首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
H-prune, a new cyclic nucleotide phosphodiesterase, binds to nm23-H1, a metastasis suppressor protein. The overexpression of h-prune in the MDA-MB-435 breast carcinoma cell line causes a substantial decrease of cAMP, and an increase in cellular motility. This latest effect is correlated both to the h-prune phosphodiesterase activity and to the interaction between h-prune and nm23-H1 proteins. Understanding the molecular changes in tumor cells with an increased level of expression of h-prune might shed light on motility processes, which are the driving forces of the cells to move away from the primary tumor and to become metastatic. This report overview genes and pathways influenced by h-prune overexpression in a conventional breast cancer cellular model.  相似文献   

2.
3.
Despite the current progress in cancer research and therapy, breast cancer remains the leading cause of mortality among half a million women worldwide. Migration and invasion of cancer cells are associated with prevalent tumor metastasis as well as high mortality. Extensive studies have powerfully established the role of prototypic second messenger cAMP and its two ubiquitously expressed intracellular cAMP receptors namely the classic protein kinaseA/cAMP-dependent protein kinase (PKA) and the more recently discovered exchange protein directly activated by cAMP/cAMP-regulated guanine nucleotide exchange factor (EPAC/cAMP-GEF) in cell migration, cell cycle regulation, and cell death. Herein, we performed the analysis of the Cancer Genome Atlas (TCGA) dataset to evaluate the essential role of cAMP molecular network in breast cancer. We report that EPAC1, PKA, and AKAP9 along with other molecular partners are amplified in breast cancer patients, indicating the importance of this signaling network. To evaluate the functional role of few of these proteins, we used pharmacological modulators and analyzed their effect on cell migration and cell death in breast cancer cells. Hence, we report that inhibition of EPAC1 activity using pharmacological modulators leads to inhibition of cell migration and induces cell death. Additionally, we also observed that the inhibition of EPAC1 resulted in disruption of its association with the microtubule cytoskeleton and delocalization of AKAP9 from the centrosome as analyzed by in vitro imaging. Finally, this study suggests for the first time the mechanistic insights of mode of action of a primary cAMP-dependent sensor, Exchange protein activated by cAMP 1 (EPAC1), via its interaction with A-kinase anchoring protein 9 (AKAP9). This study provides a new cell signaling cAMP–EPAC1–AKAP9 direction to the development of additional biotherapeutics for breast cancer.  相似文献   

4.
B7-H4 protein is expressed on the surface of a variety of immune cells and functions as a negative regulator of T cell responses. We independently identified B7-H4 (DD-O110) through a genomic effort to discover genes upregulated in tumors and here we describe a new functional role for B7-H4 protein in cancer. We show that B7-H4 mRNA and protein are overexpressed in human serous ovarian cancers and breast cancers with relatively little or no expression in normal tissues. B7-H4 protein is extensively glycosylated and displayed on the surface of tumor cells and we provide the first demonstration of a direct role for B7-H4 in promoting malignant transformation of epithelial cells. Overexpression of B7-H4 in a human ovarian cancer cell line with little endogenous B7-H4 expression increased tumor formation in SCID mice. Whereas overexpression of B7-H4 protected epithelial cells from anoikis, siRNA-mediated knockdown of B7-H4 mRNA and protein expression in a breast cancer cell line increased caspase activity and apoptosis. The restricted normal tissue distribution of B7-H4, its overexpression in a majority of breast and ovarian cancers and functional activity in transformation validate this cell surface protein as a new target for therapeutic intervention. A therapeutic antibody strategy aimed at B7-H4 could offer an exciting opportunity to inhibit the growth and progression of human ovarian and breast cancers.  相似文献   

5.
Sims JD  McCready J  Jay DG 《PloS one》2011,6(4):e18848
Breast cancer is second only to lung cancer in cancer-related deaths in women, and the majority of these deaths are caused by metastases. Obtaining a better understanding of migration and invasion, two early steps in metastasis, is critical for the development of treatments that inhibit breast cancer metastasis. In a functional proteomic screen for proteins required for invasion, extracellular heat shock protein 90 alpha (Hsp90α) was identified and shown to activate matrix metalloproteinase 2 (MMP-2). The mechanism of MMP-2 activation by Hsp90α is unknown. Intracellular Hsp90α commonly functions with a complex of co-chaperones, leading to our hypothesis that Hsp90α functions similarly outside of the cell. In this study, we show that a complex of co-chaperones outside of breast cancer cells assists Hsp90α mediated activation of MMP-2. We demonstrate that the co-chaperones Hsp70, Hop, Hsp40, and p23 are present outside of breast cancer cells and co-immunoprecipitate with Hsp90α in vitro and in breast cancer conditioned media. These co-chaperones also increase the association of Hsp90α and MMP-2 in vitro. This co-chaperone complex enhances Hsp90α-mediated activation of MMP-2 in vitro, while inhibition of Hsp70 in conditioned media reduces this activation and decreases cancer cell migration and invasion. Together, these findings support a model in which MMP-2 activation by an extracellular co-chaperone complex mediated by Hsp90α increases breast cancer cell migration and invasion. Our studies provide insight into a novel pathway for MMP-2 activation and suggest Hsp70 as an additional extracellular target for anti-metastatic drug development.  相似文献   

6.
The DHH superfamily human protein h-prune, a binding partner of the metastasis suppressor nm23-H1, is frequently overexpressed in metastatic cancers. From an evolutionary perspective, h-prune is very close to eukaryotic exopolyphosphatases. Here, we show for the first time that h-prune efficiently hydrolyzes short-chain polyphosphates (k cat of 3-40 s (-1)), including inorganic tripoly- and tetrapolyphosphates and nucleoside 5'-tetraphosphates. Long-chain inorganic polyphosphates (>or=25 phosphate residues) are converted more slowly, whereas pyrophosphate and nucleoside triphosphates are not hydrolyzed. The reaction requires a divalent metal cofactor, such as Mg (2+), Co (2+), or Mn (2+), which activates both the enzyme and substrate. Notably, the exopolyphosphatase activity of h-prune is suppressed by nm23-H1, long-chain polyphosphates and pyrophosphate, which may be potential physiological regulators. Nucleoside triphosphates, diadenosine hexaphosphate, cAMP, and dipyridamole (inhibitor of phosphodiesterase) do not affect this activity. Mutation of seven single residues corresponding to those found in the active site of yeast exopolyphosphatase led to a severe decrease in h-prune activity, whereas one variant enzyme exhibited enhanced activity. Our results collectively suggest that prune is the missing exopolyphosphatase in animals and support the hypothesis that the metastatic effects of h-prune are modulated by inorganic polyphosphates, which are increasingly recognized as critical regulators in cells.  相似文献   

7.
Androgen receptor (AR) signaling plays important roles in breast cancer progression. We show here that Kindlin-2, a focal adhesion protein, is critically involved in the promotion of AR signaling and breast cancer progression. Kindlin-2 physically associates with AR and Src through its two neighboring domains, namely F1 and F0 domains, resulting in formation of a Kindlin-2-AR-Src supramolecular complex and consequently facilitating Src-mediated AR Tyr-534 phosphorylation and signaling. Depletion of Kindlin-2 was sufficient to suppress Src-mediated AR Tyr-534 phosphorylation and signaling, resulting in diminished breast cancer cell proliferation and migration. Re-expression of wild-type Kindlin-2, but not AR-binding-defective or Src-binding-defective mutant forms of Kindlin-2, in Kindlin-2-deficient cells restored AR Tyr-534 phosphorylation, signaling, breast cancer cell proliferation and migration. Furthermore, re-introduction of phosphor-mimic mutant AR-Y534D, but not wild-type AR reversed Kindlin-2 deficiency-induced inhibition of AR signaling and breast cancer progression. Finally, using a genetic knockout strategy, we show that ablation of Kindlin-2 from mammary tumors in mouse significantly reduced AR Tyr-534 phosphorylation, breast tumor progression and metastasis in vivo. Our results suggest a critical role of Kindlin-2 in promoting breast cancer progression and shed light on the molecular mechanism through which it functions in this process.Subject terms: Cell signalling, Breast cancer  相似文献   

8.
Metastasis is a complex process divided into a number of steps including detachment of tumor cells from the primary tumor, invasion, migration, intravasation, survival in the vasculature, extravasation, and colonization of the secondary site. Proteins that block metastasis without inhibiting primary tumor formation are known as metastasis suppressors; examples are NM23, Maspin, KAI1, KISS1, and MKK4. Breast cancer metastasis suppressor 1 (BRMS1) was identified as a suppressor of breast cancer metastasis in the late 1990s. In vitro and in vivo studies have confirmed that BRMS1 is a potent metastasis suppressor not limited to breast cancer. However, conflicting clinical observations regarding its role as a metastasis suppressor and its validity as a diagnostic biomarker warrant more in-depth clinical study. In this review, the authors provide an overview of its biology, function, action mechanism and pathological significance.  相似文献   

9.
This review presents data on the relationship between inorganic polyphosphate metabolism and carcinogenesis including participation of polyphosphates in the regulation of activity of mTOR and other proteins involved in carcinogenesis, the role of h-prune protein (human polyphosphatase) in cell migration and metastasis formation, the prospects for using polyphosphates and inhibitors of polyphosphate metabolism enzymes as agents for controlling cell proliferation and migration.  相似文献   

10.
Interruption of the tumor metastatic process is a new, thought provoking molecular target for the treatment of cancer. The Nm23-H1 metastasis suppressor gene stands as a validated molecular target owing to its reduced expression in many aggressive human tumors, and the reduction in metastatic potential in vivo upon re-expression in multiple cell lines. Several compounds have been identified which elevate Nm23-H1 expression in vitro including indomethacin, γ Linolenic Acid, trichostatin A, 5-aza-deoxycytidine, and high dose medroxyprogesterone acetate. Using a model of lung metastatic colonization by MDA-MB-231 human breast carcinoma cells, we demonstrated that high dose MPA reduced the formation of overt lung metastases by 37–46% and those metastases that formed were statistically smaller. A Phase II clinical trial of high dose MPA, alone or in combination with metronomic chemotherapy has recently opened.  相似文献   

11.
The putative tumor metastasis suppressor protein Nm23-H1 is a nucleoside diphosphate kinase that exhibits a novel protein kinase activity when bound to glyceraldehyde-3-phosphate dehydrogenase (GAPDH). In this study we show that the glycolytic enzyme phosphoglycerate mutase B (PGM) becomes phosphorylated in the presence of the Nm23-H1.GAPDH complex in vitro. Mutation of His-10 in PGM abolishes the Nm23-H1.GAPDH complex-induced phosphorylation. Nm23-H1, GAPDH, and PGM are known to co-localize as shown by free flow isoelectric focusing. In association with Nm23-H1 and GAPDH, PGM could be activated by dCTP, which is a substrate of Nm23-H1, in addition to the well known PGM activator 2,3-bisphosphoglycerate. A synthetic cell-penetrating peptide (PGMtide) encompassing the phosphorylated histidine and several residues from PGM (LIRHGE) promoted growth arrest of several tumor cell lines, whereas proliferation of tested non-tumor cells was not influenced. Analysis of metabolic activity of one of the tumor cell lines, MCF-7, indicated that PGMtide inhibited glycolytic flux, consistent with in vivo inhibition of PGM. The specificity of the observed effect was further determined experimentally by testing the effect of PGMtide on cells growing in the presence of pyruvate, which helps to compensate PGM inhibition in the glycolytic pathway. Thus, growth of MCF-7 cells was not arrested by PGMtide in the presence of pyruvate. The data presented here provide evidence that inhibition of PGM activity can be achieved by exogenous addition of a polypeptide, resulting in inhibition of glycolysis and cell growth arrest in cell culture.  相似文献   

12.
New insights into Nm23 control of cell adhesion and migration   总被引:3,自引:0,他引:3  
The molecular mechanisms underlying the role of Nm23/NDP kinase in controlling cell migration and metastasis have been investigated. The recent progress in our understanding of cell migration at a molecular level gives us some clues to the putative Nm23 function as a suppressor of metastasis. Screening of the literature indicates that NDP kinases have pleiotropic effects. By modifying cytoskeleton organization and protein trafficking, some NDP kinase isoforms may indirectly promote adhesion to the extracellular matrix in some cell types. Conversely, Nm23 regulates cell surface expression of integrin receptors and matrix metallo-proteases, and thus directly controls the cell adhesion machinery. Finally, the recent discovery of the interaction between Nm23-H2 and the negative regulator of 1 integrin-mediated cell adhesion, ICAP-1, which targets the kinase to lamellipodia and cell protrusions, suggests that the Nm23-H2/ICAP-1 complex plays a role in integrin signaling, and exerts a fine-tuning between migration and spreading.  相似文献   

13.
Radiotherapy is a widely used treatment for cancer. However, recent studies suggest that ionizing radiation (IR) can promote tumor invasion and metastasis. Bmi-1, a member of the polycomb group protein family, has been observed as a regulator of oxidative stress and promotes metastasis in some tumors. But, its potential role in the metastasis induced by IR of breast cancer has not been explored. In our study, we found that increased levels of Bmi-1 were correlated to EMT of breast cancer cells. Through analyzing the EMT state and metastasis of breast cancer induced by IR, we found the metastatic potential of breast cancer cells can either be inhibited or accelerated by IR following a time-dependent pattern. Silencing Bmi-1 completely abolished the ability of the IR to alter, reduce or increase, the migration of breast cancer cells. Also, when Bmi-1 was knocked down, the effect of inhibition of PI3K/AKT signaling on EMT affected by IR was blocked. These results suggest that Bmi-1 is a key gene in regulation of EMT and migration of breast cancer cells induced by IR through activation of PI3K/AKT signaling; therefore, Bmi-1 could be a new target for inhibiting metastasis caused by IR.  相似文献   

14.
15.
Rho family small GTPase plays a key role in the regulation of cell shape and migration in mammalian cells. Constitutive activation of Rho GTPase leads to the aberrant cell morphology and migration. We identified nm23-H2 as a binding partner of Lbc proto-oncogene product, which specifically activates RhoA, and revealed that nm23-H2 could act as a negative regulator of Rho activity. Furthermore, we found that Lbc, nm23-H2 and ICAP1-α could form tertial complex in cells, and this complex formation was thought to be critical for cell migration stimulated by integrin. It is reported that nm23-H1 bound to Tiam1 and Dbl, which activates Rac and Cdc42 small GTPase, respectively. We discuss the role of nm23 in the regulation of cell morphology and cell migration via Rho family GTPases.  相似文献   

16.
Seven-in-absentia homolog (SIAH) proteins are evolutionary conserved RING type E3 ubiquitin ligases responsible for the degradation of key molecules regulating DNA damage response, hypoxic adaptation, apoptosis, angiogenesis, and cell proliferation. Many studies suggest a tumorigenic role for SIAH2. In breast cancer patients SIAH2 expression levels correlate with cancer aggressiveness and overall patient survival. In addition, SIAH inhibition reduced metastasis in melanoma. The role of SIAH1 in breast cancer is still ambiguous; both tumorigenic and tumor suppressive functions have been reported. Other studies categorized SIAH ligases as either pro- or antimigratory, while the significance for metastasis is largely unknown. Here, we re-evaluated the effects of SIAH1 and SIAH2 depletion in breast cancer cell lines, focusing on migration and invasion. We successfully knocked down SIAH1 and SIAH2 in several breast cancer cell lines. In luminal type MCF7 cells, this led to stabilization of the SIAH substrate Prolyl Hydroxylase Domain protein 3 (PHD3) and reduced Hypoxia-Inducible Factor 1α (HIF1α) protein levels. Both the knockdown of SIAH1 or SIAH2 led to increased apoptosis and reduced proliferation, with comparable effects. These results point to a tumor promoting role for SIAH1 in breast cancer similar to SIAH2. In addition, depletion of SIAH1 or SIAH2 also led to decreased cell migration and invasion in breast cancer cells. SIAH knockdown also controlled microtubule dynamics by markedly decreasing the protein levels of stathmin, most likely via p27Kip1. Collectively, these results suggest that both SIAH ligases promote a migratory cancer cell phenotype and could contribute to metastasis in breast cancer.  相似文献   

17.
18.
ADP-ribosylation factors (ARFs) are monomeric G proteins that regulate many cellular processes such as reorganization of the actin cytoskeleton. We have previously shown that ARF1 is overexpressed in highly invasive breast cancer cells and contribute to their enhanced migration. In this study, we propose to define the molecular mechanism by which ARF1 regulates this complex cellular response by investigating the role of this ARF GTPase on the activation process of Rac1, a Rho GTPase, associated with lamellipodia formation during cell migration. Here, we first show that inhibition of ARF1 or Rac1 expression markedly impacts the ability of MDA-MB-231 cells to migrate upon EGF stimulation. However, the effect of ARF1 depletion can be reversed by overexpression of the Rac1 active mutant, Rac1 Q61L. Depletion of ARF1 also impairs the ability of EGF stimulation to promote GTP-loading of Rac1. To further investigate the possible cross-talk between ARF1 and Rac1, we next examined whether they could form a complex. We observed that the two GTPases could directly interact independently of the nature of the nucleotide bound to them. EGF treatment however resulted in the association of Rac1 with its effector IRSp53, which was completely abrogated in ARF1 depleted cells. We present evidences that this ARF isoform is responsible for the plasma membrane targeting of both Rac1 and IRSp53, a step essential for lamellipodia formation. In conclusion, this study provides a new mechanism by which ARF1 regulates cell migration and identifies this GTPase as a promising pharmacological target to reduce metastasis formation in breast cancer patients.  相似文献   

19.
Kyung Tae Noh  Eui-Ju Choi 《FEBS letters》2010,584(18):4097-4101
GSK-3β is a basally active kinase. Axin forms a complex with GSK-3β and β-catenin; this complex promotes the GSK-3β-dependent phosphorylation of β-catenin, thereby inducing its degradation. However, the inhibition of GSK-3β provokes cell migration via the dysregulation of β-catenin. In this study, we determined that the level of apoptosis signal-regulating kinase 1 (ASK1) was lower in a metastatic breast cancer cell line, compared to that of non-metastatic cancer cell lines and the knockdown of ASK1 not only induces β-catenin activation via the inhibition of GSK-3β and collapsing the subsequent protein complex by regulating Axin dynamics, but also stimulates cell migration. Together, the blockage of the GSK-3β-β-catenin pathway resulting from the knockdown of ASK1 modulates the migration of breast cancer cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号