首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Postsynaptic responses evoked by stimulation of the descending tract and dorsal roots were investigated by means of intracellular microelectrodes in experiments on preparation of the isolated lamprey spinal cord. Besides giant reticulospinal (Mullerian) axons, a broad spectrum of descending fibers and dorsal-root afferents were shown to form synaptic inputs with both chemical and electrical mechanisms of transmission with motoneurons, as revealed by the sensitivity of the corresponding PSPs to absence of calcium ions and excess of magnesium ions in the external medium. During combined stimulation electrotonic PSPs may have a rapid temporal course characteristic of elementary responses, but they may also lead to smooth and slow depolarization of the postsynaptic membrane, evidence that they may perform not only a mediator but also an integrative function.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 9, No. 5, pp. 512–517, September–October, 1977.  相似文献   

2.
In experiments onLampetra fluviatilis in response to electrical stimulation of bulbar reticulospinal neurons and descending fibers the postsynaptic potentials of segmental motoneurons and action potentials of single intraspinal axons were recorded intracellularly and the cord dorsum potentials were recorded by a surface electrode. Fast-conducting reticulospinal axons (Müller's axons) were shown to excite spinal motoneurons monosynaptically. Monosynaptic reticulo-motoneuronal EPSPs arise as the result of excitation of a limited number of descending fibers, they reproduce high frequencies of stimulation readily and, in some cases, they are divided into components of which the first may be attributed to an electrical, and the second to a chemical mechanism of transmission. Besides early monosynaptic EPSPs, late, probably polysynaptic, responses also are found.  相似文献   

3.
The localization of reticulospinal neurons responding antidromically to stimulation of fibers in the dorsolateral parts of the lateral funiculi (shown previously to be the principal collector of fibers conveying bulbar pressor influences) was determined in experiments on anesthetized and curarized cats. Most of these neurons were found to occupy the medioventral portions of the medulla, but they were concentrated in the rostral portions of the gigantocellular and ventral nuclei of the reticular formation. The velocity of conduction of excitation along axons of most reticulospinal neurons was 10–50 m/sec. Reflex responses to stimulation of the sciatic nerve with a latent period of 10–40 msec were found in 35 of 125 such cells. Stimulation of the sinus nerve did not activate them. Spontaneous activity occurred in 29 reticulospinal neurons; the mean firing rate of the various cells varied from 5 to 20/sec.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 6, No. 3, pp. 266–272, May–June, 1974.  相似文献   

4.
The structure of connections between lumbar motoneurons was investigated in preparations of spinal cord isolated from young rats. This involved applying horseradish peroxidase to the ventral root and intracellular injection of the same enzyme into motoneurons. The possibility of dendro-dendritic, dendro-somatic, and somato-somatic contacts between motoneurons was shown up in light mocroscopy studies. Recurrent collaterals of motor axons were revealed and they are though to form contacts with dendrites and perikarya of the motoneurons. The findings obtained from morphological experiments are discussed in the light of data from electrophysiological analysis of motoneuronal postsynaptic potentials produced by ventral root stimulation.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 20, No. 3, pp. 340–350, May–June, 1988.  相似文献   

5.
We studied synaptic processes in motoneurons of thoracic segments (TIX-TXI) evoked by stimulation of the medial area of the giant-cell reticular nucleus in decerebrated cats. Monosynaptic EPSP were recorded in the majority of investigated motoneurons upon activation of the most rapidly conducting reticulospinal fibers. In some cells, such monosynaptic EPSP were accompanied by late EPSP or IPSP. Amplitude of monosynaptic EPSP attained 5 mV, but this value usually was insufficient for development of an action potential. Upon summation of single monosynaptic EPSP, the membrane potential reached the critical level and an action potential arose in the motoneuron. The efficiency of summary processes evoked by stimulation of the reticular formation exceeded the intensity of synaptic processes that arise in thoracic motoneurons on stimulating the nucleus of Deiters. Functional characteristics of reticular and vestibular monosynaptic EPSP are discussed in the work.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 1, No. 3, pp. 243–252, November–December, 1969.  相似文献   

6.
Temporal characteristics of monosynaptic EPSPs evoked by stimulation of the cortex and internal capsule were investigated in 112 reticulospinal neurons of the gigantocellular nucleus of the medulla with different conduction velocities. Negative correlation was found between the latent period and duration of the EPSPs and the conduction velocity along the corticobulbar fibers. Positive correlation was found between the same temporal characteristics of the EPSPs and conduction velocity along axons of the reticulospinal neurons. Reticulospinal neurons with conduction velocities of between 10.8 and 65.0 m/sec were found to be activated by fast- and slowly-conducting cortico-bulbar fibers, whereas reticulospinal neurons with conduction velocities of between 65.0 and 155 m/sec were activated only by slowly conducting corticobulbar fibers. The functional significance of this differentiation of the cortico-reticulospinal connection is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 8, No. 4, pp. 366–372, July–August, 1976.  相似文献   

7.
Zusammenfassung Die proximalen Kollateralen der dorsalen Riesenfasern des Regenwurms wurden in Serienschnitten vom Soma bis zum Eintritt in die Riesenfaser verfolgt und im Hinblick auf ihre Feinstruktur und ihre synaptischen Kontakte Untersucht. Es finden sich sowohl chemische als auch elektrische Synapsen. Ihre Feinstruktur wird mit der bekannter Synapsen anderer Wirbellosen und Wirbeltiere verglichen. In beiden Riesenfasersystemen kommen efferente chemische Synapsen mit feinen postsynaptischen Verzweigungen vor, die anscheinend von Bauchmark-Motoneuronen stammen. Das Axon der medianen Riesenfaser weist darüber hinaus nur noch eine elektrische Synapse mit den Rieseninterneuronen auf. Demgegenüber erhalten die Kollateralen der lateralen Riesenfasern zahlreiche Afferenzen, die zum Teil als sensorische Fasern der Epidermis, multisegmentale Fasern der Hauptfaserzüge und Rieseninterneurone identifiziert werden konnten. Weitere Afferenzen stammen vermutlich von unisegmentalen Interneuronen her. Beide lateralen Riesenzellaxone bilden außerdem miteinander eine elektrische Chiasma-Synapse mit besonderen Membraneinfaltungen.
Ultrastructure of the dorsal giant fibre system in the ventral nerve cord of the earthwormII. Synaptic connections of the proximal collaterals of the giant fibres
Summary The proximal collaterals of the dorsal giant fibres of the earthworm were traced through serial sections from the cell bodies to the giant axons. Their structure and synaptic connections were examined. There are chemical as well as electrical synapses. Their fine structure is compared to that of other known invertebrate and vertebrate synapses. Both giant fibre systems have efferent chemical connections with thin postsynaptic arborizations which probably belong to ventral cord motoneurons. Moreover the median giant axon is connected by an electrical synapse with the giant interneurons. The lateral giant collaterals on the contrary receive many afferences through chemical synapses which were partly identified as sensory fibers from the epidermis, multisegmental axons from the main fibre bundles or giant interneurones. Other afferences probably come from unisegmental interneurones. In addition both lateral giant axons form an electrical chiasma synapse with special membrane folds.
Mit Unterstützung durch die Deutsche Forschungsgemeinschaft Gu 117/1.  相似文献   

8.
Acute experiments on cats anesthetized with chloralose and pentobarbital showed that excitation of fast-conducting (130 m/sec) reticulospinal fibers, arising during stimulation of the ipsilateral medullary reticular gigantocellular nucleus evoked monosynaptic EPSPs in motoneurons of the accessory nerve nucleus. The EPSPs had latent periods of between 0.6 and 1.0 msec (mean 0.7 msec), they reached their maximal amplitude (4.0 mV) after 2.0–2.5 msec, and lasted about 10 msec. The EPSPs underwent only weak potentiation through the different types of stimulation of the gigantocellular nucleus and were not transformed into action potentials.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 12, No. 1, pp. 62–66, January–February, 1980.  相似文献   

9.
Monosynaptic effects evoked by electrical stimulation of suprasegmental structures and the ventral and lateral columns were recorded intracellularly from motoneurons of the lumbar and cervical enlargements after isolation of the spinal cord and medulla in frogs. Reticulospinal fibers arising from cells of the medial reticular formation of the medulla and running in the ventro-lateral columns evoke monosynaptic excitation of cervical and lumbar motoneurons. The reticulo-motoneuronal E PSPs do not exceed 2–3 mV in amplitude and do not reach the threshold for action potential generation. Division of the spinal cord and interaction between all synaptic inputs tested in chronic experiments showed that monosynaptic E PSPs evoked by direct stimulation of the ventral and lateral columns are due to activation of the descending system of propriospinal fibers. By transmembrane polarization experiments the equilibrium potentials of the reticulo-motoneuronal and propriospinal monosynaptic E PSPs could be determined.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Leningrad. Translated from Neirofiziologiya, Vol. 5, No. 2, pp. 164–173, March–April, 1973.  相似文献   

10.
Potentials of motoneurons of the lower segments of the spinal cord were recorded with the aid of intracellular microelectrodes in experiments on cats with induced tetanus produced by injection of tetanus toxin (1500–2000 mouse LD50) into the extensor muscles of the left shin. Neither afferent volleys of impulses in cutaneous and muscle nerves, nor antidromic volleys in the corresponding ventral roots, produced IPSPs in motoneurons of the extremity into which toxin was injected. The form both of antidromic peak potentials and of monosynaptic EPSPs in motoneurons in which IPSPs were blocked by tetanus toxin did not differ from the form of corresponding potentials of motoneurons in normal cats. The values of threshold depolarization for peak discharges during synaptic and direct stimulation were equal in tetanus and control motoneurons. Resistance and time constant values of the membrane in "tetanus" motoneurons did not differ from the corresponding values for "control" motoneurons.N. I. Pirogov Second Medical Institute, Moscow. Translated from Neirofiziologiya, Vol. 1, No. 1, pp. 25–34, July–August, 1969.  相似文献   

11.
Synaptic processes in reticulospinal neurons of the pons and medulla during the startle reaction evoked by somatic stimulation were investigated in cats anesthetized with chloralose. The main type of response of reticulospinalneurons was found to be PSPs involving intrareticular (proprioreticular) pathways of varied complexity: oligosynaptic (including supposedly monosynaptic) and polysynaptic. Comparison of EPSP characteristics with parameters of spino-bulbospinal (SBS) discharges recorded simultaneously in the intercostal nerves showed that polysynaptic EPSPs evoked through corresponding proprioreticular pathways were most effective in creating a descending SBS volley. About half the reticulospinal neurons of the pons and medulla were involved at any one time in the synaptic relay process during the startle reflex. The conduction velocity in axons of these neurons varied from 30 to 98 m/sec (means 64.5 Mp 16.5 m/sec). Some distinguishing features of the functional organization of the reticular "center" for the startle reaction are discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 13, No. 6, pp. 594–603, November–December, 1981.  相似文献   

12.
Details of the organization of reticular pathways transmitting motor cortical influences were studied in cats anesthetized with chloralose. Of all reticular neurons studied 33.3% were reticulospinal cells, 12.2% were neurons with descending-ascending projection of their axons, 15.4% were purely ascending neurons, and 39.1% were unidentified cells. Analysis of responses evoked by cortical stimulation showed that influences of both fast- and slowly-conducting corticofugal fibers are transmitted through reticulospinal cells, neurons with descending-ascending projections, and cells projecting into the hypothalamus. It was shown that 37% of reticulospinal and 66.7% of neurons with two-way projection that were studied form a group of cells transmitting rapidly into the spinal cord impulses from slowly-conducting fibers only. Reticular neurons with projections to the thalamus also transmit influences of slowly-conducting fibers only. The organization and role of reticular pathways transmitting corticogugal impulses are discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 13, No. 5, pp. 491–499, September–October, 1981.  相似文献   

13.
Monopolar intracortical stimulation of the auditory cortex was carried out in cats immobilized with D-tubocurarine. A macroelectrode (tip diameter 100 µ) or a microelectrode (tip diameter 10–15 µ) was used for stimulation. In both cases, besides excitatory responses, primary IPSPs with latent periods of 0.4–1.2 and 1.4–6.0 msec were recorded in cortical neurons close to the point of stimulation. The first group of IPSPs are considered to be generated in response to direct stimulation of bodies or axons of inhibitory cortical neurons, i.e., monosynaptically. The amplitude of these IPSPs varied in different neurons from 3 to 15 mV, and their duration from 4 to 150 msec. Additional later inhibitory responses were superposed on many of them. Of the IPSPs generated in auditory cortical neurons in response to stimulation of geniculocortical fibers 1.5% had a latency of 0.8–1.3 msec. They also are assumed to be monosynaptic. It is concluded that the duration of synaptic delay of IPSPs in cortical neurons and spinal motoneurons is the same, namely 0.3–0.4 msec. Axons of auditory cortical inhibitory neurons may be 1.5 mm long. The velocity of impulse conduction along these axons is 1.6–2.8 m/sec. The genesis of some special features of IPSPs of cortical neurons is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 7, No. 5, pp. 458–467, September–October, 1975.  相似文献   

14.
Antidromic action potentials of hind-limb motoneurons were studied in a preparation of the isolated perfused spinal cord of a chick embryo by a microelectrode recording technique. Most cells suffered appreciable damage when the microelectrode was introduced into them, but their functional characteristics recovered to some extent. From the 11th through the 18th day of embryonic development the amplitude and rise time of action potentials and the presence of components in them reflecting activation of the initial segment of the axon and the soma-dendritic membrane, and also values of resting potential of motoneurons after recovery revealed no age-dependent changes and were similar to the corresponding characteristics of motoneurons in adult birds and mammals. Meanwhile the conduction velocity along motor axons increased from 0.3–0.5 m/sec on the 10th day to 2–4 m/sec on the 18th day of embryonic development. Contrary to the view that mechanisms of action potential generation arise late in the course of ontogenetic development of warm-blooded animals, in the postnatal period, the results indicate that in fact they are formed quite early, in agreement with the concept of phylogenetic antiquity of this mechanism and also with data obtained on various preparations of the developing CNSin vitro.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 17, No. 1, pp. 70–77, January–February, 1985.  相似文献   

15.
Superfusion of isolated hemisected spinal cords of 9-13-day old rats with noradrenalin (NA) solution depolarized or hyperpolarized the motoneurons depending on the NA concentration. Both effects were the result of the direct action of NA on the motoneurons, for they were given in medium containing an excess of Mg and deficiency of Ca ions.a-Adrenoblockers depressed both the depolarizing and hyperpolarizing effects of NA. The depolarizing effect of dopamine on motoneurons was abolished in medium containing excess of Mg ions. Its direct hyperpolarizing action of motoneurons was suppressed by haloperidol but unchanged by phentolamine. The depolarizing effect of serotonin and its metabolites — mexamine, kynurenine, and 3-hydroxy-anthranilic acid — persisted in the presence of an excess of Mg and deficiency of Ca ions, but it was suppressed by deseryl (methysergide) and the benzyl analog of serotonin. The hyperpolarizing effect of serotonin at high concentrations (10–4–10–3 M), revealed in some experiments, was abolished in medium containing excess of magnesium ions in the presence of morphine.A. M. Gorkii Donetsk State Medical Institute. Translated from Neirofiziologiya, Vol. 12, No. 4, pp. 391–396, July–August, 1980.  相似文献   

16.
Glutamate is the main excitatory neurotransmitter involved in spinal cord circuits in vertebrates, but in most groups the distribution of glutamatergic spinal neurons is still unknown. Lampreys have been extensively used as a model to investigate the neuronal circuits underlying locomotion. Glutamatergic circuits have been characterized on the basis of the excitatory responses elicited in postsynaptic neurons. However, the presence of glutamatergic neurochemical markers in spinal neurons has not been investigated. In this study, we report for the first time the expression of a vesicular glutamate transporter (VGLUT) in the spinal cord of the sea lamprey. We also study the distribution of glutamate in perikarya and fibers. The largest glutamatergic neurons found were the dorsal cells and caudal giant cells. Two additional VGLUT-positive gray matter populations, one dorsomedial consisting of small cells and another one lateral consisting of small and large cells were observed. Some cerebrospinal fluid-contacting cells also expressed VGLUT. In the white matter, some edge cells and some cells associated with giant axons (Müller and Mauthner axons) and the dorsolateral funiculus expressed VGLUT. Large lateral cells and the cells associated with reticulospinal axons are in a key position to receive descending inputs involved in the control of locomotion. We also compared the distribution of glutamate immunoreactivity with that of γ-aminobutyric acid (GABA) and glycine. Colocalization of glutamate and GABA or glycine was observed in some small spinal cells. These results confirm the glutamatergic nature of various neuronal populations, and reveal new small-celled glutamatergic populations, predicting that some glutamatergic neurons would exert complex actions on postsynaptic neurons.  相似文献   

17.
An explant culture system is described that allows examination of axonal growth from the tonically and phasically active motoneurons of the abdominal nerve cord of the crayfish. In this preparation, growth occurs from the cut end of the axon while the remainder of the motoneuron is undisturbed. In vitro growth from the branches of the third roots, which contain the axons from the tonic and phasic motoneurons of abdominal ganglia one through four, was verified as axonal by retrograde labeling of axons and neuronal somata within the nerve cord. Growth from the axons of phasic and tonic cells was observed as early as 24 h after plating and continued for an additional 7–10 days. The morphology and growth rates of the motor terminals differed between the tonic and phasic axons. The phasic axons grew significantly faster and branched more often than did the tonic motor axons. These differences in growth may be related to differences in motoneuron size or, may result from differences in electrical activity. Tonic motoneurons show spontaneous impulse activity for up to 6 days in culture, whereas phasic motoneurons show no spontaneous impulse activity. In addition, the differences in growth may be related to the morphological differences in tonic and phasic motor terminals observed in situ. © 1993 John Wiley & Sons, Inc.  相似文献   

18.
The nature of synaptic interaction between two neighboring motoneurons in the isolated frog spinal cord was studied by parallel insertion of two separate micro-electrodes into the cells. In 82 of 89 motoneurons tested transmission through synapses between the motoneurons was electrical in nature, as shown by the absence or short duration of the latent period of elementary intermotoneuronal EPSPs, stability of their amplitude, and preservation of responses in Ca++-free solution containing 2 mM Mn++. Direct electrotonic interaction was demonstrated in both directions: artificial de- and hyperpolarization of one motoneuron led to corresponding shifts of membrane potential in the neighboring motoneuron. The time constant of rise and decay of this potential was appreciably greater than the time constant of the membrane of the two interconnected motoneurons. Blockade of the SD-component of the action potential in the "triggering" motoneuron led to a decrease in the elementary EPSP in the neighboring motoneuron. These facts suggest that electrotonic interaction takes place through dendro-dendritic junctions. Absence of rectification was demonstrated in electrical synapses between motoneurons. In four cases elementary EPSPs were chemical in nature, for they appeared 1.3–3.3 msec after the beginning of the action potential in the "triggering" motoneuron, and were blocked in Ca++-free solution containing Mn++; fluctuations of their amplitude approximated closely to a Poisson or binomial distribution. Such responses are evidently generated by synapses formed by recurrent axon collaterals of one motoneuron on the neighboring motoneurons. In three cases elementary intermotoneuronal EPSPs consisted of two components, the first electrical and the second chemical in nature. Morphological structures which may be responsible for generation of 2-component EPSPs are examined.Deceased.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 16, No. 5, pp. 619–630, September–October, 1984.  相似文献   

19.
Postsynaptic inhibition in the general cortex of the turtle forebrain was investigated by recording unit activity intracellularly. Depending on the type of IPSPs recorded in response to electrical stimulation of the contralateral optic nerve and cortical surface the neurons were subdivided into three groups: 1) with long direct IPSPs, 2) with long and short direct, and also recurrent IPSPs, 3) with short direct and recurrent IPSPs. It is concluded that inhibitory pathways of the short direct and recurrent IPSPs have a common final component, a stellate interneuron. Compared with the recurrent collaterals of the principal neurons, the direct afferents make contact with more distal portions of the dendrites of this cell. Synapses formed on dendrites of the principal neurons by axons of the stellate cells are nearer to the soma than synapses responsible for generation of the long direct IPSP.M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 5, No. 4, pp. 375–383, July–August, 1973.  相似文献   

20.
Synaptic processes of 119 thoracic spinal interneurons (T10–11) were investigated in anesthetized cats in response to stimulation of the medial and central zones of the gigantocellular nucleus in the medulla and the ventral columns of the spinal cord. Fast (90–130 m/sec) reticulospinal fibers running in the ventral column were found to produce monosynaptic or disynaptic excitation of interneurons of Rexed's layers VII–VIII, which are connected monosynaptically with group I muscle afferents, and interneurons excited both by group I muscle afferents and low-threshold cutaneous afferents. In most neurons of layer IV, connected monosynaptically with low-threshold cutaneous afferents, and in neurons of layers VII–VIII excited by afferents of the flexor reflex no marked postsynaptic processes were observed during stimulation of the reticular formation. Excitatory, inhibitory, and mixed PS Ps during activation of reticulospinal fibers were found in 14 neurons, high-threshold afferents in which evoked predominantly polysynaptic IPSPs. Seventeen neurons activated monosynaptically by reticulospinal fibers and not responding to stimulation of segmental afferents were found in the medial part of the ventral horn (layers VII–VIII).A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 4, No. 6, pp. 566–578, November–December, 1972.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号