首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When pyridoxal 5'-phosphate (PLP) is covalently bound to band 3 protein in intact red blood cells and those cells are subjected to the osmotic hemolysis and resealing process, a significant reduction in the original PLP anion transport inhibitory potency occurs. We show that partial deinhibition is not due to the development of a second anion transport pathway in resealed ghosts. Rather, partial deinhibition arises from a hemolysis-induced conformational change in CH17 (17-kDa integral chymotryptic domain of band 3). This change causes the extracellular exposure of new transport inhibitory sites. Exposure of the new sites leads to a 2-fold increase in PLP labeling of CH17 in resealed ghosts compared with CH17 in intact red cells. The hemolysis and resealing process has no effect on the labeling of CH35 (35-kDa integral chymotryptic fragment of band 3). Double-labeling studies show restoration of transport inhibitory potency to near red cell levels when the newly exposed CH17 sites are labeled with PLP in resealed ghosts. The results support the view that CH17 contains PLP transport inhibitory sites. They show that a major conformational change occurs in band 3 with hemolysis.  相似文献   

2.
Pyridoxal-5'-phosphate is known to label the two integral, chymotryptic domains (CH17 and CH35) of the erythrocyte anion exchange protein known as band 3. The CH35 sites are mutually exclusive with stilbene disulfonate binding, while the CH17 sites are not. Selective, irreversible pyridoxal-5'-phosphate labeling of CH17, reduces the transport inhibitory potency due to reversible stilbene disulfonate binding to vacant, nonoverlapping CH35 sites. We conclude that multisite allosteric interactions can occur on one band 3 monomer.  相似文献   

3.
Molecular mechanisms of band 3 inhibitors. 1. Transport site inhibitors   总被引:4,自引:0,他引:4  
J J Falke  S I Chan 《Biochemistry》1986,25(24):7888-7894
The band 3 protein of red cells is a transmembrane ion transport protein that catalyzes the one-for-one exchange of anions across the cell membrane. 35Cl NMR studies of Cl- binding to the transport sites of band 3 show that inhibitors of anion transport can be grouped into three classes: (1) transport site inhibitors (examined in this paper), (2) channel-blocking inhibitors (examined in the second of three papers in this issue), and (3) translocation inhibitors (examined in the third of three papers in this issue). Transport site inhibitors fully or partially reduce the affinity of Cl- for the transport site. The dianion 4,4'-di-nitrostilbene-2,2'-disulfonate (DNDS) and the arginine-specific reagent phenylglyoxal (PG) each completely eliminate the transport site 35Cl NMR line broadening, and each compete with Cl- for binding. These results indicate that DNDS and PG share a common inhibitory mechanism involving occupation of the transport site: one of the DNDS negative charges occupies the site, while PG covalently modifies one or more essential positive charges in the site. In contrast, 35Cl NMR line broadening experiments suggest that 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS) leaves the transport site partially intact so that the affinity of Cl- for the site is reduced but not destroyed. This result is consistent with a picture in which DIDS binds near the transport site and partially occupies the site.  相似文献   

4.
We have applied double-quantum-filtered (DQF) NMR of 35Cl to study binding of Cl- to external sites on intact red blood cells, including the outward-facing anion transport sites of band 3, an integral membrane protein. A DQF 35Cl NMR signal was observed in cell suspensions containing 150 mM KCl, but the DQF signal can be totally eliminated by adding 500 microM 4,4'-dinitrostilbene-2,2'-disulfonate (DNDS), an inhibitor that interferes with Cl- binding to the band 3 transport site. Therefore, it seems that only the binding of Cl- to transport sites of band 3 can give rise to a 35Cl DQF signal from red blood cell suspensions. In accordance with this concept, analysis of the single quantum free induction decay (FID) revealed that signals from buffer and DNDS-treated cells were fitted with a single exponential function, whereas the FID signals of untreated control cells were biexponential. The DQF signal remained after the cells were treated with eosin-5-maleimide (EM), a noncompetitive inhibitor of chloride exchange. This result supports previous reports that EM does not block the external chloride binding site. The band 3-dependent DQF signal is shown to be caused at least in part by nonisotropic motions of Cl- in the transport site, resulting in incompletely averaged quadrupolar couplings.  相似文献   

5.
A new method has been developed for the chemical modification and labeling of carboxyl groups in proteins. Carboxyl groups are activated with Woodward's reagent K (N-ethyl-5-phenylisoxazolium 3'-sulfonate), and the adducts are reduced with [3H]BH4. The method has been applied to the anion transport protein of the human red blood cell (band 3). Woodward's reagent K is a reasonably potent inhibitor of band 3-mediated anion transport; a 5-min exposure of intact cells to 2 mM reagent at pH 6.5 produces 80% inhibition of transport. The inhibition is a consequence of modification of residues that can be protected by 4,4'-dinitrostilbene-2,2'-disulfonate. Treatment of intact cells with Woodward's reagent K followed by B3H4 causes extensive labeling of band 3, with minimal labeling of intracellular proteins such as spectrin. Proteolytic digestion of the labeled protein reveals that both the 60- and the 35-kDa chymotryptic fragments are labeled and that the labeling of each is inhibitable by stilbenedisulfonate. If the reduction is performed at neutral pH the major labeled product is the primary alcohol corresponding to the original carboxylic acid. Liquid chromatography of acid hydrolysates of labeled affinity-purified band 3 shows that glutamate but not aspartate residues have been converted into the hydroxyl derivative. This is the first demonstration of the conversion of a glutamate carboxyl group to an alcohol in a protein. The labeling experiments reveal that there are two glutamate residues that are sufficiently close to the stilbenedisulfonate site for their labeling to be blocked by 4,4'-diisothiocyanodihydrostilbene-2,2'-disulfonate and 4,4'-dinitrostilbene-2,2'-disulfonate.  相似文献   

6.
Transport of pyridoxal 5-phosphate (PLP) into erythrocytes was inhibited by inhibitors of anion transport including stilbene disulfonate compounds, indicating that it is mediated by Band 3 protein. When erythrocytes were treated with PLP and large amounts of free lysine and NaBH4, two membrane-spanning fragments of Band 3 (Mr = 17,000 and 35,000) were specifically labeled. When the cells were pretreated with 4,4'-dinitrostilbene 2,2'-disulfonate, the labeling in the 35,000-dalton fragment was inhibited. Erythrocytes labeled by PLP in both the 17,000- and 35,000-dalton fragments transported PLP at a decreased rate, whereas the cells labeled in only the 17,000-dalton fragment had essentially the same transport activity as the control when 4,4'-dinitrostilbene 2,2'-disulfonate was removed. The extent of inhibition of transport of inorganic phosphate in the labeled cells was similar to that of PLP. The results indicate that the 35,000-dalton fragment participates in the anion transport of the cell membrane.  相似文献   

7.
X B Tang  J R Casey 《Biochemistry》1999,38(44):14565-14572
AE1, the chloride/bicarbonate anion exchanger of the erythrocyte plasma membrane, is highly sensitive to inhibition by stilbene disulfonate compounds such as DIDS (4,4'-diisothiocyanostilbene-2, 2'-disulfonate) and DNDS (4,4'-dinitrostilbene-2,2'-disulfonate). Stilbene disulfonates recruit the anion binding site to an outward-facing conformation. We sought to identify the regions of AE1 that undergo conformational changes upon noncovalent binding of DNDS. Since conformational changes induced by stilbene disulfonate binding cause anion transport inhibition, identification of the DNDS binding regions may localize the substrate binding region of the protein. Cysteine residues were introduced into 27 sites in the extracellular loop regions of an otherwise cysteineless form of AE1, called AE1C(-). The ability to label these residues with biotin maleimide [3-(N-maleimidylpropionyl)biocytin] was then measured in the absence and presence of DNDS. DNDS reduced the ability to label residues in the regions around G565, S643-M663, and S731-S742. We interpret these regions either as (i) part of the DNDS binding site or (ii) distal to the binding site but undergoing a conformational change that sequesters the region from accessibility to biotin maleimide. DNDS alters the conformation of residues outside the plane of the bilayer since the S643-M663 region was previously shown to be extramembranous. Upon binding DNDS, AE1 undergoes conformational changes that can be detected in extracellular loops at least 20 residues away from the hydrophobic core of the lipid bilayer. We conclude that the TM7-10 region of AE1 is central to the stilbene disulfonate and substrate binding region of AE1.  相似文献   

8.
It has been suggested that Lys-430 of band 3, with which eosin-5-maleimide (EM) reacts, is located in the external channel through which anions gain access to the external transport site, and that EM inhibits anion exchange by blocking this channel. To test this, we have used 35Cl nuclear magnetic resonance (NMR) to measure Cl- binding to the external transport site in control and EM-treated human red blood cells. Intact cells were used rather than ghosts, because in this case all line broadening (LB) results from binding to external sites. In an NMR spectrometer with a 9.4-T magnetic field, red blood cells at 50% concentration (v/v) in 150 mM Cl- medium at 3 degrees C caused 19.0 +/- 1.2 Hz LB. Of this, 7.9 +/- 0.7 Hz was due to Cl- binding to the high affinity band 3 transport sites, because it was prevented by an apparently competitive inhibitor of anion exchange, 4,4'-dinitrostilbene-2,2'-disulfonate (DNDS). The LB was not due to hemoglobin released from the cells, as little LB remained in the supernatant after cells were removed by centrifugation. Saturable Cl- binding remained in EM-treated cells, although the binding was no longer DNDS-sensitive, because EM prevents binding of DNDS. The lower limit for the rate at which Cl- goes from the binding site to the external medium is 2.15 x 10(5) s-1 for control cells and 1.10 x 10(5) s-1 for EM-treated cells, far higher than the Cl- translocation rate at 3 degrees C (about 400 s-1). Thus, EM does not inhibit Cl- exchange by blocking the external access channel. EM may therefore be useful for fixing band 3 in one conformation for studies of Cl- binding to the external transport site.  相似文献   

9.
The stilbenedisulfonate inhibitory site of the human erythrocyte anion-exchange system has been characterized by using serveral fluorescent stilbenedisulfonates. The covalent inhibitor 4-benzamido-4'-isothiocyanostilbene-2,2'-disulfonate (BIDS) reacts specifically with the band 3 protein of the plasma membrane when added to intact erythrocytes, and the reversible inhibitors 4,4'-dibenzamidostilbene-2,2'-disulfonate (DBDS) and 4-benzamido-4'-aminostilbene-2,2'-disulfonate (BADS) show a fluorescence enhancement upon binding to the inhibitory site on erythrocyte ghosts. The fluorescence properties of all three bound probes indicate a rigid, hydrophobic site with nearby tryptophan residues. The Triton X-100 solublized and purified band 3 protein has similar affinities for DBDS, BADS, and 4,4'-dinitrostilbene-2,2'-disulfonate (DNDS) to those observed on intact erythrocytes and erythrocyte ghosts, showing that the anion binding site is not perturbed by the solubilization procedure. The distance between the stilbenedisulfonate binding site and a group of cysteine residues on the 40 000-dalton amino-terminal cytoplasmic domain of band 3 was measured by the fluorescence resonance energy transfer technique. Four different fluorescent sulfhydryl reagents were used as either energy transfer donors or energy transfer acceptors in combination with the stilbenedisulfonates (BIDS, DBDS, BADS, and DNDS). Efficiencies of transfer were measured by sensitized emisssion, donor quenching, and donor lifetime changes. Although these sites are approachable from opposite sides of the membrane by impermeant reagents, they are separated by only 34--42 A, indicating that the anion binding site is located in a protein cleft which extends some distance into the membrane.  相似文献   

10.
J M Salhany  R L Sloan  K A Cordes 《Biochemistry》1991,30(16):4097-4104
Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) studies have identified two oligomeric forms of band 3 whose proportions on gel profiles were modulated by the particular ligand occupying the intramonomeric stilbenedisulfonate site during intermonomeric cross-linking by BS3 [bis-(sulfosuccinimidyl) suberate] [Salhany et al. (1990) J. Biol. Chem. 265, 17688-17693]. When DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulfonate) was irreversibly attached to all monomers, BS3 covalent dimers predominated, while with DNDS (4,4'-dinitrostilbene-2,2'-disulfonate) present to protect the intramonomeric stilbenedisulfonate site from attack by BS3, a partially cross-linked band 3 tetramer was observed. In the present study, we investigate the structure of the protected stilbenedisulfonate site within the tetrameric complex by measuring the ability of patent monomers to react irreversibly with DIDS. Our results show two main populations of band 3 monomers present after reaction with DNDS/BS3: (a) inactive monomers resulting from the displacement of reversibly bound DNDS molecules and subsequent irreversible attachment of BS3 to the intramonomeric stilbenedisulfonate site and (b) residual, active monomers. All of the residual activity was fully inhibitable by DIDS under conditions of reversible binding, confirming expectations that all of the monomers responsible for the residual activity have patent stilbenedisulfonate sites. However, within this active population, two subpopulations could be identified: (1) monomers which were irreversibly reactive toward DIDS and (2) monomers which were refractory toward irreversible binding of DIDS at pH 6.9, despite being capable of binding DIDS reversibly. Increasing the pH to 9.5 during treatment of DNDS/BS3-modified cells with 300 microM DIDS did not cause increased irreversible transport inhibition relative to that seen for cells treated at pH 6.9.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Molecular mechanisms of band 3 inhibitors. 2. Channel blockers   总被引:2,自引:0,他引:2  
J J Falke  S I Chan 《Biochemistry》1986,25(24):7895-7898
Band 3 is proposed to contain substrate channels that lead from the aqueous medium to a transport site buried within the membrane, and which can be blocked by inhibitors. The inhibitors 1,2-cyclohexanedione (CHD) and dipyridamole (DP) each inhibit the transport site 35Cl NMR line broadening, but neither competes with Cl- for binding. Thus these inhibitors do not occupy the transport site; instead they slow the migration of Cl- between the transport site and the medium. The simplest explanation for this behavior is that CHD and DP block one or more substrate channels. CHD is an arginine-specific covalent modification reagent, and its effectiveness as a channel blocker indicates that the channel contains arginine positive charges to facilitate the migration of anions through the channel. DP is a noncovalent channel blocker that binds with a stoichiometry of 1 molecule per band 3 dimer. DP binding is unaffected by CHD but is prevented by phenylglyoxal (PG), 4,4'-dinitrostilbene-2,2'-disulfonate (DNDS), or niflumic acid. Thus the DP and CHD binding sites are distinct, with DP binding sufficiently close to the transport site to interact with PG and DNDS. It is proposed that substrate channels may be a general feature of transport proteins.  相似文献   

12.
To determine which arginine residues are responsible for band 3-mediated anion transport, we analyzed hydroxyphenylglyoxal (HPG)-modified band 3 protein in native erythrocyte membranes. HPG-modification leads to inhibition of the transport of phosphoenolpyruvate, a substrate for band 3-mediated transport. We analyzed the HPG-modified membranes by reverse phase-HPLC, and determined that arginine 901 was modified by HPG. To determine the role of Arg 901 in the conformational change induced by anion exchange, we analyzed HPG-modification of the membranes when 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS) or diethypyrocarbonate (DEPC) was present. DNDS and DEPC fix band 3 in the outward and inward conformations, respectively. HPG-modification was unaffected in the presence of DEPC but decreased in the presence of DNDS. In addition to that, 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), which specifically reacts with the outward conformation of band 3, did not react with HPG-modified membranes. Furthermore, we expressed a band 3 mutant in which Arg 901 was replaced by alanine (R901A) on yeast membranes. The kinetic parameters indicated that the R901A mutation affected the rate of conformational change of the band 3 protein. From these results, we conclude that the most C-terminal arginine, Arg 901, has a functional role in the conformational change that is necessary for anion transport.  相似文献   

13.
Numerous models describing anion exchange across the red cell membrane by band 3 have been discussed in literature. These models are readily distinguished from one another by an experiment which tests the ability of band 3 transport sites to be recruited to one side of the membrane. In order to observe directly the transmembrane recruitment of transport sites, we have developed 35Cl NMR techniques that resolve the two transport site populations on opposite sides of the membrane. Using these techniques, we show that the inhibitors 4,4'- dinitrostilbene -2,2'-disulfonate and p- nitrobenzensulfonate each recruit all of the transport sites on both sides of the membrane to the extracellular facing conformation. This result indicates that band 3 has an alternating site transport mechanism: each band 3 transport unit possesses a single functional transport site which is alternately exposed first to one side of the membrane then to the other.  相似文献   

14.
Murine band 3 protein was expressed in oocytes of Xenopus laevis after microinjection of the mRNA from the spleens of anemic mice. The 36Cl- efflux from the oocytes was compared with the chloride fluxes measured in murine red cells. In both oocytes and red cells, the band 3-mediated chloride transport showed the following features: the selective inhibitor of band 3-mediated anion transport, 4,4'-dinitrostilbene-2,2'-disulfonate exerts its effects only when applied to the outside and not when applied to the inside of the membrane. The K1/2 for inhibition by external 4,4'-dinitrostilbene-2,2'-disulfonate was of the order of 1.5 to 2.0 mumol/l. Flufenamate and persantine also produce similar inhibitory effects. Decreasing the pH from 7.4 to 6.0 leads to some inhibition. It is concluded that essential features of the mode of action of murine erythroid band 3 protein in the plasma membrane of the oocyte are similar to the mode of action in the bilayer of the red blood cell of the mouse.  相似文献   

15.
The parallel effects of the anion transport inhibitor DIDS (4,4'- diisothiocyanostilbene-2,2'-disulfonate) on net chloride flow and on chloride exchange suggest that a major portion of net chloride flow takes place through the anion exchange system. The "slippage" model postulates that the rate of net anion flow is determined by the movement of the unloaded anion transport site across the membrane. Both the halide selectivity of net anion flow and the dependence of net chloride flux on chloride concentration over the range of 75 to 300 mM are inconsistent with the slippage model. Models in which the divalent form of the anion exchange carrier or water pores mediate net anion flow are also inconsistent with the data. The observations that net chloride flux increases with chloride concentration and that the DIDS- sensitive component tends to saturate suggest a model in which net anion flow involves "transit" of anions through the diffusion barriers in series with the transport site, without any change in transport site conformation such as normally occurs during the anion exchange process. This model is successful in predicting that the anion exchange inhibitor NAP-taurine, which binds to the modifier site and inhibits the conformational change, has less effect on net chloride flow than on chloride exchange.  相似文献   

16.
Maltosylisothiocyanate (MITC), synthesized as an affinity label for the hexose carrier, has been reported to label a Band 3 or Mr = 100,000 protein in human erythrocytes, in contradistinction to many studies showing the carrier as a Band 4.5 or Mr = 45,000-66,000 protein on gel electrophoresis. In this work the possibility that MITC interacts with the Band 3 anion transporter was studied. In intact human erythrocytes, MITC labeling was largely confined to Band 3 and was decreased by several competitive inhibitors of hexose transport. However, MITC also appeared to react with the anion transport protein, since MITC labeling of Band 3 was irreversibly decreased by the anion transport inhibitor 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS) and since MITC also irreversibly inhibited both tritiated dihydro-DIDS labeling of Band 3 and sulfate uptake in intact cells. Although 20 microM DIDS had little effect on hexose transport, the labeling of erythrocyte Band 3 by the dihydro analog was significantly diminished by competitive inhibitors of hexose transport. These data suggest that MITC labels in part the anion transporter as well as other DIDS-reactive sites on Band 3 which appear to be sensitive to competitive inhibitors of hexose transport.  相似文献   

17.
The anion exchange system of human red blood cells is highly inhibited and specifically labeled by isothiocyano derivatives of benzene sulfonate (BS) or stilbene disulfonate (DS). To learn about the site of action of these irreversibly binding probes we studied the mechanism of inhibition of anion exchange by the reversibly binding analogs p-nitrobenzene sulfonic acid (pNBS) and 4,4'-dinitrostilbene-disulfonic acid (DNDS). In the absence of inhibitor, the self-exchange flux of sulfate (pH 7.4, 25 degrees C) at high substrate concentration displayed self-inhibitory properties, indicating the existence of two anion binding sites: one a high-affinity transport site and the other a low-affinity modifier site whose occupancy by anions results in a noncompetitive inhibition of transport. The maximal sulfate exchange flux per unit area was JA = (0.69 +/- 0.11) X 10(-10) moles . min-1 . cm-2 and the Michaelis-Menten constants were for the transport site KS = 41 +/- 14 mM and for the modifier site Ks' = 653 +/- 242 mM. The addition to cells of either pNBS at millimolar concentrations or DNDS at micromolar concentrations led to reversible inhibition of sulfate exchange (pH 7.4, 25 degrees C). The relationship between inhibitor concentration and fractional inhibition was linear over the full range of pNBS or DNDS concentrations (Hill coefficient n approximately equal to 1), indicating a single site of inhibition for the two probes. The kinetics of sulfate exchange in the presence of either inhibitor was compatible with that of competitive inhibition. Using various analytical techniques it was possible to determine that the sulfate transport site was the target for the action of the inhibitors. The inhibitory constants (Ki) for the transport sites were 0.45 +/- 0.10 microM for DNDS and 0.21 +/- 0.07 mM for pNBS. From the similarities between reversibly and irreversibly binding BS and DS inhibitors in structures, chemical properties, modus operandi, stoichiometry of interaction with inhibitory sites, and relative inhibitory potencies, we concluded that the anion transport sites are also the sites of inhibition and of labeling of covalent binding analogs of BS and DS.  相似文献   

18.
The transport of inorganic anions across human red blood cell membranes is accomplished by a carrier-like mechanism which involves an electroneutral and obligatory one-for-one anion exchange. The transport kinetics were described by models that involve alternation of single transport sites between the two membrane surfaces. These models predict that each carrier shows either an inward-facing Ei or an outward-facing Eo, conformation, each capable of binding either a monovalent anion or a divalent anion + a proton, to yield an electroneutral translocating complex. Unidirectional transport rates provide, therefore, a measure for the relative concentration of carriers at a given membrane surface. In the present work we assessed how modulation of the transmembrane distribution of carriers by the anion composition of cells and media, and by pH, affect the anion transport system. We have set the system in asymmetric conditions with respect to anions, so that a fast transportable anion (e.g., chloride) was present in one side of the membrane and slow transportable anions (e.g., sulfate, phosphate, oxalate, isethionate, gluconate, HEPES) were present on the other side of the membrane. The skewed distribution of carriers induced in these conditions were assessed by two methods: 1) NBD-taurine transfer which provided a measure for [Ei], the monovalent inward-facing form of the carrier, and 2) inhibition of NBD-taurine transfer by the specific impermeant and competitive inhibitor 4,4'-dinitro-2,2'-stilbene disulfonic acid (DNDS), which provided a measure for the availability of the carrier at the outer membrane surface. In the various symmetric and asymmetric conditions, we found marked differences in transport rates and transport profiles as well as in the susceptibility of the system to inhibition by DNDS. Direct binding studies of DNDS to cells in the various asymmetric conditions supported the conclusion derived from transport studies that transport sites can be recruited towards the membrane surface facing the slow transportable anions.  相似文献   

19.
Canine renal brush border membrane proteins that bind stilbenedisulfonate inhibitors of anion exchange were identified by affinity chromatography. A 130-kDa integral membrane glycoprotein from brush border membrane was shown to bind specifically to 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonate immobilized on Affi-Gel 102 resin. The bound protein could be eluted effectively with 1 mM 4-benzamido-4'-aminostilbene-2,2'-disulfonate (BADS). The 130-kDa protein did not bind to the affinity resin in the presence of 1 mM BADS or when the solubilized extract was covalently labeled with 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS). This protein was labeled with [3H]H2DIDS, and the labeling was prevented by BADS. The 130-kDa protein did not cross-react with antibody raised against human or dog erythrocyte Band 3 protein. The 130-kDa protein was accessible to proteinase K and chymotrypsin digestion in vesicles but not to trypsin. The 130-kDa protein was sensitive to endo-beta-N-acetylglucosaminidase F treatment both in the solubilized state and in brush border membrane vesicles showing that it was a glycoprotein and that the carbohydrate was on the exterior of the vesicles. This glycoprotein was resistant to endo-beta-N-acetylglucosaminidase H treatment suggesting a complex-type carbohydrate structure. The protein bound concanavalin A, wheat germ agglutinin, and Ricinus communis lectins, and it could be purified using wheat germ agglutinin-agarose.  相似文献   

20.
Summary The anion transport domain of the anion exchange protein (AEP) of human erythrocyte membranes (band 3, 95 kD mol wt) was probed with the substrate and affinity label pyridoxal-5-phosphate (PLP). Acting from outside, this probe labels two chymotryptic fragments of 65 and 35 kD of AEP but only the 35-kD fragment is protected from labeling by reversibly acting disulfonic stilbenes (DS). It is shown here by functional studies and by immunoblotting with anti-PLP antibodies that transmembrane gradients of anions determine the availability of a 35-kD fragmentlys residue to surface labeling by PLP, in analogy with their effects on labeling of 65-kD fragment by DS. On this basis, it is suggested that both fragments contribute to the formation of the transport domain. However, unlike DS, PLP blocks transport when reacted from within resealed membranes, indicating that the 35-kD fragment might contain components of the mobile unit of the AEP. Using impermeant fluorescence quenchers of PLP of both complexation type (anti-PLP antibodies) or collisional type (acrylamide) as topological probes for PLP-labeled sites, it is deduced that the 65-kD PLP-labeled and the 35-kD PLP-labeledlys groups are inaccessible to macromolecules from either surface, but the 65-kD PLP-lys is accessible to low molecular weight molecules from without while the 35-kD PLP-labeledlys shows accessibility primarily from within the cell surface. The studies indicate that the accommodation of a wide class of anions by AEP might be associated with the flexibility of the transport domain of the protein and its capacity to undergo transport-related conformational changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号