首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Myosin light chains of guinea-pig striated muscles have been screened by two-dimensional gel electrophoresis and compared to rat myosin light chains. 2. The fast type light chains 1F and 3F, slow type light chains 1S and 2S, and embryonic type light chain 1E are shown to differ in the two rodents; only the fast type light chains 2F co-electrophorese on the gel. 3. In guinea-pig, as in rat, ventricle muscle light chains appear the same as the 1S and 2S light chains and atrial light chain type 1 the same as the 1E light chain. We show that this embryonic light chain of guinea-pig myosin is difficult to identify and may be confused with the adult 1F light chain.  相似文献   

2.
3.
4.
5.
An antiserum specific to dog myocardial myosin has been developed against highly purified myosin heavy chains. The antiserum is specific for the heavy chains of myosin, giving a single precipitin line in an immunodiffusion assay for either the heavy chains of myosin or native myosin, and does not react with any other myocardial proteins. In such assays myosin acts as a single, uniform antigen. Using this antiserum, a radioimmunoassay has been developed to quantitate myosin in a homogenate of myocardial tissue containing free myosin dissociated from other cellular components.  相似文献   

6.
1. The effects of Ca(2+) and Mg(2+) on the enzymic activity of myosin were studied with myosin preparations treated by the ion-exchange resin Chelex-100. A reaction mixture containing 0.05m-potassium chloride was chosen in which the effects of univalent ions such as K(+), Na(+) and Cl(-) do not change significantly with small variations in their concentrations. 2. The relationship between the rate of hydrolysis of ATP or ITP and the concentration of Ca(2+) suggests that a relatively weak binding of Ca(2+) either to myosin or to the substrate nucleotide is responsible for the activation of the enzymic activity. According to the experiments with an ultrafiltration technique, the binding of Ca(2+) to myosin proceeds in at least two steps, the first occurring at one site on every 500000 atomic mass units of myosin with an apparent association constant, K(app.), 1.3x10(6)m(-1), and the second seeming to be so weak that its binding parameters cannot be determined by the method used. The first type of Ca(2+) binding is not observable with N-ethylmaleimide-modified myosin, yet this modified myosin shows activation by Ca(2+) of its adenosine triphosphatase and inosine triphosphatase. 3. The inhibition by Mg(2+) can be related to a binding reaction of Mg(2+) with myosin having K(app.) approximately 10(6)m(-1). Mg(2+) replaces the Ca(2+) bound tightly to myosin. The K(app.) for Mg(2+)-myosin binding calculated by assuming a competition between Ca(2+) and Mg(2+) for the same site is 2.1x10(5)-3.0x10(5)m(-1). When myosin is modified with a thiol reagent (p-mercuribenzoate) at a certain ratio to myosin, the inhibition by Mg(2+) becomes unobservable. 4. The behaviour of the hydrolytic activity of myosin on ATP or ITP in the presence of both Ca(2+) and Mg(2+) is consistent with the explanation that the inhibition by Mg(2+) is due to the tight binding of Mg(2+) to myosin, whereas the activation by Ca(2+) is caused either by a weak binding of Ca(2+) to myosin or by CaATP(2-) or by both.  相似文献   

7.
1. The steady-state kinetic behaviour of the ATPase (adenosine triphosphatase) of intact myofibrils was studied in the presence of both high and low concentrations of Ca2+ (0.25 mM and less than 10 nM respectively). 2. Kinetic data were collected over the initial linear phase of the assay, which lasts for 20--60s. To obtain consistent data we found it necessary to use either fresh myofibril preparations or preparations that had been stored in the presence of thiol compounds. 3. When assayed in the presence of 0.25 mM-Ca2+, the myofibrillar ATPase obeyed Michaelis-Menten kinetics over the range 0.03--5.0 mM-MgATP (Km 16 +/- 6 micrometer, V 0.4 +/- 0.1 mumol/min per mg). 4. At low Ca2+ concentrations (less than 10 nM) the myofibrillar ATPase displayed pronounced substrate inhibition, which was not observed at high Ca2+ concentrations. Thus increasing the MgATP concentration had the net effect of decreasing the ATPase activity at low Ca2+ relative to that at high Ca2+. This preferential effect of MgATP on the low-Ca2+ ATPase may be important in Ca2+ control. 5. The substrate inhibition that was observed at low Ca2+ was lost on storage or thiol modification of the myofibrils. 6. Under physiological conditions (2 mM-MgATP, I 0.15, pH 7.0), the ATPase of fresh and thiol-protected myofibrils displayed approx. 100-fold activation by Ca2+.  相似文献   

8.
The kinetics of the Mg2+-dependent ATPase (adenosine triphosphatase) activity of bovine cardiac myosin and its papain subfragment-1 were studied by using steady-state and pre-steady-state techniques, and results were compared with published values for the corresponding processes in the ATPase mechanism of rabbit skeletal-muscle myosin subfragment-1. The catalytic-centreactivity for cardiac subfragment-1 is 0.019s-1, which is less than one-third of that determined for the rabbit protein. The ATP-induced isomerization process, measured from enhancement of protein fluorescence on substrate binding, is similarly decreased in rate, as is also the isomerization process associated with ADP release. However, the equilibrium constant for ATP cleavage, measured by quenched-flow by using [gamma-32P]ATP, shows little difference in the two species. Other experiments were carried out to investigate the rate of association of actin with subfragment-1 by light-scattering changes and also the rate of dissociation of the complex by ATP. The dissociation rate increases with increasing substrate concentration, to a maximum at high ATP concentrations, with a rate constant of about 2000s-1. It appears that isomerization processes which may involve conformational changes have substantially lower rate constants for the cardiac proteins, whereas equilibrium constants for substrate binding and cleavage are not significantly different. These differences may be related to the functional properties of these myosins in their different muscle types. Kinetic heterogeneity has been detected in both steady-state and transient processes, and this is discussed in relation to the apparent chemical homogeneity of cardiac myosin.  相似文献   

9.
Myosin II is an actin-binding protein composed of MHC (myosin heavy chain) IIs, RLCs (regulatory light chains) and ELCs (essential light chains). Myosin II expressed in non-muscle tissues plays a central role in cell adhesion, migration and division. The regulation of myosin II activity is known to involve the phosphorylation of RLCs, which increases the Mg2+-ATPase activity of MHC IIs. However, less is known about the details of RLC-MHC II interaction or the loss-of-function phenotypes of non-muscle RLCs in mammalian cells. In the present paper, we investigate three highly conserved non-muscle RLCs of the mouse: MYL (myosin light chain) 12A (referred to as MYL12A), MYL12B and MYL9 (MYL12A/12B/9). Proteomic analysis showed that all three are associated with the MHCs MYH9 (NMHC IIA) and MYH10 (NMHC IIB), as well as the ELC MYL6, in NIH 3T3 fibroblasts. We found that knockdown of MYL12A/12B in NIH 3T3 cells results in striking changes in cell morphology and dynamics. Remarkably, the levels of MYH9, MYH10 and MYL6 were reduced significantly in knockdown fibroblasts. Comprehensive interaction analysis disclosed that MYL12A, MYL12B and MYL9 can all interact with a variety of MHC IIs in diverse cell and tissue types, but do so optimally with non-muscle types of MHC II. Taken together, our study provides direct evidence that normal levels of non-muscle RLCs are essential for maintaining the integrity of myosin II, and indicates that the RLCs are critical for cell structure and dynamics.  相似文献   

10.
Heavy meromyosin treated with the ATP analog, 6,6'-dithiobis(inosinyl-5'-yl imidodiphosphate), (slppNHp)2, in the presence of adenyl-5'-yl imidodiphosphate at 0 degrees loses its EDTA-ATPase activity and actin binding ability in a parallel manner. Studies with myosin show that under the above conditions (slppNHp)2 reacts preferentially with the single cysteines of the alkali light chains (Mr = 20,700 and 16,500) suggesting a role for these subunits in regulating actin-myosin interaction and ATP cleavage.  相似文献   

11.
We have partially purified myosin light chain kinase (MLCK) and myosin light chain phosphatase (MLCP) from Dictyostelium discoideum. MLCK was purified 4,700-fold with a yield of approximately 1 mg from 350 g of cells. The enzyme is very acidic as suggested by its tight binding to DEAE. Dictyostelium MLCK has an apparent native molecular mass on HPLC G3000SW of approximately 30,000 D. Mg2+ is required for enzyme activity. Ca2+ inhibits activity and this inhibition is not relieved by calmodulin. cAMP or cGMP have no effect on enzyme activity. Dictyostelium MLCK is very specific for the 18,000-D light chain of Dictyostelium myosin and does not phosphorylate the light chain of several other myosins tested. Myosin purified from log-phase amebas of Dictyostelium has approximately 0.3 mol Pi/mol 18,000-D light chain as assayed by glycerol-urea gel electrophoresis. Dictyostelium MLCK can phosphorylate this myosin to a stoichiometry approaching 1 mol Pi/mol 18,000-D light chain. MLCP, which was partially purified, selectively removes phosphate from the 18,000-D light chain but not from the heavy chain of Dictyostelium myosin. Phosphatase-treated Dictyostelium myosin has less than or equal to 0.01 mol Pi/mol 18,000-D light chain. Phosphatase-treated myosin could be rephosphorylated to greater than or equal to 0.96 mol Pi/mol 18,000-D light chain by incubation with MLCK and ATP. We found myosin thick filament assembly to be independent of the extent of 18,000-D light-chain phosphorylation when measured as a function of ionic strength. However, actin-activated Mg2+-ATPase activity of Dictyostelium myosin was found to be directly related to the extent of phosphorylation of the 18,000-D light chain. MLCK-treated myosin moved in an in vitro motility assay (Sheetz, M. P., and J. A. Spudich, 1983, Nature (Lond.), 305:31-35) at approximately 1.4 micron/s whereas phosphatase-treated myosin moved only slowly or not at all. The effects of phosphatase treatment on the movement were fully reversed by subsequent treatment with MLCK.  相似文献   

12.
The kinetics of protein-fluorescence change when rabbit skeletal myosin subfragment 1 is mixed with ATP or adenosine 5'-(3-thiotriphosphate) in the presence of Mg(2+) are incompatible with a simple bimolecular association process. A substrate-induced conformation change with DeltaG(0)<-24kJ.mol(-1) (i.e. DeltaG(0) could be more negative) at pH8 and 21 degrees C is proposed as the additional step in the binding of ATP. The postulated binding mechanism is M+ATPright harpoon over left harpoonM.ATPright harpoon over left harpoonM*.ATP, where the association constant for the first step, K(1), is 4.5x10(3)m(-1) at I 0.14m and the rate of isomerization is 400s(-1). In the presence of Mg(2+), ADP binds in a similar fashion to ATP, the rate of the conformation change also being 400s(-1), but with DeltaG(0) for that process being -14kJ.mol(-1). The effect of increasing ionic strength is to decrease K(1), the kinetics of the conformation change being essentially unaltered. Alternative schemes involving a two-step binding process for ATP to subfragment 1 are possible. These are not excluded by the experimental results, although they are perhaps less likely because they imply uncharacteristically slow bimolecular association rate constants.  相似文献   

13.
14.
The effect of calcium ions on conformational changes of F-actin initiated by decoration of thin filaments with phosphorylated and dephosphorylated heavy meromyosin from smooth muscles was studied by fluorescence polarization spectroscopy. It is shown that heavy meromyosin with phosphorylated regulatory light chains (pHMM) promotes structural changes of F-actin which are typical for the "strong" binding of actin to the myosin heads. Heavy meromyosin with dephosphorylated regulatory light chains (dpHMM) causes conformational changes of F-actin which are typical for the "weak" binding of actin to the myosin heads. The presence of calcium enhances the pHMM effect and attenuates the dpHMM effect. We propose that a Ca2+-dependent mechanism exists in smooth muscles which modulates the regulation of actin--myosin interaction occurring via phosphorylation of myosin regulatory light chains.  相似文献   

15.
We have isolated a cDNA that encodes the human regulatory myosin light chain isoform predominant in adult atrial muscle. The cDNA contains an open reading frame of 175 amino acids and encodes a hydrophilic protein of a largely helical structure with two potential phosphorylation sites. The protein is different from any other regulatory myosin light chain so far described and is the product of a previously uncharacterized single copy gene. An isoform-specific probe was used to analyze the expression of this isoform in adult muscle and in cardiac and skeletal muscle development in vivo and in vitro. Parallel analysis of the corresponding human alkali myosin light chain (predominant in adult atrium) showed that both isoforms are expressed in early heart development, in both atrium and ventricle. Although the atrial alkali light chain is expressed throughout embryonic striated muscle development, the regulatory myosin light chain was not detected in skeletal myogenesis in vivo or in vitro. Thus the atrial isoforms are not universally or exclusively "paired" and can be independently regulated. We propose that the manner in which these particular isoforms fulfill the functional requirements of the muscle at different developmental times may have direct impact on their regulation.  相似文献   

16.
17.
Studies of phenylglyoxal incorporation by beef-heart mitochondrial ATPase reveal one fast-reacting arginyl residue/enzyme molecule. Modification of this group proceeds at a rate which parallels the loss of enzymatic activity. Efrapeptin protects the arginyl residue from reaction with phenylglyoxal. The data suggest that efrapeptin binds at the catalytic site and blocks accessibility of an essential arginine at the adenine nucleotide binding site. The detection of a single, fast-reacting, essential arginine on an enzyme with multiple copies of the catalytic subunit, provides further evidence in support of the alternating site mechanism for ATP synthesis proposed by Kayalar et al. (Kayalar, C., Rosing, J., and Boyer, P.D. (1977) J.Biol. Chem. 252, 2486--2491).  相似文献   

18.
This review discusses and summarizes the results of molecular and cellular investigations of myosin light chain kinase (MLCK, MYLK1), the key regulator of cell motility. The structure and regulation of a complex mylk1 gene and the domain organization of its products is presented. The interactions of the mylk1 gene protein products with other proteins and posttranslational modifications of the mylk1 gene protein products are reviewed, which altogether might determine the role and place of MLCK in physiological and pathological reactions of cells and entire organisms. Translational potential of MLCK as a drug target is evaluated.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号