首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 60 毫秒
1.
The p53- and Bcl-2-negative leukemic K562 cell line showed resistant to DNA damage-induced Bax activation and apoptosis. The constitutive balanced ratio of Bax/Bcl-XL in K562 mitochondria allowed the formation of active Bax and cytochrome c release from mitochondria in the presence of a BH3-only protein, tBid, in a cell-free system. Bax transfection led to Bax undergoing a conformational change, translocation to mitochondria and homo-oligomerization but not apoptosis in the K562 cell line. After treatment with UV light, while Bcl-XL but not Bax translocated to mitochondria in K562, both Bax and Bcl-XL translocated to mitochondria in the Bax stable transfectant K/Bax cells. The increased ratio of Bax/Bcl-XL in K/Bax mitochondria led to an increased conformationally changed Bax, formation of the homo-multimer of Bax-Bax, and a reduced hetero-dimerization of Bax-Bcl-XL. Increased proportion of active Bax was accompanied with increased percentage of apoptosis. We therefore demonstrate that direct increase in the ratio of mitochondrial Bax/Bcl-XL can induce Bax activation in the p53- and Bcl-2-negative leukemic cells. Increased Bcl-XL translocation and failure in Bax translocation from cytosol to mitochondria play important roles in preventing Bax activation.  相似文献   

2.
Pancreatic beta-cell death induced by oxidative stress plays an important role in the pathogenesis of diabetes mellitus. We studied the relation between rapid intracellular acidification and cell death of pancreatic beta-cell line NIT-1 cells exposed to H2O2 or alloxan. Intracellular pH was measured by a pH-sensitive dye, and cell damage by double staining with Annexin-V and propidium iodide using flow cytometry. H2O2 and alloxan caused a rapid fall in intracellular pH and suppressed Na+/H+ exchanger activity in the NH4Cl prepulse method. H2O2 induced necrotic cell death, which shifted to apoptotic cell death when initial acidification was prevented by pH clamping to 7.4 using nigericin (unclamped cells vs clamped cells, necrosis 43.8 +/- 5.8% vs 21.1 +/- 10.6%, P < 0.05; apoptosis 8.0 +/- 1.9% vs 44.5 +/- 5.0%, P < 0.01). pH-clamped cells showed enhanced caspase 3 activity and proapoptotic Bax expression. On the other hand, NIT-1 cells were resistant to alloxan toxicity, but treatment with alloxan and nigericin strikingly enhanced the cytotoxicity. Antioxidants partly prevented cell death, although intracellular pH remained similarly acidic. The rapid intracellular acidification was not the cause of cell death but a significant determinant of the mode of death of H2O2 -treated beta cells, whereas no link between cell death and acidification was demonstrated in alloxan toxicity.  相似文献   

3.
Wu Y  Xing D  Chen WR  Wang X 《Cellular signalling》2007,19(12):2468-2478
UV irradiation triggers apoptosis through both the membrane death receptor and the intrinsic apoptotic signaling pathways. Bax, a member of the Bcl-2 family of proteins, translocates from the cytosol to the mitochondrial membrane during UV-induced apoptosis, but the regulation of Bax translocation by UV irradiation remains elusive. In this study, we show that Bax translocation, caspase-3 activation and cell death by UV irradiation are not affected by Z-IETD-fmk (caspase-8 inhibitor), but delayed by Pifithrin- (p53 inhibitor), although Bid cleavage could be completely abolished by Z-IETD-fmk. Co-transfecting YFP-Bax and Bid-CFP into human lung adenocarcinoma cells, we demonstrate that translocation of YFP-Bax precedes that of Bid-CFP, there is no significant FRET (fluorescence resonance energy transfer) between them. Similar results are obtained in COS-7 cells expressing YFP-Bax and Bid-CFP. Furthermore, using acceptor photobleaching technique, we observe that there is no interaction between YFP-Bax and Bid-CFP in both healthy and apoptotic cells. Additionally, during UV-induced apoptosis there is downregulation of Bcl-xL, an anti-apoptotic protein. Overexpression of Bcl-xL in cells susceptible to UV-induced apoptosis prevents Bax translocation and cell death, repression of Bid protein with siRNA (small interfering RNA) do not inhibit cell death by UV irradiation. Taken together, these data strongly suggest that Bax translocation by UV irradiation is a Bid-independent event and inhibited by overexpression of Bcl-xL.  相似文献   

4.
Induction of cell death in HeLa cells with TNF and cycloheximide (CHX) required an adequate ATP supply and was accompanied by decrease in intracellular pH, translocation of Bax, perinuclear clustering of the mitochondria, and cytochrome c release. The chloride channel inhibitor furosemide prevented the intracellular acidification, the translocation of Bax and the cell death. Cyclosporin A (CyA) or bongkrekic acid (BK) inhibited the induction of the MPT, the release of cytochrome c and the cell death without affecting the perinuclear clustering of the mitochondria or the translocation of Bax. Energy depletion with the ATP synthase inhibitor oligomycin or the uncoupler FCCP in the presence of 2-deoxy-glucose prevented the perinuclear clustering of the mitochondria and the cell killing. However, mitochondrial translocation of Bax was still observed. By contrast, cytochrome c was released in the oligomycin-treated cells but not in the same cells treated with FCCP. The data demonstrate that apoptosis in HeLa cells is ATP dependent and requires the translocation of Bax. The movement of Bax to the mitochondria occurs before and during the perinuclear clustering of these organelles and does not require the presence of ATP. The release of cytochrome c depends on the induction of the mitochondrial permeability transition but not ATP content.  相似文献   

5.
Mitochondria trigger apoptosis by releasing caspase activators, including cytochrome c (cytC). Here we show, using a pH-sensitive green fluorescent protein (GFP), that mitochondria-dependent apoptotic stimuli (such as Bax, staurosporine and ultraviolet irradiation) induce rapid, Bcl-2-inhibitable mitochondrial alkalinization and cytosol acidification, followed by cytC release, caspase activation and mitochondrial swelling and depolarization. These events are not induced by mitochondria-independent apoptotic stimuli, such as Fas. Activation of cytosolic caspases by cytC in vitro is minimal at neutral pH, but maximal at acidic pH, indicating that mitochondria-induced acidification of the cytosol may be important for caspase activation; this finding is supported by results obtained from cells using protonophores. Cytosol acidification and cytC release are suppressed by oligomycin, a FoF1-ATPase/H +-pump inhibitor, but not by caspase inhibitors. Ectopic expression of Bax in wild-type, but not FoF1/H+-pump-deficient, yeast cells similarly results in mitochondrial matrix alkalinization, cytosol acidification and cell death. These findings indicate that mitochondria-mediated alteration of intracellular pH may be an early event that regulates caspase activation in the mitochondrial pathway for apoptosis.  相似文献   

6.
The proapoptotic protein Bax plays an important role in cardiomyocytic cell death. Ablation of this protein has been shown to diminish cardiac damage in Bax-knockout mice during ischemia-reperfusion. Presently, studies of Bax-mediated cardiac cell death examined primarily the expression levels of Bax and its prosurvival factor Bcl-2 rather than the localization of this protein, which dictates its function. Using immunofluorescence labeling, we have shown that in neonatal rat cardiomyocytes and in H9c2 cardiomyoblasts, Bax translocates from cytosol to mitochondria upon the induction of apoptosis by hypoxia-reoxygenation-serum withdrawal and by the presence of the free-radical inducer menadione. Also, we found that Bax translocation to mitochondria was associated with the exposure of an NH2-terminal epitope, and that this translocation could be partially blocked by the prosurvival factors Bcl-2 and Bcl-XL. To visualize the translocation of Bax in living cells, we have developed an H9c2 cell line that stably expresses green fluorescent protein (GFP)-tagged Bax. This cell line has GFP-Bax localized primarily in the cytosol in the absence of apoptotic inducers. Upon induction of apoptosis by a number of stimuli, including menadione, staurosporine, sodium nitroprusside, and hypoxia-reoxygenation-serum withdrawal, we could observe the translocation of Bax from cytosol to mitochondria. This translocation was not affected by retinoic acid-induced differentiation of H9c2 cells. Additionally, this translocation was associated with loss of mitochondrial membrane potential, release of cytochrome c, and fragmentation of nuclei. Finally, using a tetramethylrhodamine-based dye, we have shown that a rapid screening process based on the loss of mitochondrial membrane potential could be developed to monitor GFP-Bax translocation to mitochondria. Overall, the GFP-Bax-stable H9c2 cell line that we have developed represents a unique tool for examining Bax-mediated apoptosis, and it could be of great importance in screening therapeutic compounds that could block Bax translocation to mitochondria to attenuate apoptosis.  相似文献   

7.
8.
Statins are cholesterol-lowing drugs with pleiotropic effects including cytotoxicity to cancer cells. In this study, we investigated the signaling pathways leading to apoptosis by simvastatin. Simvastatin induced cardinal features of apoptosis including increased DNA fragmentation, disruption of mitochondrial membrane potential (MMP), and increased caspase-3 activity by depleting isoprenoids in MethA fibrosarcoma cells. Interestingly, the simvastatin-induced apoptosis was accompanied by p53 stabilization involving Mdm2 degradation. The apoptosis was ameliorated in p53 knockdown clones of MethA cells as well as p53−/− HCT116 cells. The stabilized p53 protein translocated to mitochondria with Bax, and cytochrome c was released into cytosol. Moreover, knockdown or deficiency of p53 expression reduced both Bax translocation to mitochondria and MMP disruption in simvastatin-induced apoptosis. Taken together, these all indicate that stabilization and translocation of p53 to mitochondria is involved in Bax translocation to mitochondria in simvastatin-induced apoptosis.  相似文献   

9.
Yin X  Cao L  Peng Y  Tan Y  Xie M  Kang R  Livesey KM  Tang D 《Autophagy》2011,7(10):1242-1244
Autophagy and apoptosis are tightly regulated biological processes that are crucial for cell growth, development and tissue homeostasis. UVRAG (UV radiation resistance-associated gene), a mammalian homolog of yeast Vps38, activates the Beclin 1/PtdIns3KC3 (class III phosphatidylinositol-3-kinase) complex, which promotes autophagosome formation. Moreover, UVRAG promotes autophagosome maturation by recruiting class C Vps complexes (HOPS complexes) and Rab7 of the late endosome. We found that UVRAG has anti-apoptotic activity during tumor therapy through interactions with Bax. UVRAG inhibits Bax translocation from the cytosol to mitochondria during chemotherapy- or UV irradiation-induced apoptosis of human tumor cells. Moreover, deletion of the UVRAG C2 domain abolishes Bax binding and anti-apoptotic activity. These results suggest that, in addition to its previously recognized pro-autophagy activity in response to starvation, UVRAG has cytoprotective functions in the cytosol that control the localization of Bax in tumor cells exposed to apoptotic stimuli.  相似文献   

10.
《Autophagy》2013,9(10):1242-1244
Autophagy and apoptosis are tightly regulated biological processes that are crucial for cell growth, development and tissue homeostasis. UVRAG (UV radiation resistance-associated gene), a mammalian homolog of yeast Vps38, activates the Beclin 1/PtdIns3KC3 (class III phosphatidylinositol-3-kinase) complex, which promotes autophagosome formation. Moreover, UVRAG promotes autophagosome maturation by recruiting class C Vps complexes (HOPS complexes) and Rab7 of the late endosome. We found that UVRAG has anti-apoptotic activity during tumor therapy through interactions with Bax. UVRAG inhibits Bax translocation from the cytosol to mitochondria during chemotherapy- or UV irradiation-induced apoptosis of human tumor cells. Moreover, deletion of the UVRAG C2 domain abolishes Bax binding and anti-apoptotic activity. These results suggest that, in addition to its previously recognized pro-autophagy activity in response to starvation, UVRAG has cytoprotective functions in the cytosol that control the localization of Bax in tumor cells exposed to apoptotic stimuli.  相似文献   

11.
Ren Y  Xiong L  Wu JR 《Cell research》2003,13(4):295-300
Tripchlorolide (TC) is a potent antitumor reagent purified from a Chinese herb Tripterygium Wilfordii Hook. f.. However, its cellular effects and mechanism of action are unknown. We showed here that TC induced apoptosis of Chinese Hamster Ovary (CHO) cells in time- and dose-dependent manners. TC resulted in the degradation of Bcl-2, the translocation of Bax from the cytosol to mitochondria, and the release of cytochrome c from mitochondria. Stable overexpression of human Bcl-2 could reduce the apoptosis of TC-treated cells by blocking the translocation of Bax and the release of cytochrome c. These results indicate that TC induces apoptosis of CHO cell by activating the mitochondrion-mediated apoptotic pathway involving the proteins of Bcl-2 family and cytochrome c.  相似文献   

12.
Induction of apoptosis in HeLa cells with staurosporine produced a rise in the intracellular pH (pH(i)). Intracellular alkalinization was accompanied by translocation of Bax to the mitochondria, cytochrome c release, and cell death. The chloride channel inhibitor furosemide prevented intracellular alkalinization, Bax translocation, cytochrome c release, and cell death. Translocation of full-length Bid to the mitochondria was also prevented by furosemide. The cleavage product of Bid degradation (truncated Bid, tBid) was not detectable in the mitochondria. Its accumulation in the cytosol was prevented by furosemide. Apoptosis induced by tumor necrosis factor-alpha (TNF) lowered pH(i), an effect also accompanied by Bax translocation, cytochrome c release, and cell killing. Furosemide prevented all of these events. TNF induced a depletion of full-length Bid from the mitochondria and the cytosol but induced an accumulation of mitochondrial tBid. Furosemide only delayed full-length Bid depletion and tBid accumulation. The caspase 8 inhibitor IETD did not prevent the translocation of Bax. Although IETD did inhibit the cleavage of Bid and the accumulation of tBid, cell killing was reduced only slightly. It is concluded that with either staurosporine or TNF a furosemide-sensitive change in pH(i) is linked to Bax translocation, cytochrome c release, and cell killing. With TNF Bax translocation occurs as Bid is depleted and can be dissociated from the accumulation of tBid. With staurosporine a role for full-length Bid in Bax translocation cannot be excluded but is not necessary as evidenced by the data with TNF.  相似文献   

13.
Activated human T lymphocytes exposed to apoptotic stimuli targeting mitochondria (i.e. staurosporine), enter an early, caspase-independent phase of commitment to apoptosis characterized by cell shrinkage and peripheral chromatin condensation. We show that during this phase, AIF is selectively released from the intermembrane space of mitochondria, and that Bax undergo conformational change, relocation to mitochondria, and insertion into the outer mitochondrial membrane, in a Bid-independent manner. We analyzed the subcellular distribution of cathepsins (Cat) B, D, and L, in a search for caspase-independent factors responsible for Bax activation and AIF release. All were translocated from lysosomes to the cytosol, in correlation with limited destabilization of the lysosomes and release of lysosomal molecules in a size selective manner. However, only inhibition of Cat D activity by pepstatin A inhibited the early apoptotic events and delayed cell death, even in the presence of bafilomycin A1, an inhibitor of vacuolar type H+-ATPase, which inhibits acidification in lysosomes. Small interfering RNA-mediated gene silencing was used to inactivate Cat D, Bax, and AIF gene expression. This allowed us to define a novel sequence of events in which Cat D triggers Bax activation, Bax induces the selective release of mitochondrial AIF, and the latter is responsible for the early apoptotic phenotype.  相似文献   

14.
The programmed cell death 5 (PDCD5) protein plays an important apoptosis-accelerating role in cells undergoing apoptosis. Decreased expression of PDCD5 has been detected in various human carcinomas. Here we describe that one potent short interfering RNA (siRNA) against the PDCD5 (siPDCD5) specifically inhibits the expression of PDCD5 at both the mRNA and protein level. Cells with decreased PDCD5 expression displayed reduced sensitivity to an apoptotic stimulus induced by Bax overexpression in HeLa, HEK293 and 293T cell lines. Furthermore, we also show that siPDCD5 inhibited both caspase-3 activity and procaspase-3 cleavage. Suppressed expression of PDCD5 attenuates the release of cytochrome c from mitochondria to cytosol induced by Bax overexpression. This phenomenon is accompanied by the reduced translocation of Bax from the cytosol to mitochondria. MTT assay shows that targeted suppression of PDCD5 expression markedly promoted cell proliferation in Hela and HEK293 cell lines. Our data suggests that PDCD5 may exert its effects through pathway of mitochondria by modulating Bax translocation, cytochrome c release and caspase 3 activation directly or indirectly, and that decreased PDCD5 expression may be one of the mechanisms by which tumor cells achieve resistance to apoptotic stimulus induced by anticancer drugs.  相似文献   

15.
Bax induces mitochondrial-dependent cell death signals in mammalian cells. However, the mechanism of how Bax is kept inactive has remained unclear. Yeast-based functional screening of Bax inhibitors from mammalian cDNA libraries identified Ku70 as a new Bax suppressor. Bax-mediated apoptosis was suppressed by overexpression of Ku70 in mammalian cells, but enhanced by downregulation of Ku70. We found that Ku70 interacts with Bax, and that the carboxyl terminus of Ku70 and the amino terminus of Bax are required for this interaction. Bax is known to translocate from the cytosol to mitochondria when cells receive apoptotic stimuli. We found that Ku70 blocks the mitochondrial translocation of Bax. These results suggest that in addition to its previously recognized DNA repair activity in the nucleus, Ku70 has a cytoprotective function in the cytosol that controls the localization of Bax.  相似文献   

16.
Bicarbonate transport (BT) has been previously shown to participate in apoptosis induced by various stress factors. However, the precise role of BT in ischaemia-induced apoptosis is still unknown. To investigate this subject, rat coronary endothelial cells (EC) were exposed to simulated ischaemia (glucose free anoxia at Ph 6.4) for 2 hrs and cells undergoing apoptosis were visualized by nuclear staining or by determination of cas-pase- 3 activity. To inhibit BT, EC were either treated with the inhibitor of BT 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS, 300 mumol/l) or exposed to ischaemia in bicarbonate free, 4-(2-hydroxyethyl)-I-piperazi-neethanesulphonic acid (HEPES)-buffered medium. Simulated ischaemia in bicarbonate-buffered medium (Bic) increased caspase-3 activity and the number of apoptotic cell (23.7 + 1.4%versus 5.1 + 1.2% in control). Omission of bicarbonate during ischaemia further significantly increased caspase-3 activity and the number of apoptotic cells (36.7 1.7%). Similar proapoptotic effect was produced by DIDS treatment during ischaemia in Bic, whereas DIDS had no effect when applied in bicarbonate-free, HEPES-buffered medium (Hep). Inhibition of BT was without influence on cytosolic acidification during ischaemia and slightly reduced cytosolic Ca(2+) accumulation. Initial characterization of the underlying mechanism leading to apoptosis induced by BT inhibition revealed activation of the mitochondrial pathway of apoptosis, i.e., increase of cytochrome C release, depolarization of mitochondria and translocation of Bax protein to mitochondria. In contrast, no activation of death receptor-dependent pathway (caspase-8 cleavage) and endoplasmic reticulum- dependent pathway (caspase-12 cleavage) was detected. In conclusion, BT plays an important role in ischaemia-induced apoptosis of coronary EC by suppression of mitochondria-dependent apoptotic pathway.  相似文献   

17.
We have previously shown that Bax translocation was crucial in TNFalpha or etoposide-induced apoptosis. Overexpression of Bax sensitized chronic myeloid leukemic K562 cells to etoposide-induced apoptosis. Treatment with TNF-related apoptosis-inducing ligand (TRAIL) induces a loss of mitochondrial membrane potential (DeltaPsim), cytochrome c release from mitochondria, activation of caspases-8, -9, and -3, and cleavage of Bid in the K562 cell line. Bax failed to sensitize K562 cells to TRAIL-induced apoptosis. TRAIL did not induce Bax expression and/or translocation from cytosol to mitochondria in the K562 cell line. However, 100 microM Z-VAD.fmk, a pan caspase inhibitor, completely blocked TRAIL-initiated mitochondrial alterations and cleavages of caspases and Bid. We propose that TRAIL-induced apoptosis in K562 cells is via Type I apoptotic signal pathway. Bax translocation is not essential for TRAIL-induced cytochrome c release and DeltaPsim collapse in the Type I cells.  相似文献   

18.
The participation of the mitochondrial pathway in paclitaxel-induced apoptosis has been well documented. After addition of paclitaxel to U937 cells, however, we observed an early expression of five endoplasmic reticulum (ER) stress response genes that preceded the release of cytochrome c from the mitochondria and the cleavage of the caspases. Involvement of the ER was supported by the following evidence. Paclitaxel treatment not only activated calpain and caspase-4, but also induced a gradual increase in the cytosolic Ca(2+) concentration at 3-6 h. Paclitaxel-induced apoptosis can be inhibited by the calpain inhibitor calpeptin and IP(3) receptor inhibitors. Either buffering of the cytosolic Ca(2+) or inhibition of mitochondrial calcium uptake reduced BiP expression. These inhibitors also reduced mitochondrial apoptotic signals, such as mitochondrion membrane potential disruption, cytochrome c release and eventually reduced the death of U937 cells. Paclitaxel-induced Bax/Bak translocation to the ER and Bax dimerization on the ER membrane occurred within 3 h, which led to a Ca(2+) efflux into cytosol. Moreover, we found that cytochrome c translocated to the ER after releasing from mitochondria and then interacted with the IP(3) receptor at 12-15 h. This phenomenon has been known to amplify apoptotic signaling. Taken together, ER would seem to contribute to paclitaxel-induced apoptosis via both the early release of Ca(2+) and the late amplification of mitochondria-mediated apoptotic signals.  相似文献   

19.
BimL involvement in Bax activation during UV irradiation-induced apoptosis   总被引:2,自引:0,他引:2  
Bax, a proapoptotic member of the Bcl-2 family, localizes largely in the cytoplasm but translocates to mitochondria and undergoes oligomerization to induce the release of apoptogenic factors in response to apoptotic stimuli. However, the molecular mechanism of Bax activation is not fully understood. We show here the role of BimL in Bax activation during UV irradiation-induced apoptosis. In this study, GFP-BimL plasmid was constructed. The dynamic interaction between BimL and Bax during UV irradiation-induced apoptosis was observed using fluorescence resonance energy transfer (FRET) technique. Our experimental results showed that BimL translocation to mitochondria occurred before Bax translocation, and that BimL activated Bax indirectly. Moreover, inhibition of c-Jun N-terminal protein kinase (JNK) activation blocked BimL translocation, delayed and attenuated Bax translocation and subsequent apoptosis. These results demonstrate that BimL is involved in UV irradiation-induced apoptosis by indirectly activating Bax.  相似文献   

20.
The pro-apoptotic protein, Bax, has been reported to translocate from cytosol to mitochondria following exposure of cells to apoptotic stresses including cytokine withdrawal and treatment with glucocorticoids and cytotoxic drugs. These observations, coupled with reports showing that Bax causes the release of mitochondrial cytochrome c, implicate Bax as a central mediator of the apoptotic process. In this report we demonstrate by subcellular fractionation a significant shift in Bax localization from cytosol to cellular membranes in two human tumor cell lines exposed to staurosporine or etoposide. Immunofluorescence studies confirmed that Bax specifically relocalized to the mitochondria. This redistribution of Bax occurred in concert with, or just prior to, proteolytic processing of procaspase-3, activation of DEVD-specific cleavage activity and degradation of poly(ADP-ribose) polymerase. However, Bax membrane translocation was independent of caspase activity as determined using the broad-range caspase inhibitor z-VAD-fmk. High level overexpression of the anti-apoptotic protein Bcl-2 prevented Bax redistribution to the mitochondria, caspase activation and apoptosis following exposure to staurosporine or etoposide. These data confirm the role of Bax in mitochondrial cytochrome c release, and indicate that prevention of Bax translocation to the mitochondrial membrane represents a novel mechanism by which Bcl-2 inhibits drug-induced apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号