首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By the use of electron immunoperoxidase cytochemistry at the ultrastructural level, the relationship of the surrounding sac of the autophagic vacuoles to the different cytomembranes was studied. When the endoplasmic reticulum was completely stained for microsomal carboxyesterase E1, the enzyme was not found to be labeled in the developed envelopes forming autophagic vacuoles. The autophagic envelope at the formative stages was also devoid of albumin which intensely stained Golgi cisternae. However, although it was rare, the endoplasmic reticulum showed an electron-lucent region like an early autophagic envelope in its cisternae which was lacking in carboxyesterase E1. In addition, deeply curving swelled cisternae where carboxyesterase E1 was found at the edges were occasionally encountered. These observations suggest that the segregating membranes arise from an endoplasmic reticulum and the structural characteristics of the endoplasmic membranes change at very early stages of formation of autophagic vacuoles. Acid phosphatase, a lysosomal marker enzyme, began to be localized on sections of the double membranes of newly created autophagic vacuoles. The enzyme spread all along the limiting membranes of the autophagic vacuoles, while, at the same time, the double membranes were converted into a single membrane. A lysosomal membrane glycoprotein (LGP107) was also localized on the surrounding envelope of autophagic vacuoles in a fashion similar to that of acid phosphatase. Lysosomal hydrolases seem to play some role in the conversion of double limiting membranes into a single limiting membrane.  相似文献   

2.
Cellular autophagocytosis was observed in mouse seminal vesicle cells incubated in vitro up to 8 h in medium 199 or Krebs-Ringer bicarbonate buffer. During the first 2 h of incubation, early forms of autophagic vacuoles were seen in the cells, advanced forms containing degraded material began to cumulate later. After 6--8 h, early vacuoles occurred sparsely, while advanced forms were detected in a great number. During the first 2 h of incubation, we often observed smooth surfaced membrane pairs between the cisternae of rough surfaced endoplasmic reticulum resembling isolating membranes of autophagic vacuoles. They varied in size and shape from short, straight cisternae to long, curved ones, almost completely encircling areas of the cytoplasm. Based on these observations, we propose a tentative scheme of the formation of autophagic vacuoles, viz., the short, straight cisternae would represent the first stage in the development of an autophagic vacuole, while the curved sack-like forms are interpreted as successive steps leading to the complete sequestration of an area of the cytoplasm.  相似文献   

3.
The corpora allata exbibit cycles of synchronous cell growth and atrophy during ovarian cycles in adult females of the cockroach Diploptera punctata. In the present report, the process of synchronous autophagy of organelles which results in cellular atrophy was investigated. In general, unwanted organelles were sequentially sequestered by several different mechanisms and then targeted for destruction. Autophagy was initiated on day 4 when corpus allatum cells were largest and most actively synthesizing juvenile hormone. The first sign of the initiation of autophagy was aggregation of ribosomes in an isolation membrane. By day 5, many organelles were isolated in the autophagic vacuoles. The ribosomecontaining vacuoles were wrapped by flattened stacks of Golgi cisternae to form conspicuous whorl-like autophagosomes. This is a previously undescribed type of autophagic vacuole with the entire complex of Golgi cisternae forming part of the autophagic membranes. Smooth endoplasmic reticulum was wrapped into membranous autophagic vacuoles with concentric arrays of doubel membranes. Plasma membrane was invaginated and then isolated in a multivesicular body. These three different types of isolated vacuoles did not show acid phosphatase activity as indicated by histochemical staining with -glycerophosphate as substrate. Subsequently, these autophagosomes fused with each other and with 1° or 2° lysosomes to form giant autophagolysosomes. Some mitochondria appeared to have coalesced directly into autophagolysosomes. Golgi complexes were evident during this period; they actively participated in making lysosomal enzymes. Cytoskeletons were frequently observed in the vicinity of autophagic vacuoles and were presumably involved in the transport of the vacuoles. As a result of lysosomal degradation lipofuscins and dense bodies were frequently observed by days 9–12 indicating atrophy of corpus allatum cells. Structural parameters, especially those present early in autophagy, such as the isolation membrane, ribosome-containing vacuoles and whorl-like autophagosomes, can be used to search for potential growth regulators responsible for the induction of autophagy, of the corpora allata, and the subsequent termination in juvenile hormone synthesis.  相似文献   

4.
The distributions of electric charges and Concanavalin A binding sites in autophagic vacuoles and lysosomes in mouse hepatocytes were studied by utilizing a frozen ultrathin section labeling method with cationized ferritin (CF) or anionized ferritin and ferritin-conjugated Concanavalin A (Con A-F) as visual probes. Our observations revealed that the inner surface of the autophagic vacuole membrane has more anionic sites (CF binding) than other organelle membranes. This suggests that if the limiting membranes of autophagic vacuoles originate from preexisting membranes, such membranes must undergo structural and compositional alternation during the formation of the autophagic vacuoles. In contrast to CF, Con A-F showed no distinct binding to the membranes of autophagic vacuoles, but the contents of vacuoles displayed varying Con A-F binding, depending on the stage of the autophagic process. Increased binding was seen in more mature autophagic vacuoles. Since lysosomes showed a preferential accumulation of Con A-F particles, molecules with Con A-F binding sites in autophagic vacuoles may be of lysosomal origin. Con A-F distribution varied from lysosome to lysosome in the same cell, indicating heterogeneity of lysosomal contents. These results suggest that ferritin-conjugated lectin labeling methods applied to frozen, ultrathin section are a useful new approach in analyzing the natural history of autophagic vacuoles and the heterogeneity of lysosomes.  相似文献   

5.
Cholesterol and intramembrane particle distribution on autophagic vacuole membranes was studied in Ehrlich ascites cells using filipin labelling and freeze-fracture electron microscopy. Unsaturated fatty acids were stained using imidazole-buffered osmium tetroxide. Autophagocytosis was induced with vinblastine, and early autophagic vacuoles were accumulated by lowering the ATP level in the cells with iodoacetate. Filipin labelling was observed in the limiting membranes of later, apparently hydrolase-containing autophagic vacuoles, whereas the most newly-formed, double-membrane limited vacuoles were not labelled. The limiting membranes of late, residual body-type vacuoles either showed patchy filipin-induced deformation or were completely smooth. Imidazole-buffered osmium tetroxide stained the membranes of newly-formed or developing autophagic vacuoles partly or entirely. The membranes of older vacuoles stained more weakly. Intramembrane particle density on the P-face of the outer limiting membranes of newly-formed autophagic vacuoles was similar to that on endoplasmic reticulum, and the density seemed to increase slightly later on. The size of the P-face particles increased when the vacuoles became older. The limiting membranes of late, residual body-type vacuoles were almost smooth. The inner limiting membranes and the membranes inside the autophagic were always almost particle-free. In conclusion, the amount of cholesterol, unsaturated fatty acids and protein in autophagic vacuole membranes changes during vacuole maturation.  相似文献   

6.
大鼠睾丸间质细胞的自体吞噬活动   总被引:2,自引:0,他引:2  
本文结合超微结构和细胞化学观察,研究大鼠睾丸间质细胞(Leydig细胞)中溶酶体的结??构与功能。观察结果表明,大鼠睾丸间质细胞中高尔基体非常发达,在高尔基体的成熟面存在着CMP酶阳性反应的GERL系统,说明这种细胞有不断产生溶酶体的能力。细胞化学结果也证实在睾丸间质细胞有较多的初级和次级溶酶体。睾丸间质细胞不仅有较多的溶酶体,而且还有相当数量的自噬小体,存在着活跃的自体吞噬活动。自噬小体的界膜来源于特化的光面内质网或高尔基体膜囊,包围的内容物主要是光面内质网和少量线粒体。当自噬小体与溶酶体融合后即成为自体吞噬泡,由于酶的消化作用,自体吞噬泡内的细胞器有一系列形态变化。根据CMP酶细胞化学反应,可以区分自噬小体和自体吞噬泡,后者是一种次级溶酶体,呈CMP酶阳性反应。睾丸间质细胞是分泌雄性激素的内分泌细胞,其光面内质网和线粒体在类固醇激素分泌中起重要作用,自体吞噬活动的结果是去除部分内质网和线粒体,可能在细胞水平上起着对雄性激素分泌的调节作用。  相似文献   

7.
Data presented in the accompanying paper suggests nascent autophagic vacuoles are formed from RER (Dunn, W. A. 1990. J. Cell Biol. 110:1923-1933). In the present report, the maturation of newly formed or nascent autophagic vacuoles into degradative vacuoles was examined using morphological and biochemical methods combined with immunological probes. Within 15 min of formation, autophagic vacuoles acquired acid hydrolases and lysosomal membrane proteins, thus becoming degradative vacuoles. A previously undescribed type of autophagic vacuole was also identified having characteristics of both nascent and degradative vacuoles, but was different from lysosomes. This intermediate compartment contained only small amounts of cathepsin L in comparison to lysosomes and was bound by a double membrane, typical of nascent vacuoles. However, unlike nascent vacuoles vet comparable to degradative vacuoles, these vacuoles were acidic and contained the lysosomal membrane protein, lgp120, at the outer limiting membrane. The results were consistent with the stepwise acquisition of lysosomal membrane proteins and hydrolases. The presence of mannose-6-phosphate receptor in autophagic vacuoles suggested a possible role of this receptor in the delivery of newly synthesized hydrolases from the Golgi apparatus. However, tunicamycin had no significant effect on the amount of mature acid hydrolases present in a preparation of autophagic vacuoles isolated from a metrizamide gradient. Combined, the results suggested nascent autophagic vacuoles mature into degradative vacuoles in a stepwise fashion: (a) acquisition of lysosomal membrane proteins by fusing with a vesicle deficient in hydrolytic enzymes (e.g., prelysosome); (b) vacuole acidification; and (c) acquisition of hydrolases by fusing with preexisting lysosomes or Golgi apparatus-derived vesicles.  相似文献   

8.
Transfection of Mv1Lu mink lung type II alveolar cells with beta1-6-N-acetylglucosaminyl transferase V is associated with the expression of large lysosomal vacuoles, which are immunofluorescently labeled for the lysosomal glycoprotein lysosomal-associated membrane protein-2 and the beta1-6-branched N-glycan-specific lectin phaseolis vulgaris leucoagglutinin. By electron microscopy, the vacuoles present the morphology of multilamellar bodies (MLBs). Treatment of the cells with the lysosomal protease inhibitor leupeptin results in the progressive transformation of the MLBs into electron-dense autophagic vacuoles and eventual disappearance of MLBs after 4 d of treatment. Heterologous structures containing both membrane lamellae and peripheral electron-dense regions appear 15 h after leupeptin addition and are indicative of ongoing lysosome-MLB fusion. Leupeptin washout is associated with the formation after 24 and 48 h of single or multiple foci of lamellae within the autophagic vacuoles, which give rise to MLBs after 72 h. Treatment with 3-methyladenine, an inhibitor of autophagic sequestration, results in the significantly reduced expression of multilamellar bodies and the accumulation of inclusion bodies resembling nascent or immature autophagic vacuoles. Scrape-loaded cytoplasmic FITC-dextran is incorporated into lysosomal-associated membrane protein-2-positive MLBs, and this process is inhibited by 3-methyladenine, demonstrating that active autophagy is involved in MLB formation. Our results indicate that selective resistance to lysosomal degradation within the autophagic vacuole results in the formation of a microenvironment propicious for the formation of membrane lamella.  相似文献   

9.
Diversity of signaling controls of macroautophagy in mammalian cells   总被引:4,自引:0,他引:4  
Macroautophagy is a major lysosomal catabolic process conserved from yeast to human. The formation of autophagic vacuoles is stimulated by a variety of intracellular and extracellular stress situations including amino acid starvation, aggregation of misfolded proteins, and accumulation of damaged organelles. Several signaling pathways control the formation of autophagic vacuoles. As some of them are engaged in the control of protein synthesis or cell survival this suggests that macroautophagy is intimately associated with the execution of cell proliferation and cell death programs. Whether or not these different signaling pathways converge to a unique point to trigger the formation of autophagic vacuole remains an open question.  相似文献   

10.
The number of autophagic vacuoles in the proximal tubule cells of the rat kidney increased considerably after 3 h of vinblastine treatment. This increase was paralleled by stimulated proteolysis in an homogenate prepared from the cortex. We have taken advantage of this expansion in autophagic vacuoles in an effort to isolate these organelles from rat kidney cortex on a discontinuous Metrizamide gradient. Autophagic vacuoles have recently been purified from liver but not from other tissues. The purity of the isolated fraction was 95% of which 55% consisted of typical intact autophagic vacuoles containing sequestered organelles and 45% of other types of secondary lysosome. On plane section many of these displayed one or several intramatrical vesicles or flap like processes forming apparent vesicles at the pole of the organelles, which occasionally contained pinocytosed membranous material. These lysosomes were designated microautophagic vacuoles. It is suggested that the microautophagic vacuoles could be the morphological expression of uptake into lysosomes of small portions of cytosol. The isolated autophagic vacuole fraction was enriched in lysosomal enzymes (acid phosphatase and cathepsin D activities) and displayed high proteolytic rates, especially at acid pH.  相似文献   

11.
Inactivation of peroxisomal enzymes in the yeast Hansenula polymorpha was studied following transfer of cells into cultivation media in which their activity was no longer required for growth. After transfer of methanol-grown cells into media containing glucose - a substrate that fully represses alcohol oxidase synthesis - the rapid inactivation of alcohol oxidase and catalase was paralleled by a disappearance of alcohol oxidase and catalase protein. The rate and extent of this inactivation was dependent upon conditions of cultivation of cells prior to their transfer. This carbon catabolite inactivation of alcohol oxidase was paralleled by degradation of peroxisomes which occurred by means of an autophagic process that was initiated by the formation of a number of electron-dense membranes around the organelles to be degraded. Sequestration was confined to peroxisomes; other cell-components such as ribosomes were absent in the sequestered cell compartment. Also, cytochemically, hydrolytic enzymes could not be demonstrated in these autophagosomes. The vacuole played a major role in the subsequent peroxisomal breakdown since it provided the enzymes required for proteolysis. Two basically similar mechanisms were observed with respect to the administration of vacuolar enzymes into the sequestered cell compartment. The first mechanism involved incorporation of a small vacuolar vesicle into the sequestered cell compartment. The delimiting membrane of this vacuolar vesicle subsequently disrupted, thereby exposing the contents of the sequestered cell compartment to vacuolar hydrolases which then degraded the peroxisomal proteins. The second mechanism, observed in cells which already contained one or more autophagic vacuoles, included fusion of the delimiting membranes of an autophagosome with the membrane surrounding an autophagic vacuole which led to migration of the peroxisome inside the latter organelle. Peroxisomes of methanol-grown H. polymorpha were degraded individually. In one cell 2 or 3 peroxisomes might be subject to degradation at the same time, but they were never observed together in one autophagosome. However, fusions of autophagic vacuoles in one cell were frequently observed. After inhibition of the cell's energy-metabolism by cyanide ions or during anaerobic incubations the formation of autophagosomes was prevented and degradation was not observed.  相似文献   

12.
SYNOPSIS. Certain of the ultrastructural and biochemical changes occurring during the first 25 hr of starvation in Tetrahymena pyriformis were studied. Ultrastructurally, numerous profiles of degenerating mitochondria were seen in the early stages of starvation. The presence of oxidizable substrate such as glucose and acetate did not prevent this degeneration. Numerous large nucleoli were formed, many of which seemed to be passing into the cytoplasm as forming autophagic vacuoles. There was a transient increase in Oil Red O-positive bodies, presumably lipid (triglycerides). The extent and duration of this increase were pronounced in the presence of acetate. The lipid droplets appeared to arise within the cisternae of the endoplasmic reticulum. Lipid reserves were apparently utilized prior to carbohydrates, as the disappearance of lipid droplets preceded glycogen utilization, both in the presence of acetate and in the absence of exogenous substrate. A considerable loss of cellular protein also occurred. In cells from inorganic medium supplemented with glucose, glycogen occupied much of the cell, leaving only islands of cell organelles. Acid phosphatase was localized, ultrastructurally, mainly in autophagic vacuoles which contained mitochondria and other cell organelles, and in association with small, double-membraned structures which seemed to be sequestering small areas of cytoplasm. Such sequestered areas also appeared within larger autophagic vacuoles. Residual bodies containing concentric whorls of myelin-like membranes surrounding a more solid core accumulated during starvation. Acid phosphatase activity decreased in amount but not in specific activity. The specific activity of cathespin doubled or tripled, but there was little change in total enzyme.  相似文献   

13.
SYNOPSIS. The distribution of acid phosphatase was investigated at the ultrastructural level in Paramecium caudatum. Acid phosphatase occurs in endoplasmic reticulum, Golgi apparatus, food vacuoles, autophagic vesicles, vacuolar and dense bodies. Some slight deposits are also seen in the mitochondria.
These observations point out that this hydrolase activity is related to digestive processes. The enzyme, originating from the endoplasmic reticulum and Golgi apparatus reaches the food vacuole or autophagic vesicle likely via the reticulum. The digestion of the bacteria or of the enclosed organelle gives rise to electronopaque material which is later found in dense bodies. These dense bodies are likely secondary lysosomes and it is possible that they may fuse with the young food vacuole or with autophagic vesicles.  相似文献   

14.
Quantitative characterization of dense body, autophagic vacuole and acid phosphatase-bearing particle populations of rat liver have been made at 10 min intervals during the first 50 min following the intraperitoneal administration of glucagon. Beginning 10 to 20 min postinjection, increases in the number of autophagic vacuoles and in the osmotic sensitivity of acid phosphatase-bearing particles were observed, associated with a progressive disappearance of dense bodies. These changes appeared to reach a maximum 50 min after treatment. The average volume of autophagic vacuoles was found to be 440–870% greater than that of normal dense bodies during this time period. No consistent change in total acid phosphatase activity was noted. A detailed study of autophagic vacuole profile populations revealed the presence of five different types of profiles, two of which, types I and II, accounted for 76.3–94.4% of the profiles examined. Type I profiles primarily contained elements of the endoplasmic reticulum, free ribosomes, and ground cytoplasm. Type II profiles had mitochondrial profiles as their principal constituent, but endoplasmic reticulum and free ribosomes were also seen. At all time points type I profiles predominated, comprising 55–69% of the profiles found. Both profile types were bounded by single and double limiting membranes, the former being predominate. A time-dependent change in the ratio of single to double membrane-limited profiles could not be demonstrated. Morphometric parameters derived from profile size distributions indicated that the number of types I and II autophagic vacuoles increased with time, the rate being greater for the type II particle, except between 40 and 50 min. The average volume of the type II autophagic vacuole was consistently greater than that of the type I.  相似文献   

15.
It is well known that phenobarbital (PB) treatment produces an increase in the amount of cytoplasmic membranes of hepatocytes, with a parallel enhancement in the activity of drug-metabolizing enzymes. However, little is known about how the induced membranes are removed after the drug treatment is stopped. To consider this problem, the recovery of rat hepatocytes from PB induction (five daily injections, 100 mg/kg) was followed morphometrically. Treatment with PB produced a cellular enlargement (26%) due to increases in the volume of the cytoplasmic matrix (20%) and the volume (100%) and surface area (90%) of the smooth-surfaced endoplasmic reticulum (SER). The volume of the nuclei and the surface area of the Golgi apparatus were also increased, but no changes were detected in the volumes of the mitochondria or peroxisomes. The SER membranes induced by the PB were removed within 5 days after the end of the treatment period. During this period of membrane removal, we observed an increase in the volume (800%) and number (96%) of autophagic vacuoles without a change in dense bodies. A morphometric analysis of the content of the autophagic vacuoles showed that the endoplasmic reticulum membranes were preferentially removed, and from this we conclude that the formation of autophagic vacuoles was not a random process. Our findings show that the removal of excess cytoplasmic membranes is associated with an increase in autophagic activity and thus demonstrates the presence of a specific cellular mechanism which may be responsible for the bulk removal of PB-induced membranes.  相似文献   

16.
The induction of autophagy caused by vinblastine (VBL) has been found to be concomitant with a stimulation of proteolysis in a mitochondrial- lysosomal (ML) fraction from the rat liver (Marzella and Glaumann, 1980, Lab. Invest., 42: 8-17. Marzella and Glaumann, 1980, Lab. Invest., 42:18-27). In this fraction the enhanced proteolysis is associated with a threefold increase in the relative fractional volume of autophagic vacuoles (AVs). In an attempt to isolate the AVs, we subfractionated the ML suspension at different intervals after the induction of autophagy by VBL by centrifugation on a discontinuous Metrizamide gradient ranging from 50% to 15%. The material banding at the 24 to 20% and the 20 to 15% interphases was collected. Morphological analysis reveals that 3 h after induction of autophagy these fractions consist predominantly (approximately 90%) of intact autophagic vacuoles. These autophagic vacuoles contain cytosol, mitochondria, portions of endoplasmic reticulum, and occasional very low density lipoprotein, particles either free or in Golgi apparatus derivatives, in particular secretory granules. The sequestered materials show ultrastructural signs of ongoing degradation. In addition to containing typical autophagic vacuoles, the isolated fractions consist of lysosomes lacking morphologically recognizable cellular components. Contamination from nonlysosomal material is only a few percent as judged from morphometric analysis. Typical lysosomal "marker" enzymes are enriched 15-fold, whereas the proteolytic activity is enriched 10- to 20-fold in the isolated AV fraction as compared to the homogenate. Initially, the yield of nonlysosomal mitochondrial and microsomal enzyme activities increases in parallel with the induction of autophagy but, later on, decreases with advanced degradation of the sequestered cell organelles. Therefore, in the case of AVs the presence of nonlysosomal marker enzymes cannot be used for calculation of fraction purity, since newly sequestered organelles are enzymatically active. Isolated autophagic vacuoles show proteolytic activity when incubated in vitro. The comparatively high phospholipid/protein ratio (0.5) of the AV fraction suggests that phospholipids are degraded more slow than proteins. Is it concluded that AVs can be isolated into a pure fraction and are the subcellular site of enhanced protein degradation in the rat liver after induction of autophagy.  相似文献   

17.
The effect of energy deprivation on autophagocytosis in Ehrlich ascites tumor cells was studied using cytochemical techniques. Autophagocytosis was induced with vinblastine incubation (0.1 mM) and the cellular ATP-level was lowered with 2-deoxy-D-glucose (0.35 mM). Acid phosphatase was used as a marker for lysosomal enzymes and imidazole-buffered osmium tetroxide impregnation in order to study the effects of energy deprivation on the maturation of autophagic vacuole (AV) membranes. Control and vinblastine treated cells maintained their ATP-levels throughout the incubation period tested (120 min). 2-Deoxy-D-glucose alone and with vinblastine decreased the intracellular ATP-level significantly after only 3 min incubation. Most of the AV's in control and vinblastine treated cells contained degraded material and acid phosphatase activity. Their membranes were stained only slightly or not at all with imidazole-buffered osmium tetroxide. 2-Deoxy-D-glucose alone as well as with vinblastine induced in particular an accumulation of early stages of AV's. These vacuoles contained undegraded cytoplasmic material and no acid phosphatase activity and their membranes were stained usually partly with imidazole-buffered osmium tetroxide. The membranes of some early AV's resembled endoplasmic reticulum and still had attached ribosomes. It was concluded that the inhibition of cellular energy production used in the present study did not inhibit autophagic sequestration but retarded the maturation of AV membranes and impaired the functioning of lysosomal hydrolases.  相似文献   

18.
The process of autophagy was studied in Tritrichomonas foetus under serum deprivation, drug treatment (hydroxyurea, zinc sulfate), and also in normal conditions using routine electron microscopy, freeze-fracture, freeze-substitution, and enzyme cytochemistry. We also used gold particles conjugated with bovine albumin to better characterize the participation of lysosomes in the process of hydrogenosome degradation. Apparently normal hydrogenosomes and also giant, abnormal hydrogenosomes presenting internal membranes were seen in the autophagic process. The first event observed was the rough endoplasmic reticulum surrounding and enclosing the hydrogenosome, forming an isolation membrane. The hydrogenosomes were first sequestered from the remaining cytoplasm and then degraded within lysosomes. The autophagic vacuoles were limited by double or multiple concentric membranes and many contained recognizable hydrogenosomes, probably in the preliminary steps of degradation. Lysosomes seemed to fuse with autophagic vacuoles forming a degradative structure bound by a single membrane and containing hydrogenosomes in various stages of degeneration. Hydrogenosomes appeared partially degraded, forming hydrogenosomal remnants. It was observed that there is a removal of hydrogenosomes in normal cells and in cases of cell toxicity.  相似文献   

19.
Fieran  B. A. 《Protoplasma》1971,72(1):1-18
Summary Vacuoles in plant cells often contain inclusions which at early stages of development are bounded by a single membrane. The inclusion bodies (IBs) comprise a diversity of forms and various stages of differentiation are recognizable. IBs are divided into two categories: those which have a matrix without internal membranes, and those which contain cytoplasmic organelles and other membranous material. The internal membranes may be tightly coiled or in the form of vesicles. IBs develop from invaginations of the tonoplast which become detached into the vacuole. They are initiated mainly during active cell growth but may remain within the vacuole in differentiated cells. Various components contribute to the contents of IBs: endoplasmic reticulum, nuclear envelope, Golgi vesicles, extruded portions of mitochondria and plastids, ribosomes and groundplasm. In most IBs the limiting membrane and contents eventually disappear within the vacuole. Some IBs prior to their breakdown within the vacuole also function as sites for the formation of material not found elsewhere in the cell. The disappearance of IBs from vacuoles suggests that such vacuoles behave as lysosomes.  相似文献   

20.
We have investigated the in vitro effects of increased levels of glucose and free fatty acids on autophagy activation in pancreatic beta cells. INS-1E cells and isolated rat and human pancreatic islets were incubated for various times (from 2 to 24 h) at different concentrations of glucose and/or palmitic acid. Then, cell survival was evaluated and autophagy activation was explored by using various biochemical and morphological techniques. In INS-1E cells as well as in rat and human islets, 0.5 and 1.0 mM palmitate markedly increased autophagic vacuole formation, whereas high glucose was ineffective alone and caused little additional change when combined with palmitate. Furthermore, LC3-II immunofluorescence co-localized with that of cathepsin D, a lysosomal marker, showing that the autophagic flux was not hampered in PA-treated cells. These effects were maintained up to 18-24 h incubation and were associated with a significant decline of cell survival correlated with both palmitate concentration and incubation time. Ultrastructural analysis showed that autophagy activation, as evidenced by the occurrence of many autophagic vacuoles in the cytoplasm of beta cells, was associated with a diffuse and remarkable swelling of the endoplasmic reticulum. Our results indicate that among the metabolic alterations typically associated with type 2 diabetes, high free fatty acids levels could play a role in the activation of autophagy in beta cells, through a mechanism that might involve the induction of endoplasmic reticulum stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号