首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The simian virus 40 (SV40) enhancer contains three 8-bp purine-pyrimidine alternating sequences which are known to adopt the left-handed Z-DNA conformation in vitro. In this paper, we have undertaken the determination of the DNA conformation adopted by these Z-motifs in the SV40 minichromosome. We have analyzed the presence of Z-DNA through the change in linkage which should accompany formation of this left-handed conformation. Our results indicate that, regardless of the precise moment of the viral lytic cycle at which minichromosomes are harvested and the condition of the transfected DNA, either relaxed or negatively supercoiled, none of the three Z motifs of the SV40 enhancer exist to a significant extent as Z-DNA in SV40 minichromosomes. The SV40 enhancer adopts predominantly a right-handed B-DNA conformation in vivo.  相似文献   

2.
Isolation and characterization of Z-DNA binding proteins from wheat germ   总被引:11,自引:0,他引:11  
E M Lafer  R Sousa  B Rosen  A Hsu  A Rich 《Biochemistry》1985,24(19):5070-5076
The preparation of a heterogeneous non-histone protein extract from wheat germ utilizing Br-poly(dG-dC).poly(dG-dC) (Z-DNA) affinity chromatography is described. The binding characteristics of antibodies against Z-DNA are used as a model system to define important criteria that the DNA binding behavior of a Z-DNA binding protein should display. We show that the wheat germ extract contains DNA binding proteins specific for left-handed Z-DNA by these criteria. The affinity of the proteins measured by competition experiments was approximately 10(5) greater for Br-poly(dG-dC).poly(dG-dC) (Z-DNA) than for poly(dG-dC).poly(dG-dC) (B-DNA). The affinity of the proteins for plasmid DNA increases with increasing negative superhelicity which is known to stabilize Z-DNA. The proteins are shown to compete with Z-DNA antibodies for binding to supercoiled plasmids. Finally, the affinity for two plasmids at a given superhelical density is greater for the plasmid containing an insert known to form Z-DNA than for a plasmid without the insert. The proteins exhibit a 2-3-fold greater affinity for stretches of (dC-dA)n.(dT-dG)n over stretches of (dG-dC)n.(dG-dC)n when both sequences are induced to form Z-DNA by supercoiling.  相似文献   

3.
The effect of anti-Z-DNA antibodies on the B-DNA-Z-DNA equilibrium   总被引:2,自引:0,他引:2  
Four different preparations of rabbit and goat anti-Z-DNA antibodies were examined to determine the effects of antibody binding on the B-DNA-Z-DNA equilibrium. One of the four antibodies, a goat IgG, caused a marked lowering in the ionic strength required for the B-DNA to Z-DNA transition in poly(dG-dC) X poly(dG-dC), shifting the midpoint from 2.25 to 2.0 M NaCl. This IgG had a more prominent high affinity antibody population than did the other goat IgG, which caused little change in the midpoint of this transition. The presence of anti-Z-DNA antibodies also reduced the degree of negative supercoiling required for the formation of Z-DNA in (dG-dC)n sequences inserted into closed circular plasmid DNA. The goat IgG with the more marked effect on the salt-induced transition also had a greater effect in favoring Z-DNA formation in negatively supercoiled plasmids. A shift toward Z-DNA formation was observed in circular dichroism measurements upon antibody binding to poly(dG-dC) X poly(dG-dC) in very low ionic strength solution as well. We propose that the stabilization of Z-DNA by antibody binding in poly(dG-dC) X poly(dG-dC) occurs cooperatively, several antibody molecules binding to a single polymer molecule and stabilizing the entire molecule in Z-DNA through their combined binding energies. The stabilization of Z-DNA by antibody binding in a supercoiled plasmid can be significant, and failure to consider this effect and to choose appropriate conditions for measurement can lead to errors in estimating when Z-DNA will form in response to negative supercoiling.  相似文献   

4.
We investigated the ability of natural polyamines putrescine, spermidine, and spermine to provoke a left-handed Z-DNA conformation in a recombinant plasmid (pDHg16) with a 23-base pair insert of (dG-dC)n.(dG-dC)n sequences. Using a monoclonal anti-Z-DNA antibody (Z22) and an enzyme-linked immunosorbent assay protocol, we found that spermidine and spermine were capable of converting pDHg16 to the Z-DNA form. The concentrations of spermidine and spermine at the midpoint of the B-DNA to Z-DNA transition were 280 and 5 microM, respectively, in buffer containing 50 mM NaCl, 1 mM sodium cacodylate, and 0.15 mM EDTA, pH 7.4. A plot of ln[Na+] versus ln [spermine4+], where [Na+] is the bulk NaCl concentration and [spermine4+] is the spermine concentration at the midpoint of the B-DNA to Z-DNA transition, gave a straight line with a slope of 1.2. Structural specificity was clearly evident in the efficacy of three spermidine homologs to induce the Z-DNA conformation in pDHg16. Putrescine and acetylspermidines had no effect on the conformation of the plasmid DNA up to a 3 mM concentration. Control experiments with the parental plasmid (pDPL6) showed no binding of the plasmid DNA with Z22. These results indicate that spermidine and spermine are capable of provoking the left-handed Z-DNA conformation in small blocks of (dG-dC)n sequences embedded in a right-handed B-DNA matrix. Since blocks of (dG-dC)n sequences are found in certain native DNAs, conformational alterations of these regions to the Z-DNA form in the presence of polyamines may have important gene regulatory effects.  相似文献   

5.
The binding of anti-Z-DNA antibody preparations to negatively supercoiled, protein-free SC40 DNA was analyzed. Covalent cross-linking with 0.1% glutaraldehyde followed by DNA restriction endonucleolytic fragmentation and nitrocellulose filtration allowed accurate mapping of antibody binding sites. The critical superhelical density necessary to allow antibody binding was -sigma = 0.056. The major region of antibody-DNA interaction was found within an SV40 segment spanning viral map positions 40 to 474. This region coincides with the nucleosome free region in SV40 minichromosomes and harbours the early and late promoter regions including the SV40 enhancer segment. Although it is unknown whether alternative, non-B-DNA conformations are generated in vivo within SV40 minichromosomes our results emphasize the high degree of DNA structural flexibility that can be realized under negative torsional stress.  相似文献   

6.
C V Mura  B D Stollar 《Biochemistry》1984,23(25):6147-6152
Interactions of chicken H1 and H5 histones with poly(dA-dT), poly(dG-dC), and the Z-DNA structure brominated poly(dG-dC) were measured by a nitrocellulose filter binding assay and circular dichroism. At low protein:DNA ratios, both H1 and H5 bound more Z-DNA than B-DNA, and binding of Z-DNA was less sensitive to interference by an increase in ionic strength (to 600 mM NaCl). H5 histone bound a higher percentage of all three polynucleotides than did H1 and caused more profound CD spectral changes as well. For spectral studies, histones and DNA were mixed in 2.0 M NaCl and dialyzed stepwise to low ionic strength. Prepared in this way or by direct mixing in 150 mM NaCl, complexes made with right-handed poly(dG-dC) showed a deeply negative psi spectrum (deeper with H5 than with H1). Complexes of histone and Br-poly(dG-dC) showed a reduction in the characteristic Z-DNA spectral features, with H5 again having a greater effect. Complexes of poly(dA-dT) and H5, prepared by mixing them at a protein:DNA ratio of 0.5, displayed a distinctive spectrum that was not achieved with H1 even at higher protein:DNA ratios. It included a new negative band at 287 nm and a large positive band at 255 nm, giving the appearance of an inverted spectrum relative to spectra of various forms of B-DNA. These findings may reflect an ability of the different lysine-rich histones to cause varying conformational changes in the condensation of chromatin in DNA regions of highly biased base sequence.  相似文献   

7.
We have previously isolated from bull testis three proteins of molecular mass 31, 33, and 58 kDa that we have tentatively characterized as high affinity Z-DNA-binding proteins. This inference was based on their preferential binding to brominated poly(dG-dC).poly(dG-dC) in Z-form as opposed to the unbrominated polynucleotide in B-form (Gut, S. H., Bischoff, M., Hobi, R., and Kuenzle, C. C. (1987) Nucleic Acids Res. 15, 9691-9705). By partial amino acid sequencing we have provisionally identified the 31- and 33-kDa proteins as members of the high mobility group 2 and 1 protein families, respectively, whereas the 58-kDa protein has so far remained unidentified (Christen, Th., Bischoff, M., Hobi, R., and Kuenzle, C. C. (1990) FEBS Lett. 267, 139-141). In the present study, we have critically reassessed the binding specificity of these three proteins by using more natural Z- and B-DNA ligands. As such we chose supercoiled and relaxed DNA minicircles containing a d(CG)7 insert in the Z- and B-conformation, respectively. Filter binding tests and gel retardation assays performed with these ligands showed that the three testis proteins either do not discriminate between Z- and B-DNA (31- and 33-kDa proteins) or even have a preference for B-DNA (58-kDa protein). Therefore, we question the validity of using brominated poly(dG-dC).poly(dG-dC) as an indicator of Z-DNA binding.  相似文献   

8.
Bromination stabilizes poly(dG-dC) in the Z-DNA form under low-salt conditions   总被引:17,自引:0,他引:17  
Using circular dichroism studies, Pohl & Jovin (1972) [Pohl, F.M., & Jovin, T.M. (1972) J. Mol. Biol. 67, 375-396] demonstrated that poly(dG-dC) undergoes a salt-dependent conformational change characterized by a spectral inversion. The low-salt form corresponds to the right-handed B form of DNA and the high-salt form to the left-handed Z-DNA helix. Modification of poly(dG-dC) by adding bromine atoms to the C8 position of guanine and the C5 position of cytosine residues stabilized this polymer in the Z-DNA form under low-salt conditions. The guanine residues were found to be twice as reactive as the cytosine residues. With a modification of 38% Br8G and 18% Br5C, the polymers formed a stable Z-DNA helix under physiological conditions. The bromination produced spectroscopic features very similar to poly(dG-dC) in 4 M NaCl. However, bromination did not freeze the Z structure as was shown by ethidium bromide intercalation studies. Addition of the dye favored an intercalated B-DNA form. The conversion of B- to Z-DNA leads to profound conformational changes which were also seen by a reduced insensitivity to various exo- and endonucleases. Comparative studies showed that the brominated polymers have a high affinity to nitrocellulose filters. In 1 M NaCl, there was virtually no binding of B-DNA, but a substantial binding of Z-DNA was found even at rather low levels of bromination.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
S Zhang  C Lockshin  A Herbert  E Winter    A Rich 《The EMBO journal》1992,11(10):3787-3796
A putative Z-DNA binding protein, named zuotin, was purified from a yeast nuclear extract by means of a Z-DNA binding assay using [32P]poly(dG-m5dC) and [32P]oligo(dG-Br5dC)22 in the presence of B-DNA competitor. Poly(dG-Br5dC) in the Z-form competed well for the binding of a zuotin containing fraction, but salmon sperm DNA, poly(dG-dC) and poly(dA-dT) were not effective. Negatively supercoiled plasmid pUC19 did not compete, whereas an otherwise identical plasmid pUC19(CG), which contained a (dG-dC)7 segment in the Z-form was an excellent competitor. A Southwestern blot using [32P]poly(dG-m5dC) as a probe in the presence of MgCl2 identified a protein having a molecular weight of 51 kDa. The 51 kDa zuotin was partially sequenced at the N-terminal and the gene, ZUO1, was cloned, sequenced and expressed in Escherichia coli; the expressed zuotin showed similar Z-DNA binding activity, but with lower affinity than zuotin that had been partially purified from yeast. Zuotin was deduced to have a number of potential phosphorylation sites including two CDC28 (homologous to the human and Schizosaccharomyces pombe cdc2) phosphorylation sites. The hexapeptide motif KYHPDK was found in zuotin as well as in several yeast proteins, DnaJ of E.coli, csp29 and csp32 proteins of Drosophila and the small t and large T antigens of the polyoma virus. A 60 amino acid segment of zuotin has similarity to several histone H1 sequences. Disruption of ZUO1 in yeast resulted in a slow growth phenotype.  相似文献   

10.
Systems for gel electrophoresis in the presence of one of the intercalative unwinding ligands, ethidium or chloroquine, have been developed which permit the resolution of highly supercoiled closed circular DNA molecules differing by unit values of the topological winding number, alpha. All native closed circular DNAs examined, including the viral and intracellular forms of SV40 and polyoma DNA, bacterial plasmid DNAs, and the double stranded closed circular DNA genome of the marine bacteriophage, PM2, are more heterogeneous with respect to the number of superhelical turns present than are the thermal distributions observed in the limit products of the action of nicking-closing (N-C) enzyme on the respective DNAs. In the cases of SV40 and polyoma, where it has been shown that the supercoiling is a combined consequence of the binding of the four nucleosomal histones, H2a, H2b, H3 and H4, and the action of N-C enzyme, the breadth of the distributions within the form I DNAs poses specific problems since the work of other laboratories indicates that the number of nucleosomes on the respective minichromosomes falls within a narrow distribution of 21. If it is assumed that all nucleosomes have identical structures, and that the DNA within a nucleosome is not free to rotate, the native DNA would be anticipated to be less heterogeneous than the thermal equilibrium mixtures present in N-C enzyme relaxed SV40 and polyoma DNAs.The absolute number of superhelical turns (at 37 degrees C in 0.2 M NaCl) in virion polyoma DNA has been determined to be 26 +/- 1, which is the same value obtained for virion SV40 DNA. This is consistent with the observations that polyoma DNA has a higher molecular weight, a lower superhelix density, but the same number of nucleosomes as SV40 DNA. In addition, the distributions within the virion and intracellular form I DNAs of both SV40 and polyoma were found to be indistinguishable.Images  相似文献   

11.
O K Strobel  R S Keyes  A M Bobst 《Biochemistry》1990,29(37):8522-8528
Conformation detection and base dynamics of spin-labeled Z-DNA have been investigated by electron paramagnetic resonance (EPR) spectroscopy. The two synthesized and characterized probes used in this study were C(5)-nitroxide-labeled 2'-deoxycytidine 5'-triphosphates, pppDCAT and pppDCAVAT, which serve as suitable substrates for Micrococcus luteus DNA polymerase. Enzymatic incorporation of these probes into (dG-dC)n yields the EPR-active alternating copolymers (dG-dC,DCAT)n and (dG-dC,-DCAVAT)n. These polymers assume typical B- and Z-DNA conformations under respective low (0.1 M NaCl) and high (4.5 M NaCl) salt conditions, as evidenced by their UV-circular dichroism spectra. The EPR line shape of (dG-dC,DCAT)n in Z-form is unique and significantly different from the B-form EPR spectrum. A similar observation is made for (dG-dC,DCAVAT)n. Thus, the EPR line shapes of these spin-labeled DNAs are indicative of their local conformations. The EPR spectra, analyzed with a previously published motional model [Kao, S.-C., Polnaszek, C.F., Toppin, C.R., & Bobst, A.M. (1983) Biochemistry 22, 5563-5568], indicate tau perpendicular values of 4 and 7 ns for the B- and Z-forms, respectively. Therefore, the base dynamics of Z-DNA are about two times slower than in B-DNA.  相似文献   

12.
We studied the B-DNA to Z-DNA transition of poly(dG-dC).poly(dG-dC) and poly(dG-m5dC).poly(dG-m5dC) in the presence of NaCl using an enzyme immunoassay. The polynucleotides were coated on microtiter plates at varying concentrations of NaCl and treated with a monoclonal anti-Z-DNA antibody, Z22. The plates were subsequently treated with alkaline phosphatase conjugated polyvalent mouse immunoglobulins and the enzyme substrate, p-nitrophenyl phosphate. The color development due to the enzyme-substrate reaction was quantitated using a microplate autoreader. Our results show that the antibody does not recognize the polynucleotides in the B-DNA conformation and binds strongly to the Z-DNA conformation. A smooth transition curve is obtained at intermediate concentrations of the counterions. From the transition curves, we determined the concentration of the counterions at the midpoint of B-DNA to Z-DNA transition. The midpoint concentrations for poly(dG-dC).poly(dG-dC) and poly(dG-m5dC).poly(dG-m5dC) are 2.3 and 0.74 M NaCl, respectively. Using the immunological method, we also examined the B-DNA to Z-DNA transition of poly(dG-m5dC).poly(dG-m5dC) in the presence of naturally occurring polyamines. The midpoint concentrations of the polyamines are as follows: putrescine, 2.5 mM; spermidine, 34 microM; spermine, 1.8 microM. The midpoint values determined by the enzyme immunoassay are in good agreement with those determined by circular dichroism and ultraviolet absorption spectroscopic measurements. These results demonstrate that immobilization of a preexisting conformation or a mixture of conformations of DNA on a solid support followed by a titration of the DNA conformations using a monoclonal anti-DNA antibody is an excellent method to study the conformational dynamics of DNA.  相似文献   

13.
14.
The characteristics of the reactions of DL-diepoxybutane (DEB) with (dG-dC)n.(dG-dC)n in the right-handed B-form or the left-handed Z-form were investigated. DEB does react with right-handed B-DNA since less salt is required to convert the modified B-form to Z-form than for the unmodified DNA. However, the product appears to be a monoadduct rather than the crosslinked diadduct formed with the Z-form. The modified B-form can be isolated, converted to a Z-form with l mM MnCl2, and then this activated complex further reacts intramolecularly to give the crosslinked Z-product. This modified Z-form cannot be reverted to the B-form unless the crosslink is cleaved with periodate. Only MnCl2, and to a lesser extent ZnCl2, was effective in facilitating the intramolecular conversion of the B-DNA monoadduct to the Z-DNA diadduct; lmM MgCl2 and 4M NaCl were ineffective suggesting that somewhat different types of modified left-handed conformations were generated by the different salts. DEB also cleaves DNA under our reaction conditions thus precluding studies with supercoiled recombinant plasmids harboring segments that adopt Z-structures.  相似文献   

15.
Z-DNA-binding proteins from bull testis.   总被引:3,自引:1,他引:2       下载免费PDF全文
Three Z-DNA-binding proteins of Mr 31, 33 and 58 kD were isolated from mature bull testis. They were obtained in a native state suitable for binding studies. These are the first examples of Z-DNA-binding proteins from a mammalian tissue. Purification involved tissue extraction with 0.35 M NaCl, cation exchange chromatography on CM-Trisacryl M and two consecutive anion exchange FPLC runs on Mono Q. The proteins appeared virtually homogeneous by anion exchange FPLC, SDS polyacrylamide gel electrophoresis and reverse phase HPLC (58 kD protein only). Yields from 50 g of testis tissue were: 31 kD protein, 40 micrograms; 33 kD protein, 100 micrograms; and 58 kD protein, 150 micrograms. Z-DNA binding was determined by Scatchard analysis of filter binding data using brominated poly(dG-dC).poly(dG-dC) as a conformation-specific ligand. Dissociation constants (Kz, in mol nucleotide/liter) were: 31 kD protein, 7 X 10(-7) M; 33 kD protein, 8 X 10(-7) M; 58 kD protein, 6 X 10(-8) M (primary binding site) and 6 X 10(-7) M (secondary binding site). B-DNA binding to poly(dG-dC).poly(dG-dG) was too low for reliable determination under the conditions of assay. This attested to a high degree of conformational specificity of the three proteins. The 58 kD protein bound Z-DNA at the primary site with an affinity almost equivalent to that of a polyclonal anti-Z-DNA antiserum raised in a rabbit (Kz, 4 X 10(-8) M).  相似文献   

16.
Alternating repeated d(CA.GT)n and d(CG.GC)n sequences constitute a significant proportion of the simple repeating elements found in eukaryotic genomic DNA. These sequences are known to form left-handed Z-DNA in vitro. In this paper, we have addressed the question of the in vivo determination of the Z-DNA-forming potential of such sequences in eukaryotic chromatin. For this purpose, we have investigated the ability of a d(CA.GT)30 sequence and a d(CG.GC)5 sequence to form left-handed Z-DNA when cloned into simian virus 40 (SV40) minichromosomes at two different positions: the TaqI site, which occurs in the intron of the T-antigen gene, and the HpaII site, which is located in the late promoter region within the SV40 control region. Formation of Z-DNA at the inserted repeated sequences was analyzed through the change in DNA linkage associated with the B to Z transition. Our results indicate that regardless of: (1) the site of insertion (either TaqI or HpaII), (2) the precise moment of the viral lytic cycle (from 12 h to 48 h postinfection) and (3) the condition of incorporation of the SV40 recombinants to the host cells (either as minichromosomes or as naked DNA, relaxed or negatively supercoiled), neither the d(CA.GT)30 nor the d(CG.GC)5 sequence are stable in the left-handed Z-DNA conformation in the SV40 minichromosome. The biological relevance of these results is discussed.  相似文献   

17.
P Rio  M Leng 《Nucleic acids research》1983,11(14):4947-4956
The reaction between the chemical carcinogen N-hydroxy-2-aminofluorene and poly (dG-dC) . poly (dG-dC) (B-form), poly (dG-m5dC) . poly (dG-m5dC) (B-or Z-form), poly(dG-br5dC) . poly (dG-br5dC) (Z-form) has been studied. The carcinogen binds covalently to B-DNA but does not bind significantly to Z-DNA. These results are discussed as related to the accessibility, the electrostatic potential and the dynamic structure of DNA. The accessibility and the electrostatic potential of DNA do not explain the difference in reactivity of the carcinogen since a related carcinogen N-acetoxy-N-acetyl-2-aminofluorene binds equally well to both B and Z-DNA. On the other hand, poly (dG-dC) . poly(dG-dC) and poly (dG-br5dC) . poly(dG-br5dC), in presence of ethidium bromide binds equally well to N-hydroxy-2-aminofluorene. It is suggested that the very low binding of this carcinogen to Z-DNA as compared to B-DNA is due to differences in the dynamic structures of these two forms of DNA.  相似文献   

18.
Plasmid pGC20 containing the (dGC)9 insert in SmaI recognition site has been used to study the inhibition of cleavage by different restriction endonuclease due to Z-DNA formation in (dCG)10 sequence of the negatively supercoiled plasmid. Data obtained indicate the different sensitivity of restriction endonucleases to DNA conformational perturbations resulted from the Z-DNA formation. Therefore, the inhibition of DNA cleavage by a particular restriction endonuclease cannot serve as a criterion for the estimation of the length of B-Z junctions in circular supercoiled DNAs.  相似文献   

19.
Z-DNA affinity adsorption of an Escherichia coli lysate in the presence of excess B-DNA results in a 1000-fold enrichment for three proteins with apparent molecular weights, on SDS/polyacrylamide gel electrophoresis, of 50,000, 90,000 and 100,000. When retention of these proteins on resins constructed with Z-DNA (Br-poly(dG-dC).poly(dG-dC)) was compared with retention on resins constructed with B-DNA or Br-B-DNA, it was found that approximately 100-fold more of the 50,000 Mr protein, 1000-fold more of the 90,000 Mr protein, and greater than 1000-fold more of the 100,000 Mr protein was retained on the Z-DNA resin. No difference in retention on the B-DNA versus brominated B-DNA resin was found, indicating that the increased retention on the Z-DNA resin was not due to bromination of the Z-DNA. This demonstration of Z-DNA-specific binding in vitro makes these proteins candidates for binding to Z-DNA in vivo. In an effort to determine the function of these proteins we have prepared monoclonal antibodies against each protein and isolated its respective gene. Western blot analysis of lysogens carrying these genes confirms their identity and shows that the complete coding region and promoter for each gene has been cloned.  相似文献   

20.
On the cooperative and noncooperative binding of ethidium to DNA.   总被引:3,自引:2,他引:1       下载免费PDF全文
The equilibrium binding of ethidium bromide to native DNAs and to poly(dG-dC) X poly(dG-dC) has been studied by both phase partition and direct spectrophotometric techniques. The binding isotherms obtained from both experimental techniques show that ethidium binds in a cooperative manner to E. coli DNA. On the other hand, no evidence of cooperative binding was observed in the binding isotherms obtained with calf thymus, C. perfringens, M. lysodeikticus, or poly(dG-dC) X (dG-dC) under the experimental conditions used (0.1 M NaCl).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号