首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Potato tuber disks, when treated with laminarin, a beta-1,3-glucooligosaccharide from Laminaria digitata, accumulate a hydroxycinnamoyl amide compound, N-p-coumaroyloctopamine (p-CO). The biosynthesis of p-CO was investigated by feeding experiments, in order to show that the precursors of N-p-coumaroyl and octopamine moieties of p-CO are L-phenylalanine and L-tyrosine, respectively. The treatment of potato tuber tissue with laminarin resulted in elevated activities of four enzymes which are putatively involved in p-CO biosynthesis: phenylalanine ammonia lyase (PAL; EC 4.3.1.5), 4-hydroxycinnamic acid:CoA ligase (4CL; EC 6.2.1.12), hydroxycinnamoyl-CoA:tyramine N-(hydroxycinnamoyl)transferase (THT; EC 2.3.1.110) and tyrosine decarboxylase (TyrDC; EC 4.1.1.25). Among these, the response of TyrDC was specific to laminarin treatment, thus indicating that the regulation of TyrDC activity is critical for the accumulation of p-CO in potato tuber tissue.  相似文献   

2.
The effect of nitric oxide donor sodium nitroprusside (SNP) on resistance of coleoptiles of 4-day-old etiolated seedlings of wheat (Triticum aestivum L., cv. Elegiya) to damaging heating (10 min at 43°C) and possible dependence of this effect on changes in the activities of enzymes producing and scavenging reactive oxygen species (ROS) were studied. Treatment of coleoptiles with 500 μM SNP considerably boosted generation of superoxide anion radical therein. This effect was substantially suppressed by blocker of calcium channels (lanthanum chloride), calmodulin antagonist (chlorpromazine), and inhibitor of NADPH-oxidase (imidazole) but not by peroxidase inhibitor (salicylhydroxamic acid). NO donor activated antioxidant enzymes (superoxide dismutase, catalase, and soluble peroxidase) and elevated heat resistance of wheat coleoptiles. NO scavenger methylene blue, antioxidant agent ionol, calcium antagonists, and NADPH-oxidase inhibitor imidazole substantially reduced the elevation of heat resistance of wheat coleoptiles induced by NO donor. It was concluded that SNP-induced heat resistance of coleoptiles depended on calcium and ROS, whose production is probably boosted by activation of NADPH-oxidase.  相似文献   

3.
Selenium (Se) is suggested as an emerging pollutant in agricultural environment because of the increasing anthropogenic release of Se, which in turn results in phytotoxicity. The most common consequence of Se-induced toxicity in plants is oxidative injury, but how Se induces reactive oxygen species (ROS) burst remains unclear. In this work, histofluorescent staining was applied to monitor the dynamics of ROS and nitric oxide (NO) in the root of Brassica rapa under Se(IV) stress. Se(IV)-induced faster accumulation of NO than ROS. Both NO and ROS accumulation were positively correlated with Se(IV)-induced inhibition of root growth. The NO accumulation was nitrate reductase (NR)- and nitric oxide synthase (NOS)-dependent while ROS accumulation was NADPH oxidase-dependent. The removal of NO by NR inhibitor, NOS inhibitor, and NO scavenger could alleviate Se(IV)-induced expression of Br_Rbohs coding for NADPH oxidase and the following ROS accumulation in roots, which further resulted in the amelioration of Se(IV)-induced oxidative injury and growth inhibition. Thus, we proposed that the endogenous NO played a toxic role in B. rapa under Se(IV) stress by triggering ROS burst. Such findings can be used to evaluate the toxic effects of Se contamination on crop plants.  相似文献   

4.
Although nitric oxide (NO) and reactive oxygen species (ROS) are essential signalling molecules required for mediation of abscisic acid (ABA)-induced stomatal closure, it is not known whether these molecules also mediate the ABA inhibition of stomatal opening. In this study, we investigated the role of NO and ROS in the ABA inhibition of stomatal opening in Vicia faba. ABA induced both NO and ROS synthesis, and the NO scavenger reduced the ABA inhibition of stomatal opening. Exogenous NO and hydrogen peroxide (H2O2) also inhibited stomatal opening, indicating that NO and ROS are involved in the inhibition signalling process. An inhibitor of nitric oxide synthase (NOS) reversed the ABA inhibition of stomatal opening. Either the NO scavenger or the NOS inhibitor also reversed the process in the H2O2 inhibition of stomatal opening. We found that in the ABA inhibition of stomatal opening, NO is downstream of ROS in the signalling process, and NO is synthesized by a NOS-like enzyme.  相似文献   

5.
Salt stress- and salicylic acid (SA)-induced cell death can be activated by various signaling pathways including ethylene (ET) signaling in intact tomato plants. In tomato suspension cultures, a treatment with 250 mM NaCl increased the production of reactive oxygen species (ROS), nitric oxide (NO), and ET. The 10?3 M SA-induced cell death was also accompanied by ROS and NO production, but ET emanation, the most characteristic difference between the two cell death programs, did not change. ET synthesis was enhanced by addition of ET precursor 1-aminocyclopropane-1-carboxylic acid, which, after 2 h, increased the ROS production in the case of both stressors and accelerated cell death under salt stress. However, it did not change the viability and NO levels in SA-treated samples. The effect of ET induced by salt stress could be blocked with silver thiosulfate (STS), an inhibitor of ET action. STS reduced the death of cells which is in accordance with the decrease in ROS production of cells exposed to high salinity. Unexpectedly, application of STS together with SA resulted in increasing ROS and reduced NO accumulation which led to a faster cell death. NaCl- and SA-induced cell death was blocked by Ca2+ chelator EGTA and calmodulin inhibitor W-7, or with the inhibitors of ROS. The inhibitor of MAPKs, PD98059, and the cysteine protease inhibitor E-64 reduced cell death in both cases. These results show that NaCl induces cell death mainly by ET-induced ROS production, but ROS generated by SA was not controlled by ET in tomato cell suspension.  相似文献   

6.
The effects of nitric oxide (NO) on cadmium toxicity in Medicago truncatula seedlings were studied by investigating root growth and uptake of antioxidants, IAA and ions. Exposure to cadmium reduced root growth and NO accumulation, and increased the production of reactive oxygen species (ROS) in roots. Supplementation with NO improved root growth and reduced ROS accumulation in roots. The NO-scavenger cPTIO, the nitrate reductase (NR) inhibitor tungstate, and the NO synthase (NOS) inhibitor L-NAME all inhibited the accumulation of NO in roots and reversed the effects of NO in promoting the root growth and accumulation of proline and glutathione. Application of NO reduced auxin degradation by inhibiting the activity of IAA oxidase. Exogenous NO also enhanced the uptake of K+ and Ca2+. These results suggest that NO improves cadmium tolerance in plants by reducing oxidative damage, maintaining the auxin equilibrium and enhancing ion absorption.  相似文献   

7.
Nitric oxide (NO) effects on heat resistance of wheat (Triticum aestivum L.) coleoptiles induced by 24-epibrassinolide (24-EB) have been investigated. Coleoptiles’ survival after damaging heating (43°С, 10 min) increased when they were treated preliminarily with 5–200 nM of 24-EB. After 24-EB treatment, transient amplification of nitric oxide (NO) and also ROS (superoxide anion-radical (O 2 ?? ) and hydrogen peroxide) generation by coleoptiles was noted. Coleoptiles pretreatment with inhibitors of nitrate reductase and an enzyme similar to animal NO-synthase partially removed the increase of NO content caused by the action of 24-EB. Amplification of superoxide anion-radical generation caused by 24-EB was depressed under the influence of imidazole (NADPH-oxidase inhibitor). Calcium antagonists (EGTA and neomycin) largely neutralized the 24-EB-induced increase in generation of both O 2 ?? and NO. The increase in NO content in coleoptile tissues caused by 24-EB was almost completely leveled by antioxidants and partly by imidazole. 24-EB-induced enhancement of the superoxide anion-radical generation was partially suppressed by the action of NO scavenger PTIO (2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) and the inhibitors of nitrate reductase and an enzyme similar to animal NO-synthase. Positive 24-EB effect on the heat resistance of wheat coleoptiles was leveled by PTIO, inhibitors of enzymes that generate NO, antioxidants, an inhibitor of NADPH-oxidase imidazole, and calcium antagonists. A conclusion was made on the role of NO in brassinosteroid signal transduction inducing heat resistance development of coleoptiles and on the functional interaction between NO, ROS, and calcium ions as the signal mediators.  相似文献   

8.
The aim of this study was to investigate the role of endogenous nitric oxide in protective effects of He–Ne laser on salt stressed-tall fescue leaves. Salt stress resulted in significant increases of membrane injury, reactive oxygen species (ROS) production, polyamine accumulation, and activities of SOD, POD, and APX, while pronounced decreases of antioxidant contents, CAT activity and intracellular Ca2+ concentration in seedlings leaves. He–Ne laser illumination caused a distinct alleviation of cellular injury that was reflected by the lower MDA amounts, polyamine accumulation and ROS levels at the stress period. In contrast, the laser treatment displayed a higher Ca2+ concentration, antioxidant amounts, NO release, antioxidant enzyme, and NOS activities. These responses could be blocked due to the inhibition of NO biosynthesis by PTIO (NO scavenger) or LNNA (NOS inhibitor). The presented results demonstrated that endogenous NO might be involved in the progress of He–Ne laser-induced plant antioxidant system activation and ROS degradation in order to enhance adaptive responses of tall fescue to prolonged saline conditions.  相似文献   

9.
Reactive oxygen species (ROS) are generated by several different cellular sources, and their accumulation within the myocardium is widely considered to cause harmful oxidative stress. On the other hand, their role as second messengers has gradually emerged. The equilibrium of the nitroso/redox balance between reactive nitrogen species and ROS is crucial for the health of cardiomyocytes. This review provides a comprehensive overview of sources of oxidative stress in cardiac myocytes and describes the role of the nitroso/redox balance in cardiac pathophysiology. Although the exact mechanism of ROS production by nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (Nox's) is not completely understood, Nox2 and Nox4 have particularly important roles within the myocardium. Increasing evidence suggests that Nox2 produces superoxide and Nox4 generates only hydrogen peroxide. We also discuss the key role of nitric oxide synthases (NOSs) in the maintenance of the nitroso/redox balance: uncoupled endothelial NOS has been suggested to shift from nitric oxide to ROS production, contributing to increased oxidative stress within the myocardium. Furthermore, we highlight the importance of sequentially targeting and/or regulating the specific sources of oxidative and nitrosative stress to prevent and/or reverse myocardial dysfunction. Inhibition of NADPH oxidase-dependent ROS is considered to be a potential strategy for treatment of cardiomyopathy. Neither in vivo nor clinical data are available for NADPH oxidase inhibitors. Specifically targeting the mitochondria with the antioxidant MitoQ would be a very promising translation approach, because it could prevent mitochondrial permeability transition pore opening when ROS are produced during heart reperfusion. Enhancing NO signaling could also be a promising therapeutic approach against myocardial dysfunction.  相似文献   

10.
A comprehensive study which was undertaken on the effect of three polyamines (PAs) on stomatal closure was examined in relation to nitric oxide (NO) and reactive oxygen species (ROS) levels in guard cells of Arabidopsis thaliana. Three PAs—putrescine (Put), spermidine (Spd), and spermine (Spm)—induced stomatal closure, while increasing the levels of NO as well as ROS in guard cells. The roles of NO and ROS were confirmed by the reversal of closure by cPTIO (NO scavenger) and catalase (ROS scavenger). The presence of L-NAME (NOS-like enzyme inhibitor) reversed PA-induced stomatal closure, suggesting that NOS-like enzyme played a significant role in NO production during stomatal closure. The reversal of stomatal closure by diphenylene iodonium (DPI, NADPH oxidase inhibitor) or 2-bromoethylamine (BEA, copper amine oxidase inhibitor) or 1,12 diaminododecane (DADD, polyamine oxidase inhibitor) was partial. In contrast, the presence of DPI along with BEA/DADD reversed completely the closure by PAs. We conclude that both NO and ROS are essential signaling components during Put-, Spd-, and Spm-induced stomatal closure. The PA-induced ROS production is mediated by both NADPH oxidase and amine oxidase. The rise in ROS appears to be upstream of NO. Ours is the first detailed study on the role of NO and its dependence on ROS during stomatal closure by three major PAs.  相似文献   

11.
Beta-thujaplicin Is a natural troponoid with strong antifungal, antiviral, and anticancer activities. Beta-thujaplicin production in yeast elicitor-treated Cupressus lusitanica cell culture and its relationships with reactive oxygen species (ROS) and nitric oxide (NO) production and hypersensitive cell death were investigated. Superoxide anion radical (O2*-) induced cell death and inhibited beta-thujaplicin accumulation, whereas hydrogen peroxide (H2O2) induced beta-thujaplicin accumulation but did not significantly affect cell death. Both elicitor and O2*- induced programmed cell death, which can be blocked by protease inhibitors, protein kinase inhibitors, and Ca2+ chelators. Elicitor-induced NO generation was nitric oxide synthase (NOS)-dependent. Inhibition of NO generation by NOS inhibitors and NO scavenger partly blocked the elicitor-induced beta-thujaplicin accumulation and cell death, and NO donors strongly induced cell death. Interaction among NO, H2O2, and O2*- shows that NO production and H2O2 production are interdependent, but NO and O2*- accumulation were negatively related because of coconsumption of NO and O2*-. NO- and O2*- -induced cell death required each other, and both were required for elicitor-induced cell death. A direct interaction between NO and O2*- was implicated in the production of a potent oxidant peroxynitrite, which might mediate the elicitor-induced cell death.  相似文献   

12.
The influence of nitric oxide (NO) donor, NO-synthase substrate (L-arginine), and inhibitor (nitroarginine) on the reactive oxygen species (ROS)-generating activity of blood plasma polymorphonuclear leucocytes and ascitic fluid macrophages was studied during tumor growth in animal organisms. It was found that, in the initial period of tumor growth, 8 × 10−5 M sodium nitroprusside (SNP), which is an NO donor, reduced the potential ROS-generating activity of macrophages by 38.5 ± 9% and plasma polymorphicnuclear leucocytes by 27.6 ± 7%. However, the dynamics of this process during the tumor growth was conservative and variations in ROS production by phagocytes were 10 ± 3%. L-arginine induced a decrease in the ROS-generating activity of granulocytes and mononucleares by 25–30%. The results point to inducible inhibition effect of NO-synthase on the ROS-generating activity of NADPH-oxidase in the course of tumor growth. Nitroarginine, an inhibitor of NO-synthase, produced stable increase in the ROS-generating activity of phagocytes isolated from the tumor at different periods of its growth. The use NO-synthase inhibitors to increase the ROS level in the area of tumor growth may favor the suppression of tumor-cell growth in vivo.  相似文献   

13.
alpha(1)-Protease inhibitor (alpha(1)PI), the most abundant serine protease inhibitor found in human plasma (at 30-60 microM), is a glycoprotein (53 kDa) having a single cysteine residue at position 232 (Cys(232)). We have found that Cys(232) of human alpha(1)PI was readily S-nitrosylated by nitric oxide (NO) without affecting inhibitory activity to trypsin or elastase. S-nitrosylated alpha(1)PI (S-NO-alpha(1)PI) not only retained inhibitory activity against these serine proteases, but also gained thiol protease inhibitory activity against a Streptococcus pyogenes protease; the parental alpha(1)PI did not have this activity. Furthermore, S-NO-alpha(1)PI exhibited bacteriostatic activity against Salmonella typhimurium at concentrations of 0.1-10 microM, which were 20- to 3000-fold stronger than those of the other NO-generating compounds or S-nitroso compounds such as S-nitrosoalbumin and S-nitrosoglutathione. NO appears to be transferred into the bacterial cells from S-NO-alpha(1)PI via transnitrosylation, as evidenced by electron spin resonance spectroscopy with an NO spin trap. Thus, we conclude that S-NO-alpha(1)PI may be generated from the reaction between alpha(1)PI and NO under inflammatory conditions, in which production of both is known to increase. As a result, new functions, i.e., antibacterial and thiol protease inhibitory activities of alpha(1)PI, were generated.  相似文献   

14.
Angiosperm stigmas exhibit high levels of peroxidase activity when receptive to pollen. To explore possible function(s) of this peroxidase activity we investigated amounts of reactive oxygen species (ROS), particularly hydrogen peroxide, in stigmas and pollen. Because nitric oxide (NO) was recently implicated in pollen tube growth, we also investigated amounts of NO in pollen and stigmas. Reactive oxygen species accumulation was assessed with confocal microscopy and light microscopy using ROS probes DCFH2-DA and TMB, respectively. NO was assayed using the NO probe DAF-2DA and confocal microscopy. Stigmas from various different angiosperms were found to accumulate ROS, predominantly H2O2, constitutively. In Senecio squalidus and Arabidopsis thaliana high amounts of ROS/H2O2 were localized to stigmatic papillae. ROS/H2O2 amounts appeared reduced in stigmatic papillae to which pollen grains had adhered. S. squalidus and A. thaliana pollen produced relatively high amounts of NO compared with stigmas; treating stigmas with NO resulted in reduced amounts of stigmatic ROS/H2O2. Constitutive accumulation of ROS/H2O2 appears to be a feature of angiosperm stigmas. This novel finding is discussed in terms of a possible role for stigmatic ROS/H2O2 and pollen-derived NO in pollen-stigma interactions and defence.  相似文献   

15.
Tail regression in tadpoles is one of the most spectacular events in anuran metamorphosis. Reactive oxygen species and oxidative stress play an important role during this process. Presently, the cell- and tissue-specific localization of antioxidant enzymes such as superoxide dismutase (SOD) and catalase as well as neuronal and inducible nitric oxide synthase isoforms (nNOS and iNOS) responsible for production of nitric oxide (NO) were carried out during different stages of metamorphosis in tail of tadpole Xenopus laevis. NO also has profound effect on the mitochondrial function having its own nitric oxide NOS enzyme. Hence, in situ staining for NO and mitochondria also was investigated. The distribution of nNOS and iNOS was found to be stage specific, and the gene expression of nNOS was up-regulated by thyroxin treatment. In situ staining for NO and mitochondria shows co-localization, suggesting mitochondria being one of the sources of NO. SOD and catalase showed significant co-localization during earlier stages of metamorphosis, but before the tail regression begins, there was a significant decrease in activity as well as co-localization suggesting increased ROS accumulation. These findings are discussed in terms of putative functional importance of ROS and cytoplasmic as well as mitochondrial derived NO in programmed cell death in tail tissue.  相似文献   

16.
Lanteri ML  Lamattina L  Laxalt AM 《Planta》2011,234(4):845-855
The second messenger nitric oxide (NO), phosphatidic acid (PA) and reactive oxygen species (ROS) are involved in the plant defense response during plant–pathogen interactions. NO has been shown to participate in PA production in response to the pathogen-associated molecular pattern xylanase in tomato cell suspensions. Defense responses downstream of PA include ROS production. The goal of this work was to study the signaling mechanisms involved in PA production during the defense responses triggered by xylanase and mediated by NO in the suspension-cultured tomato cells. We analyzed the participation of protein kinases, guanylate cyclase and the NO-mediated posttranslational modification S-nitrosylation, by means of pharmacology and biochemistry. We showed that NO, PA and ROS levels are significantly diminished by treatment with the general protein kinase inhibitor staurosporine. This indicates that xylanase-induced protein phosphorylation events might be the important components leading to NO formation, and hence for the downstream regulation of PA and ROS levels. When assayed, a guanylate cyclase inhibitor or a cGMP analog did not alter the PA accumulation. These results suggest that a cGMP-mediated pathway is not involved in xylanase-induced PA formation. Finally, the inhibition of protein S-nitrosylation did not affect NO formation but compromised PA and ROS production. Data collectively indicate that upon xylanase perception, cells activate a protein kinase pathway required for NO formation and that, S-nitrosylation-dependent mechanisms are involved in downstream signaling leading to PA and ROS.  相似文献   

17.
一氧化氮(NO)对炎症性疾病的治疗作用近来引起了广泛的重视。诱导型一氧化合成酶(iNOS)被发现广泛地参与趋炎因子表达和反应性氧化产物(ROS)/反应性氮化产物(RNS)的产生,从而进一步证明了一氧化氮在炎症病理发生发展中的关键作用。由于传统的抗炎药物环氧合酶-2(COX-2)抑制剂被报导有较多副作用,新型抑制炎症药物的研究开发势在必行。本文分别介绍了化学来源、生物来源、植物来原性iNOS抑制剂阻的开发、研究现状,阐述了其在断炎症信息传递通道中的作用。表明了iNOS抑制剂防止炎症损害的相关机理,提出iNOs不仅能在初始阶段影响炎症的发生,也对抑制和终结炎症有作用。最后进一步介绍了用中草药研发iNOs抑制剂的可能性,展望了于中药在该领域内的巨大前景。  相似文献   

18.
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are signal-transducing molecules that regulate the activities of a variety of proteins. In the present investigation, we have compared the effects of superoxide (O2-), nitric oxide (NO), and hydrogen peroxide (H2O2) on the activities of three highly homologous serine/threonine phosphatases, protein phosphatase type 1 (PP1), protein phosphatase type 2A (PP2A), and calcineurin (protein phosphatase type 2B). Although superoxide, generated from xanthine/xanthine oxidase or paraquat, and NO, generated from (+/-)-(E)-4-ethyl-2-[(E)-hydroxyimino]-5-nitro-3-hexenamide or sodium nitroprusside, potently inhibited the phosphatase activity of calcineurin in neuroblastoma cell lysates, they had relatively little effect on the activities of PP1 or PP2A. In contrast, H2O2 inhibited the activities of all three phosphatases in lysates but was not a potent inhibitor for any of the enzymes. Calcineurin inactivated by O2-, NO, and H2O2 could be partially reactivated by the reducing agent ascorbate or by the thiol-specific reagent dithiothreitol (DTT). Maximal reactivation was achieved by the addition of both reagents, which suggests that ROS and RNS inhibit calcineurin by oxidizing both a catalytic metal(s) and a critical thiol(s). Reactivation of H2O2-treated PP1 also required the combination of both ascorbate and DTT, whereas PP2A required only DTT for reactivation. These results suggest that, despite their highly homologous structures, calcineurin is the only major Ser/Thr phosphatase that is a sensitive target for inhibition by superoxide and nitric oxide and that none of the phosphatases are sensitive to inhibition by hydrogen peroxide.  相似文献   

19.
Hepatitis C virus (HCV) infection is frequently associated with the development of hepatocellular carcinomas and non-Hodgkin's B-cell lymphomas. Previously, we reported that HCV infection causes cellular DNA damage and mutations, which are mediated by nitric oxide (NO). NO often damages mitochondria, leading to induction of double-stranded DNA breaks (DSBs) and accumulation of oxidative DNA damage. Here we report that HCV infection causes production of reactive oxygen species (ROS) and lowering of mitochondrial transmembrane potential (DeltaPsi(m)) in in vitro HCV-infected cell cultures. The changes in membrane potential could be inhibited by BCL-2. Furthermore, an inhibitor of ROS production, antioxidant N-acetyl-L-cysteine (NAC), or an inhibitor of NO, 1,400W, prevented the alterations of DeltaPsi(m). The HCV-induced DSB was also abolished by a combination of NO and ROS inhibitors. These results indicated that the mitochondrial damage and DSBs in HCV-infected cells were mediated by both NO and ROS. Among the HCV proteins, core, E1, and NS3 are potent ROS inducers: their expression led to DNA damage and activation of STAT3. Correspondingly, core-protein-transgenic mice showed elevated levels of lipid peroxidation and oxidatively damaged DNA. These HCV studies thus identified ROS, along with the previously identified NO, as the primary inducers of DSBs and mitochondrial damage in HCV-infected cells.  相似文献   

20.
Increased oxidative/nitrosative stress, resulting from generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) appears to play an important role in the inflammatory responses to atherosclerosis. By using MitoTracker Orange CM-H(2)TMRos, CM-H(2)DCFDA (DCF-DA), Dihydrorhodamine 123 (DHR123), DAF-FM, Dihydroethidium (DHE) and JC-1 alone or in all combinations of red and green probes, the present study was designed to monitor the ROS and RNS generation in acute exposure of single monocyte U937-derived macrophage to oxidized low density lipoprotein (Ox-LDL). Acute Ox-LDL (100 microg/ml) treatment increased time-dependently production of intracellular nitric oxide (NO), superoxide (O2*-), hydrogen peroxide (H(2)O(2)) and peroxynitrite (ONOO(-)), and decreased mitochondrial membrane potential (Deltapsi) in single cell. Pretreatment of aminoguanidine (an inhibitor of inducible nitric oxide synthase (iNOS), 10 microM) and vitamin C (an antioxidant agent, 100 microM) for 2h, reduced significantly the Ox-LDL-induced increase of NO and O2*-, and vitamin C completely inhibited increase of intracellular NO and O2*-. In contrast to aminoguanidine, Vitamin C pretreatment significantly prevented Ox-LDL-induced overproduction of NO and O2*- (P<0.01), indicating that antioxidant may be more effective in therapeutic application than iNOS inhibitor in dysfunction of ROS/RNS. By demonstrating a complex imbalance of ROS/RNS via fluorescent probes in acute exposure of single cell to Ox-LDL, oxidative/nitrosative stress might be more detected in the early atherosclerotic lesions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号