site for Pi. The interaction with Pi was reversible, partially dependent on the presence of divalent metal ions, and characterized by a dissociation constant at pH 7.5 of 80 micronM. A variety of substances known to influence oxidative phosphorylation or the activity of the soluble ATPase (F1) also influenced Pi binding by the enzyme. Thus aurovertin, an inhibitor of oxidative phosphorylation, which was bound tightly by F1 and inhibited ATPase activity, enhanced Pi binding via a 4-fold increase in the affinity of the enzyme for Pi (KD = 20 micronM) but did not alter binding stoichiometry. Anions such as SO4(2-), SO3(2-), chromate, and 2,4-dinitrophenolate, which stimulated ATPase activity of F1, also enhanced Pi binding. Inhibitors of ATPase activity such as nickel/bathophenanthroline and the protein ATPase inhibitor of Pullman and Monroy (Pullman, M. E., and Monroy, G. C. (1963) J. Biol. Chem. 238, 3762-3769) inhibited Pi binding. The adenine nucleotides ADP, ATP, and the ATP analog adenylyl imidodiphosphate as well as the Pi analog arsenate, also inhibited Pi binding. The observations suggest that the Pi binding site was located in or near an adenine nucleotide binding site on the molecule.  相似文献   

15.
The His(6)-tagged N- and C-terminal nucleotide binding (ATP Binding Cassette, ABC) domains of the human multidrug resistance associated protein, MRP1, were expressed in bacteria in fusion to the bacterial maltose binding protein and a two-step affinity purification was utilized. Binding of a fluorescent ATP-analogue occurred with micromolar dissociation constants, MgATP was able to inhibit the ATP-analogue binding with 70 and 200 micromolar apparent inhibition constants, while AMP was nearly ineffective. Both MRP1 nucleotide binding domains showed ATPase activities (V(max) values between 5-10 nmoles/mg protein/min), which is fifty to hundred times lower than that of parent transporter. The K(M) value of the ATP hydrolysis by the nucleotide binding domains were 1.5 mM and 1.8 mM, which is similar to the K(M) value of the native or the purified and reconstituted transporter, N-ethylmaleinimide and A1F(4) inhibited the ATPase activity of both nucleotide binding domains.  相似文献   

16.
Druley TE  Stein WD  Roninson IB 《Biochemistry》2001,40(14):4312-4322
The reactivity of the ATP-dependent multidrug transporter P-glycoprotein (Pgp) with the conformation-sensitive monoclonal antibody UIC2 is increased in the presence of Pgp transport substrates, ATP-depleting agents, or mutations that reduce the level of nucleotide binding by Pgp. We have investigated the effects of nucleotides and vinblastine, a Pgp transport substrate, on the UIC2 reactivity of Pgp in cells permeabilized by Staphylococcus aureus alpha-toxin. ATP, ADP, and nonhydrolyzable ATP analogues decreased the UIC2 reactivity; this effect was potentiated by vanadate, a nucleotide-trapping agent. The Hill number for the nucleotide-induced conformational transition was 2 for ATP and ADP but 1 for nonhydrolyzable ATP analogues. The Hill numbers for ATP and ADP were decreased to 1 by mutations in one of the two nucleotide binding sites of Pgp, whereas mutation of both sites greatly diminished the overall effect of nucleotides. Vinblastine reversed the decrease in the UIC2 reactivity brought about by all the nucleotides, including nonhydrolyzable analogues; this effect of vinblastine was blocked by vanadate. These data indicate that UIC2-detectable conformational changes of Pgp are driven by binding and debinding of nucleotides, that nucleotide hydrolysis affects the Hill number for its Pgp interactions, and that Pgp transport substrates promote nucleotide dissociation from Pgp. These findings are consistent with a conventional E1/E2 model that explains conformational transitions of a transporter protein through a series of linked equilibria.  相似文献   

17.
The photoaffinity spin-labeled ATP analog, 2-N3-SL-adenosine triphosphate (ATP), was used to covalently modify isolated β-subunits from F1-ATPase of the thermophilic bacterium PS3. Approximately 1.2 mol of the nucleotide analog bound to the isolated subunit in the dark. Irradiation leads to covalent incorporation of the nucleotide into the binding site. ESR spectra of the complex show a signal that is typical for protein-immobilized radicals. Addition of isolated α-subunits to the modified β-subunits results in ESR spectra with two new signals indicative of two distinctly different environments of the spin-label, e.g., two distinctly different conformations of the catalytic sites. The relative ratio of the signals is approx 2∶1 in favor of the more closed conformation. The data show for the first time that when nucleotides are bound to isolated β-subunits, binding of α-subunits induces asymmetry in the catalytic sites even in the absence of the γ-subunit. This work was supported by a grant from the Deutsche Forschungsgemeinschaft to PDV.  相似文献   

18.
Cai J  Daoud R  Alqawi O  Georges E  Pelletier J  Gros P 《Biochemistry》2002,41(25):8058-8067
Mutations in the MRP gene family member MRP6 cause pseudoxanthoma elasticum (PXE) in humans, a disease affecting elasticity of connective tissues. The normal function of MRP6, including its physiological substrate(s), remains unknown. To address these issues, recombinant rat Mrp6 (rMrp6) was expressed in the methylotrophic yeast Pichia pastoris. The protein was expressed in the membrane fraction as a stable 170 kDa protein. Its nucleotide binding and hydrolysis properties were investigated using the photoactive ATP analogue 8-azido-[alpha-(32)P]ATP and compared to those of the drug efflux pump MRP1. rMrp6 can bind 8-azido-[alpha-(32)P]ATP in a Mg(2+)-dependent and EDTA-sensitive fashion. Co(2+), Mn(2+), and Ni(2+) can also support 8-azido-[alpha-(32)P]ATP binding by rMrp6 while Ca(2+), Cd(2+), and Zn(2+) cannot. Under hydrolysis conditions (at 37 degrees C), the phosphate analogue beryllium fluoride (BeF(x)()) can stimulate trapping of the 8-azido-[alpha-(32)P]adenosine nucleotide in rMrp6 (and in MRP1) in a divalent cation-dependent and temperature-sensitive fashion. This suggests active ATPase activity, followed by trapping and photo-cross-linking of the 8-azido-[alpha-(32)P]ADP to the protein. By contrast to MRP1, orthovanadate-stimulated nucleotide trapping in rMrp6 does not occur in the presence of Mg(2+) but can be detected with Ni(2+) ions, suggesting structural and/or functional differences between the two proteins. The rMrp6 protein can be specifically photolabeled by a fluorescent photoactive drug analogue, [(125)I]-IAARh123, with characteristics similar to those previously reported for MRP1 (1), and this photolabeling of rMrp6 can be modulated by several structurally unrelated compounds. The P. pastoris expression system has allowed demonstration of ATP binding and ATP hydrolysis by rMrp6. In addition to providing large amounts of active protein for detailed biochemical studies, this system should also prove useful to identify potential rMrp6 substrates in [(125)I]-IAARh123 photolabeling competition studies, as well as to study the molecular basis of PXE mutations, which are most often found in the NBD2 of MRP6.  相似文献   

19.
Dimethylsulfoxide (Me2SO; 30%, v/v) promotes the formation of ATP from ADP and phosphate catalyzed by soluble mitochondrial F1 ATPase. The effects of this solvent on the adenine nucleotide binding properties of beef-heart mitochondrial F1 ATPase were examined. The ATP analog adenylyl-5'-imidodiphosphate bound to F1 at 1.9 and 1.0 sites in aqueous and Me2SO systems, respectively, with a KD value of 2.2 microM. Lower affinity sites were present also. Binding of ATP or adenylyl-5'-imidodiphosphate at levels near equimolar with the enzyme occurred to a greater extent in the absence of Me2SO. Addition of ATP to the nucleotide-loaded enzyme resulted in exchange of about one-half of the bound ATP. This occurred only in an entirely aqueous medium. ATP bound in Me2SO medium was not released by exogenous ATP. Comparison of the effect of different concentrations of Me2SO on ADP binding to F1 and ATP synthesis by the enzyme showed that binding of ADP was diminished by concentrations of Me2SO lower than those required to support ATP synthesis. However, one site could still be filled by ADP at concentrations of Me2SO optimal for ATP synthesis. This site is probably a noncatalytic site, since the nucleotide bound there was not converted to ATP in 30% Me2SO. The ATP synthesized by F1 in Me2SO originated from endogenous bound ADP. We conclude that 30% Me2SO affects the adenine nucleotide binding properties of the enzyme. The role of this in the promotion of the formation of ATP from ADP and phosphate is discussed.  相似文献   

20.
Multidrug resistance-associated protein (MRP1) transports solutes in an ATP-dependent manner by utilizing its two nonequivalent nucleotide binding domains (NBDs) to bind and hydrolyze ATP. We found that ATP binding to the first NBD of MRP1 increases binding and trapping of ADP at the second domain (Hou, Y., Cui, L., Riordan, J. R., and Chang, X. (2002) J. Biol. Chem. 277, 5110-5119). These results were interpreted as indicating that the binding of ATP at NBD1 causes a conformational change in the molecule and increases the affinity for ATP at NBD2. However, we did not distinguish between the possibilities that the enhancement of ADP trapping might be caused by either ATP binding alone or hydrolysis. We now report the following. 1) ATP has a much lesser effect at 0 degrees C than at 37 degrees C. 2) After hexokinase treatment, the nonhydrolyzable ATP analogue, adenyl 5'-(yl iminodiphosphate), does not enhance ADP trapping. 3) Another nonhydrolyzable ATP analogue, adenosine 5'-(beta,gamma-methylene)triphosphate, whether hexokinase-treated or not, causes a slight enhancement. 4) In contrast, the hexokinase-treated poorly hydrolyzable ATP analogue, adenosine 5'-O-(thiotriphosphate) (ATPgammaS), enhances ADP trapping to a similar extent as ATP under conditions in which ATPgammaS should not be hydrolyzed. We conclude that: 1) ATP hydrolysis is not required to enhance ADP trapping by MRP1 protein; 2) with nucleotides having appropriate structure such as ATP or ATPgammaS, binding alone can enhance ADP trapping by MRP1; 3) the stimulatory effect on ADP trapping is greatly diminished when the MRP1 protein is in a "frozen state" (0 degrees C); and 4) the steric structure of the nucleotide gamma-phosphate is crucial in determining whether binding of the nucleotide to NBD1 of MRP1 protein can induce the conformational change that influences nucleotide trapping at NBD2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号