首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The chemical synthesis of proteins has facilitated functional studies of proteins due to the site‐specific incorporation of post‐translational modifications, labels, and non‐proteinogenic amino acids. Moreover, native chemical ligation provides facile access to proteins by chemical means. However, the application of the native chemical ligation reaction in the synthesis of parallel formats such as protein arrays has been complicated because of the often cumbersome and time‐consuming synthesis of the required peptide thioesters. An Fmoc‐based peptide thioester synthesis with self‐purification on the sulfonamide ‘safety‐catch’ linker widens this bottleneck because HPLC purification can be avoided. The method is based on an on‐resin cyclization–thiolysis reaction sequence. A macrocyclization via the N‐terminus of the full‐length peptide followed by a thiolytic C‐terminal ring opening allows selective detachment of the truncation products and the full‐length peptide. A brief overview of the chemical aspects of this method is provided including the optimization steps and the automation process. Furthermore, the application of the cyclization–thiolysis approach combined with the native chemical ligation reaction in the parallel synthesis of a library of 16 SH3‐domain variants of SHO1 in yeast is described, demonstrating the value of this new technique for the chemical synthesis of protein arrays. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

2.
The human protein tyrosine kinase-6 (PTK6) polypeptide that is deduced from the cDNA sequence contains a Src homology (SH) 3 domain, SH2 domain, and catalytic domain of tyrosine kinase. We initiated biochemical and NMR characterization of PTK6 SH3 domain in order to correlate the structural role of the PTK6 using circular dichroism and heteronuclear NMR techniques. The circular dichroism data suggested that the secondary structural elements of the SH3 domain are mainly composed of beta-sheet conformations. It is most stable when the pH is neutral based on the pH titration data. In addition, a number of cross peaks at the low-field area of the proton chemical shift of the NMR spectra indicated that the PTK6 SH3 domain retains a unique and folded conformation at the neutral pH condition. For other pH conditions, the SH3 domain became unstable and aggregated during NMR measurements, indicating that the structural stability is very sensitive to pH environments. Both the NMR and circular dichroism data indicate that the PTK6 SH3 domain experiences a conformational instability, even in an aqueous solution.  相似文献   

3.
Reported here is a native chemical ligation strategy for the total chemical synthesis of the B1 domain of protein L. A synthetic construct of this 76 amino acid protein domain was prepared by the chemoselective ligation of two unprotected polypeptide fragments, one containing an N-terminal cysteine residue and one containing a C-terminal thioester moiety. The polypeptide fragments utilized in the ligation reaction were readily prepared by stepwise solid phase peptide synthesis (SPPS) methods for Boc-chemistry. The milligram quantities of protein required for conventional biophysical studies were readily accessible using the synthetic protocol described here. The folding properties of the synthetic protein L construct were also determined and found to be very similar to those of a similar wild-type protein L constructs prepared by recombinant-DNA methods. This work facilitates future unnatural amino acid mutagenesis experiments on this model protein system to further dissect the molecular basis of its folding and stability.  相似文献   

4.
Bark SJ  Kent SB 《FEBS letters》1999,460(1):67-76
A disulfide-engineered analogue of bovine pancreatic trypsin inhibitor (BPTI), ((N(alpha)-(CH2)2S-)Gly38)BPTI, has been prepared using a thioester-mediated auxiliary functional group chemical ligation of a N(alpha)-ethanethiol-containing peptide segment with a peptide-alphaCOSR segment. In this study, Nalpha-(ethanethiol)Gly38 replaces the native Cys38, providing the sulfhydryl group required for ligation and folding. Comparisons between ((Nalpha-(CH2)2SH)Gly38)BPTI, synthetic native BPTI and reference BPTI purchased from Sigma were made using mass spectroscopy, enzyme inhibitor association constant determination (K(a)) and 1H-nuclear magnetic resonance total correlated spectroscopy (1H-NMR TOCSY) measurements. The K(a) value for ((Nalpha-(CH2)2SH)Gly38)BPTI was approximately 20-fold lower than synthetic and reference BPTI, which was attributed to perturbations in the binding loop of the protein (near Cys14). This hypothesis was confirmed by two-dimensional (2D) 1H-NMR TOCSY experiments. The data reported here demonstrate that total chemical synthesis by auxiliary functional group chemical ligation is a practical method for the synthesis of a novel class of biologically active protein analogues containing additional functional groups linked to the protein backbone.  相似文献   

5.
Src homology 2 (SH2) domains recognize phosphotyrosine (pY)-containing sequences and thereby mediate their association to ligands. Bruton's tyrosine kinase (Btk) is a cytoplasmic protein tyrosine kinase, in which mutations cause a hereditary immunodeficiency disease, X-linked agammaglobulinemia (XLA). Mutations have been found in all Btk domains, including SH2. We have analyzed the structural and functional effects of six disease-related amino acid substitutions in the SH2 domain: G302E, R307G, Y334S, L358F, Y361C, and H362Q. Also, we present a novel Btk SH2 missense mutation, H362R, leading to classical XLA. Based on circular dichroism analysis, the conformation of five of the XLA mutants studied differs from the native Btk SH2 domain, while mutant R307G is structurally identical. The binding of XLA mutation-containing SH2 domains to pY-Sepharose was reduced, varying between 1 and 13% of that for the native SH2 domain. The solubility of all the mutated proteins was remarkably reduced. SH2 domain mutations were divided into three categories: 1) Functional mutations, which affect residues presumably participating directly in pY binding (R307G); 2) structural mutations that, via conformational change, not only impair pY binding, but severely derange the structure of the SH2 domain and possibly interfere with the overall conformation of the Btk molecule (G302E, Y334S, L358F, and H362Q); and 3) structural-functional mutations, which contain features from both categories above (Y361C).  相似文献   

6.
The SH3-HOOK-GUK domains of the postsynaptic scaffolding proteins SAP90/PSD-95 and SAP97 are established targets of synaptic plasticity processes in the brain. A crucial molecular mechanism involved is the transition of this domain to different conformational states. We purified the SH3-HOOK-GUK domain of both proteins to examine variations in protein conformation and stability. As monitored by circular dichroism and differential scanning calorimetry, SAP97 (Tm = 64 °C) is significantly more thermal stable than SAP90/PSD-95 (Tm = 52 °C) and follows a bimodal phase transition. GdmCl-induced equilibrium unfolding of both proteins follows the two-state transitions and thus does not involve the accumulation of stable intermediate state(s). Equilibrium unfolding of SAP97 is highly cooperative from a native state to an unfolded state. In contrast, SAP90/PSD-95 follows a non-cooperative transition from native to unfolded states. A highly cooperative unfolding reaction in case of SAP97 indicates that the protein existed initially as a compact, well-folded structure, while the gradual, non-cooperative melting reaction in case of SAP90/PSD-95 indicates that the protein is in comparison more flexible.  相似文献   

7.
Bousquet JA  Garbay C  Roques BP  Mély Y 《Biochemistry》2000,39(26):7722-7735
SH3 (src homology domain 3) domains are small protein modules that interact with proline-rich peptides. The structure of the N-terminal SH3 domain from growth factor receptor-binding protein 2 (Grb2), an adapter protein in the intracellular signaling pathway to Ras, was investigated by circular dichroic (CD) spectroscopy. The compact native beta-barrel conformation, previously elucidated by NMR spectroscopy, was largely predominant at pH = 4.8, in the absence of salt. From the structural changes induced by varying pH, ionic strength, temperature, or hydrophobicity of the environment, evidence for the existence of distinct nonnative conformations was obtained in the far- and near-UV domains. Along the free energy scale, these appear to distribute into two conformational ensembles, depending on the extent of structural and thermodynamic differences compared to the native conformation. The first ensemble consists of non-native conformations with a nativelike secondary structure, and the second is composed of partially unfolded conformations having short alpha-helical fragments or turnlike motifs in their nonnative secondary structure. Most of the observed nonnative conformations exist in mild or nondenaturing conditions. They probably have distinct compactness of their inner structure, depending on the strength of nonlocal interactions, but only the native all-beta conformation possesses a condensed protein exterior, appropriate for the binding to the VPPPVPPRRR decapeptide from Sos. Upon binding, the native conformation undergoes a local tertiary structure change in a hydrophobic pocket at the binding site. This is accompanied by the PP-II helix folding of the proline-rich peptide. Interestingly, in the near-UV domain, a significant change in the spectral contribution of an aromatic exciton was observed, thus allowing quantitative tracking of the binding process.  相似文献   

8.
The protein engineering analysis of the alpha-spectrin SH3 domain at three different stability conditions (pH 7.0, 3.5 and 2.5) reveals a folding transition state structured around the distal loop beta-hairpin and the 310-helix. This region is impervious to overall changes in protein stability, suggesting a transition state ensemble with little conformational variability. Comparison with the Src SH3 domain (36% sequence homology) indicates that the transition state in this protein family may be conserved. Discrepancies at some positions can be rationalized in terms of the different interactions made by the different side chains in both domains. Br?nsted plot analysis confirms the straight phi(doubledagger-U) results and shows two folding subdomains for this small protein. These results, together with previous data on circular permutants of the alpha-spectrin SH3 domain, indicate that polypeptide topology and chain connectivity play a major role in the folding reaction of this protein family.  相似文献   

9.
We have designed a chimeric protein by connecting a circular permutant of the alpha-spectrin SH3 domain to the proline-rich decapeptide APSYSPPPPP with a three-residue link. Our aim was to obtain a single-chain protein with a tertiary fold that would mimic the binding between SH3 domains and proline-rich peptides. A comparison of the circular-dichroism and fluorescence spectra of the purified chimera and the SH3 circular permutant showed that the proline-rich sequence occupies the putative SH3 binding site in a similar conformation and with comparable interactions to those found in complexes between SH3 and proline-rich peptides. Differential scanning calorimetry indicated that the interactions in the binding motif interface are highly cooperative with the rest of the structure and thus the protein unfolds in a two-state process. The chimera is more stable than the circular permutant SH3 by 6-8 kJ mol(-1) at 25 degrees C and the difference in their unfolding enthalpy is approximately 32 kJ mol(-1), which coincides with the values found for the binding of proline-rich peptides to SH3 domains. This type of chimeric protein may be useful in designing SH3 peptide ligands with improved affinity and specificity.  相似文献   

10.
Kim K  Hou P  Gorski JL  Cooper JA 《Biochemistry》2004,43(9):2422-2427
Mutations in faciogenital dysplasia protein (Fgd1) result in the human disease faciogenital dysplasia (FGDY). Fgd1 contains a RhoGEF domain specific for Cdc42. Fgd1 also contains a Src homology (SH3) binding domain (SH3-BD) that binds directly to the SH3 domain of cortactin, which promotes actin assembly by actin-related protein (Arp)2/3 complex. Here, we report the effect of ligation of cortactin's SH3 domain by the Fgd1 SH3-BD on actin polymerization in vitro. Glutathione S-transferase (GST)-fused Fgd1 SH3-BD enhanced the ability of cortactin to stimulate Arp2/3-mediated actin polymerization. However, a synthetic peptide containing only the SH3-BD sequence had no effect. The SH3-BD peptide bound to cortactin and inhibited the effect of GST-Fgd1 SH3-BD, suggesting that GST dimerization was responsible for the stimulating effect of GST-Fgd1 SH3-BD. When GST-Fgd1 SH3-BD was prepared as a heterodimer with a control GST fusion protein (GST-Pac1), no stimulatory effect on actin polymerization was observed. In addition, when cortactin was dimerized via its N-terminus, away from the C-terminal SH3 domain, actin polymerization with Arp2/3 complex increased markedly, compared to free cortactin. Thus, cortactin ligated by Fgd1 is fully active, indicating that the cell can use Fgd1 to target actin assembly. Moreover, if Fgd1 is multimerized, then cortactin's activity should be enhanced. Fgd1 and cortactin may participate as scaffolds and signal transducers in a positive feedback cycle to promote actin assembly at the cell cortex.  相似文献   

11.
We have used in vitro mutagenesis to examine in detail the roles of two modular protein domains, SH2 and SH3, in the regulation of the Abl tyrosine kinase. As previously shown, the SH3 domain suppresses an intrinsic transforming activity of the normally nontransforming c-Abl product in vivo. We show here that this inhibitory activity is extremely position sensitive, because mutants in which the position of the SH3 domain within the protein is subtly altered are fully transforming. In contrast to the case in vivo, the SH3 domain has no effect on the in vitro kinase activity of the purified protein. These results are consistent with a model in which the SH3 domain binds a cellular inhibitory factor, which in turn must physically interact with other parts of the kinase. Unlike the SH3 domain, the SH2 domain is required for transforming activity of activated Abl alleles. We demonstrate that SH2 domains from other proteins (Ras-GTPase-activating protein, Src, p85 phosphatidylinositol 3-kinase subunit, and Crk) can complement the absence of the Abl SH2 domain and that mutants with heterologous SH2 domains induce altered patterns of tyrosine-phosphorylated proteins in vivo. The positive function of the SH2 domain is relatively position independent, and the effect of multiple SH2 domains appears to be additive. These results suggest a novel mechanism for regulation of tyrosine kinases in which the SH2 domain binds to, and thereby enhances the phosphorylation of, a subset of proteins phosphorylated by the catalytic domain. Our data also suggest that the roles of the SH2 and SH3 domains in the regulation of Abl are different in several respects from the roles proposed for these domains in the closely related Src family of tyrosine kinases.  相似文献   

12.
Saccharomyces cerevisiae cyclase-associated protein (CAP or Srv2p) is multifunctional. The N-terminal third of CAP binds to adenylyl cyclase and has been implicated in adenylyl cyclase activation in vivo. The widely conserved C-terminal domain of CAP binds to monomeric actin and serves an important cytoskeletal regulatory function in vivo. In addition, all CAP homologs contain a centrally located proline-rich region which has no previously identified function. Recently, SH3 (Src homology 3) domains were shown to bind to proline-rich regions of proteins. Here we report that the proline-rich region of CAP is recognized by the SH3 domains of several proteins, including the yeast actin-associated protein Abp1p. Immunolocalization experiments demonstrate that CAP colocalizes with cortical actin-containing structures in vivo and that a region of CAP containing the SH3 domain binding site is required for this localization. We also demonstrate that the SH3 domain of yeast Abp1p and that of the yeast RAS protein guanine nucleotide exchange factor Cdc25p complex with adenylyl cyclase in vitro. Interestingly, the binding of the Cdc25p SH3 domain is not mediated by CAP and therefore may involve direct binding to adenylyl cyclase or to an unidentified protein which complexes with adenylyl cyclase. We also found that CAP homologous from Schizosaccharomyces pombe and humans bind SH3 domains. The human protein binds most strongly to the SH3 domain from the abl proto-oncogene. These observations identify CAP as an SH3 domain-binding protein and suggest that CAP mediates interactions between SH3 domain proteins and monomeric actin.  相似文献   

13.
Protein interaction domain families that modulate the formation of macromolecular complexes recognize specific sequence or structural motifs. For instance SH3 and WW domains bind to polyproline peptides while SH2 and FHA domains bind to peptides phosphorylated in Tyr and Thr respectively. Within each family, variations in the chemical characteristics of the domain binding pocket modulate a finer peptide recognition specificity and, as a consequence, determine the selection of functional protein partners in vivo. In the proteomic era there is the need for reliable inference methods to help restricting the sequence space of the putative targets to be confirmed experimentally by more laborious experimental approaches. Here we will review the published data about the peptide recognition specificity of the SH3 domain family and we will propose a classification of SH3 domains into eight classes. Finally, we will discuss whether the available information is sufficient to infer the recognition specificity of any uncharacterized SH3 domain.  相似文献   

14.
We present the in vivo biosynthesis of wild-type sunflower trypsin inhibitor 1 (SFTI-1) inside E. coli cells using an intramolecular native chemical ligation in combination with a modified protein splicing unit. SFTI-1 is a small backbone cyclized polypeptide with a single disulfide bridge. A small library containing multiple Ala mutants was also biosynthesized and its activity was assayed using a trypsin-binding assay. This study clearly demonstrates the exciting possibility of generating large cyclic peptide libraries in live E. coli cells, and is a critical first step for developing in vivo screening and directed evolution technologies using the cyclic peptide SFTI-1 as a molecular scaffold.  相似文献   

15.
Non-enzymatic, template-directed ligation of oligonucleotides in aqueous solution has been of great interest because of its potential synthetic and biomedical utility and implications for the origin of life. Though there are many methods for template-directed chemical ligation of oligonucleotides, there are only three reported photochemical methods. In the first report, template-directed photoligation was effected by cyclobutane dimer formation between the 5'- and 3'-terminal thymidines of two oligonucleotides with >290 nm light, which also damages DNA itself. To make the photochemistry of native DNA more selective, we have replaced the thymidine at the 5'-end of one oligonucleotide with 4-thiothymidine (s4T) and show that it photoreacts at 366 nm with a T at the 3'-endof another oligonucleotide in the presence of a complementary template. When a single mismatch is introduced opposite either the s4T or its adjoining T, the ligation efficiency drops by a factor of five or more. We also show that by linking the two ends of the oligonucleotides together, photoligation can be used to form circular DNA molecules and to 'photopadlock' circular DNA templates. Thus, s4T-mediated photo-ligation may have applications to phototriggered antisense-based or antigene-based genetic tools, diagnostic agents and drugs, especially for those situations in which chemical or enzyme-mediated ligation isundesirable or impossible, for example inside a cell.  相似文献   

16.
D Sondhi  P A Cole 《Biochemistry》1999,38(34):11147-11155
Csk (C-terminal Src kinase) is a protein tyrosine kinase that phosphorylates Src family member C-terminal tails, resulting in downregulation of Src family members. It is composed of three principal domains: an SH3 (Src homology 3) domain, an SH2 (Src homology 2) domain, and a catalytic domain. The impact of the noncatalytic domains on kinase catalysis was investigated. The Csk catalytic domain was expressed in Escherichia coli as a recombinant glutathione S-transferase-fusion protein and demonstrated to have 100-fold reduced catalytic efficiency. Production of the catalytic domain by proteolysis of full-length Csk afforded a similar rate reduction. This suggested that the reduction in catalytic efficiency of the recombinant catalytic domain was intrinsic to the sequence and not an artifact related to faulty expression. This rate reduction was similar for peptide and protein substrates and was due almost entirely to a reduced k(cat) rather than to effects on substrate K(m)s. Viscosity experiments on the catalytic fragment kinase reaction demonstrated that the chemical (phosphoryl transfer) step had a reduced rate. While the Csk SH2 domain had no intermolecular effect on the kinase activity of the Csk catalytic domain, the SH3 domain and SH3-SH2 fragment led to a partial rescue (4-5-fold) of the lost kinase activity. This rescue was not achieved with two other SH3 domains (lymphoid cell kinase, Abelson kinase). The extrapolated K(d) of interaction for the Csk catalytic domain with the Csk SH3 domain was 2.2 microM and that of the Csk catalytic domain with the Csk SH3-SH2 fragment was 8.8 microM. Taken together, these findings suggest that there is likely an intramolecular interaction between the catalytic and SH3 domains in full-length Csk that is important for efficient catalysis. By employing a Csk SH3 specific type II polyproline helix peptide and carrying out site-directed mutagenesis, it was established that the SH3 surface that interacts with the catalytic domain was distinct from the surface that binds type II polyproline helix peptides. This finding suggests a novel mode of protein-protein interaction for an SH3 domain. The implications for Csk substrate selectivity, regulation, and function are discussed.  相似文献   

17.
SAP (SLAM-associated protein) is a small lymphocyte-specific signalling molecule that is defective or absent in patients with X-linked lymphoproliferative syndrome (XLP). Consistent with its single src homology 2 (SH2) domain architecture and unusually high affinity for SLAM (also called CD150), SAP has been suggested to function by blocking binding of SHP-2 or other SH2-containing signalling proteins to SLAM receptors. Additionally, SAP has recently been shown to be required for recruitment and activation of the Src-family kinase FynT after SLAM ligation. This signalling 'adaptor' function has been difficult to conceptualize, because unlike typical SH2-adaptor proteins, SAP contains only a single SH2 domain and lacks other recognized protein interaction domains or motifs. Here, we show that the SAP SH2 domain binds to the SH3 domain of FynT and directly couples FynT to SLAM. The crystal structure of a ternary SLAM-SAP-Fyn-SH3 complex reveals that SAP binds the FynT SH3 domain through a surface-surface interaction that does not involve canonical SH3 or SH2 binding interactions. The observed mode of binding to the Fyn-SH3 domain is expected to preclude the auto-inhibited conformation of Fyn, thereby promoting activation of the kinase after recruitment. These findings broaden our understanding of the functional repertoire of SH3 and SH2 domains.  相似文献   

18.
Thematic minireview series on circular proteins   总被引:1,自引:0,他引:1  
Circular proteins have now been discovered in all kingdoms of life and are characterized by their exceptional stability and the diversity of their biological activities, primarily in the realm of host defense functions. This thematic minireview series provides an overview of the distribution, evolution, activities, and biological synthesis of circular proteins. It also reviews approaches that biological chemists are taking to develop synthetic methods for making circular proteins in the laboratory. These approaches include solid-phase peptide synthesis based on an adaption of native chemical ligation technology and recombinant DNA approaches that are amenable to the in-cell production of cyclic peptide libraries. The thioester-mediated native chemical ligation approach mimics, to some extent, elements of the natural biosynthetic reaction, which, for disulfide-rich cyclic peptides, appears to involve asparaginyl endopeptidase-mediated processing from larger precursor proteins.  相似文献   

19.
The domain organization of Acanthamoeba myosin-I, an oligomodular motor protein, includes a potentially important protein interaction module that is mostly uncharacterized. The Src homology 3, SH3, domain of myosin-I binds Acan125, a protein containing at least two consensus ligand binding domains: C-terminal SH3 binding motifs (PXXP) and N-terminal leucine-rich repeats. We report the first affinities determined for an SH3 domain of any myosin, namely, K(d) = 7 microM for a 21-residue synthetic peptide based on the PXXP domain sequence and K(d) = 0.15 microM for the PXXP domain included in the C-terminus of Acan125. These values are consistent with affinities reported for peptides and proteins that associate with SH3. By deletional analysis we show that only the PXXP domain is required for Acan125 to interact with the SH3 domain of Acanthamoeba myosin-IC (AmyoC(SH3)). The synthetic peptide described above at a concentration near the K(d) for SH3 binding blocked the interaction between native AmyoC and Acan125, mapping the interaction to the PXXP domain of Acan125 and the SH3 domain of myosin-I. These results are consistent with prototypical SH3 binding and suggest that a PXXP module is both necessary and sufficient to interact with an SH3 module of myosin-I.  相似文献   

20.
Protein-protein interactions mediated by the Src homology 3 (SH3) domain have been implicated in the regulation of receptor functions for subcellular localization of proteins and the reorganization of cytoskeleton. The experiments described in this article begin to identify the interaction of the SH3 domain of Src tyrosine kinase with the guanylyl cyclase C receptor after activation with Escherichia coli heat-stable enterotoxin (ST). Only one of two post-translationally modified forms of guanylyl cyclase C from T84 colonic carcinoma cells bind to GST-SH3 fusion protein of Src and Hck tyrosine kinases. Interestingly, the GST-Src-SH3 fusion protein showed 2-fold more affinity to native guanylyl cyclase C in solution than the GST-Hck-SH3 fusion protein. The affinity of the GST-Src-SH3 fusion protein to guanylyl cyclase C increased on desensitization of receptor in vivo. An in vitro cyclase assay in the presence of GST-Src-SH3 fusion protein indicated inhibition of the catalytic activity of guanylyl cyclase C. The catalytic domain recombinant protein (GST-GCD) of guanylyl cyclase C could pull-down a 60-kDa protein that reacted with Src tyrosine antibody and also showed autophosphorylation. These data suggest that SH3 domain-mediated protein-protein interaction with the catalytic domain of guanylyl cyclase C inhibited the cyclase activity and that such an interaction, possibly mediated by Src tyrosine kinase or additional proteins, might be pivotal for the desensitization phenomenon of the guanylyl cyclase C receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号