首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Magic angle sample spinning (MASS) 13C NMR spectra have been obtained of bovine rhodopsin regenerated with retinal prosthetic groups isotopically enriched with 13C at C-5 and C-14. In order to observe the 13C retinal chromophore resonances, it was necessary to employ low temperatures (-15-----35 degrees C) to restrict rotational diffusion of the protein. The isotropic chemical shift and principal values of the chemical shift tensor of the 13C-5 label indicate that the retinal chromophore is in the twisted 6-s-cis conformation in rhodopsin, in contrast to the planar 6-s-trans conformation found in bacteriorhodopsin. The 13C-14 isotropic shift and shift tensor principal values show that the Schiff base C = N bond is anti. Furthermore, the 13C-14 chemical shift (121.2 ppm) is within the range of values (120-123 ppm) exhibited by protonated (C = N anti) Schiff base model compounds, indicating that the C = N linkage is protonated. Our results are discussed with regard to the mechanism of wavelength regulation in rhodopsin.  相似文献   

2.
Our previous solid-state 13C NMR studies on bR have been directed at characterizing the structure and protein environment of the retinal chromophore in bR568 and bR548, the two components of the dark-adapted protein. In this paper, we extend these studies by presenting solid-state NMR spectra of light-adapted bR (bR568) and examining in more detail the chemical shift anisotropy of the retinal resonances near the ionone ring and Schiff base. Magic angle spinning (MAS) 13C NMR spectra were obtained of bR568, regenerated with retinal specifically 13C labeled at positions 12-15, which allowed assignment of the resonances observed in the dark-adapted bR spectrum. Of particular interest are the assignments of the 13C-13 and 13C-15 resonances. The 13C-15 chemical resonance for bR568 (160.0 ppm) is upfield of the 13C-15 resonance for bR548 (163.3 ppm). This difference is attributed to a weaker interaction between the Schiff base and its associated counterion in bR568. The 13C-13 chemical shift for bR568 (164.8 ppm) is close to that of the all-trans-retinal protonated Schiff base (PSB) model compound (approximately 162 ppm), while the 13C-13 resonance for bR548 (168.7 ppm) is approximately 7 ppm downfield of that of the 13-cis PSB model compound. The difference in the 13C-13 chemical shift between bR568 and bR548 is opposite that expected from the corresponding 15N chemical shifts of the Schiff base nitrogen and may be due to conformational distortion of the chromophore in the C13 = C14-C15 bonds.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Phosphorus magic angle spinning nuclear magnetic resonance (NMR) spectra and transversal relaxation of M13 and TMV are analyzed by use of a model, which includes both local backbone motions of the encapsulated nucleic acid molecules and overall rotational diffusion of the rod-shaped virions about their length axis. Backbone motions influence the sideband intensities by causing a fast restricted reorientation of the phosphodiesters. To evaluate their influence on the observed sideband patterns, we extend the model that we used previously to analyze nonspinning 31P NMR lineshapes (Magusin, P.C.M.M., and M. A. Hemminga. 1993a. Biophys. J. 64:1861-1868) to magic angle spinning NMR experiments. Backbone motions also influence the conformation of the phosphodiesters, causing conformational averaging of the isotropic chemical shift, which offers a possible explanation for the various linewidths of the centerband and the sidebands observed for M13 gels under various conditions. The change of the experimental lineshape of M13 as a function of temperature and hydration is interpreted in terms of fast restricted fluctuation of the dihedral angles between the POC and the OCH planes on both sides of the 31P nucleus in the nucleic acid backbone. Backbone motions also seem to be the main cause of transversal relaxation measured at spinning rates of 4 kHz or higher. At spinning rates less than 2 kHz, transversal relaxation is significantly faster. This effect is assigned to slow, overall rotation of the rod-shaped M13 phage about its length axis. Equations are derived to simulate the observed dependence of T2e on the spinning rate.  相似文献   

4.
Static and magic angle spinning (31)P NMR spectroscopy was used for the first time in natural plasma membranes from erythrocytes and skeletal muscle to study phospholipid arrangement and composition. Typical static powder-like spectra were obtained showing that phospholipids were in a bilayer arrangement. Magic angle spinning narrowed spectra into two components. The first one corresponded to phosphatidylcholine and the second one to the other phospholipids with intensities in agreement with the known phospholipid composition. These findings show that NMR data previously acquired using model membranes can be transposed to studies on phospholipids in their natural environment.  相似文献   

5.
Effects of paramagnetic shift reagents on the 13C NMR spectra obtained from single-walled vesicle dispersions of egg phosphatidylcholine enriched with 13C in the N-methyl carbons are investigated. Spectra obtained at 25.1 MHz show that, at Yb3+ to phospholipid molar ratios as low as 0.06, complete resolution of the N-methyl carbon resonances is obtained from molecules on the inner and outer faces of the vesicle bilayer. No precipitation of the vesicles is caused by Yb3+ at these concentrations nor is appreciable line broadening observed. Other paramagnetic shift reagents frequently used in proton NMR investigations of phosphatidylcholine vesicles do not give complete separation of the N-methyl 13C signals from the two bilayer surfaces. K3Fe(CN)b,Eu3+, and Pr3+ cause precipitation of the phosphatidylcholine vesicles at concentrations, which give only incomplete resolution of these signals. T1 measurements of the resonances separated by Yb3+ indicate that the choline groups on the inner bilayer surface are less mobile than are the same groups in the outer surface. Gated proton decoupling measurements, which show that the nuclear Overhauser effect is 2.8 +/- 0.1, indicate that the dominant mode of relaxation is dipolar interaction.  相似文献   

6.
G A Duff  J E Roberts  N Foster 《Biochemistry》1988,27(18):7112-7116
The structures of one synthetic and two natural melanins are examined by solid-state NMR using cross polarization, magic angle sample spinning, and high-power proton decoupling. The structural features of synthetic dopa melanin are compared to those of melanin from malignant melanoma cells grown in culture and sepia melanin from squid ink. Natural abundance 13C and 15N spectra show resonances consistent with known pyrrolic and indolic structures within the heterogeneous biopolymer; 13C spectra indicate the presence of aliphatic residues in all three materials. These solid-phase experiments illustrate the promise of solid-phase NMR for elucidating structural information from insoluble biomaterials.  相似文献   

7.
The aromatic regions in proton-decoupled natural abundance 13C Fourier transform nuclear magnetic resonance spectra (at 14.2 kG) of small native proteins contain broad methine carbon bands and narrow nonprotonated carbon resonances. Some factors that affect the use of natural abundance 13C Fourier transform NMR spectroscopy for monitoring individual nonprotonated aromatic carbon sites of native proteins in solution are discussed. The effect of protein size is evaluated by comparing the 13C NMR spectra of horse heart ferrocytochrome c, hen egg white lysozyme, horse carbon monoxide myoglobin, and human adult carbon monoxide hemoglobin. Numerous single carbon resonances are observed in the aromatic regions of 13C NMR spectra of cytochrome c, lysozyme, and myoglobin. The much larger hemoglobin yields few resolved individual carbon resonances. Theoretical and some experimental values are presented for the natural linewidths (W), spin-lattice relaxation times (T1), and nuclear Overhauser enhancements (NOE) of nonprotonated aromatic carbons and Czeta of arginine residues. In general, the 13C-1H dipolar mechanism dominates the relaxation of these carbons. 13C-14N dipolar relaxation contributes significantly to 1/T1 of C epsilon2 of tryptophan residues and Czeta of arginine residues of proteins in D2O. The NOE of each nonprotonated aromatic carbon is within experimental error of the calculated value of about 1.2. As a result, integrated intensities can be used for making a carbon count. Theoretical results are presented for the effect of internal rotation on W, T1, and the NOE. A comparison with the experimental T1 and NOE values indicates that if there is internal rotation of aromatic amino acid side chains, it is not fast relative to the over-all rotational motion of the protein.  相似文献   

8.
F Adebodun  J Chung  B Montez  E Oldfield  X Shan 《Biochemistry》1992,31(18):4502-4509
We have obtained 1H and 13C magic-angle sample-spinning (MAS) nuclear magnetic resonance (NMR) spectra of three glycosyldiacylglycerol-water (1:1, weight ratio) mesophases, at 11.7 T, as a function of temperature, in order to probe lipid headgroup, backbone, and acyl chain dynamics by using natural-abundance NMR probes. The systems investigated were monogalactosyldiacyldiglyceride [MGDG; primarily 1,2-di[(9Z,12Z,15Z)octadec-9,12,15-trienoyl++ +]-3-beta-D-galactopyranosyl- sn-glycerol]; digalactosyldiacyldiglyceride [DGDG; primarily 1,2-di[(9Z,12Z,15Z)octadec-9,12,15-trienoyl++ +]-3- (alpha-D-galactopyranosyl-1-6-beta-D-glactopyranosyl)-sn-glycerol] ; and sulfoquinovosyldiacyldiglyceride [SQDG; primarily 1-[(9Z,12Z,15Z)octadec-9,12,15-trienoyl]-2 -hexadecanoyl-3-(6-deoxyl-6- sulfono-alpha-D-glucopyranosyl)-sn-glycerol]. At approximately 22 degrees C, all three lipid-water systems give well-resoled 13C and 1H MAS NMR spectra, characteristic of fluid, liquid-crystalline mesophases. 13C spin-lattice relaxation times of the headgroup and glycerol backbone carbons of all three materials give, within experimental error, the same NT1 values (approximately 400 ms), implying similar high-frequency motions, independent of headgroup size and charge. Upon cooling, pronounced line broadenings are observed, due to an increase in slow motional behavior. For each lipid, the onset of line broadening is seen with the glycosyl headgroup, glycerol backbone, and the first two or three carbons of the acyl chains. By approximately -20 degrees, all headgroup carbon resonances are broadened beyond detection. Both galactose moieties in DGDG "freeze out" together, implying a rigid-body motion of the disaccharide unit. Upon further cooling, the bulk polymethylene chain resonances in all three systems (in both 13C and 1H MAS) broaden greatly, followed by the olefinic and allylic carbon resonances.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The selective and extensive 13C labeling of mostly hydrophobic amino acid residues in a 25 kDa membrane protein, the colicin Ia channel domain, is reported. The novel 13C labeling approach takes advantage of the amino acid biosynthetic pathways in bacteria and suppresses the synthesis of the amino acid products of the citric acid cycle. The selectivity and extensiveness of labeling significantly simplify the solid-state NMR spectra, reduce line broadening, and should permit the simultaneous measurement of multiple structural constraints. We show the assignment of most 13C resonances to specific amino acid types based on the characteristic chemical shifts, the 13C labeling pattern, and the amino acid composition of the protein. The assignment is partly confirmed by a 2D homonuclear double-quantum-filter experiment under magic-angle spinning. The high sensitivity and spectral resolution attained with this 13C-labeling protocol, which is termed TEASE for ten-amino acid selective and extensive labeling, are demonstrated.  相似文献   

10.
We investigated if magic angle spinning (MAS) 1H NMR can be used as a tool for detection of liquid-ordered domains (rafts) in membranes. In experiments with the lipids SOPC, DOPC, DPPC, and cholesterol we demonstrated that 1H MAS NMR spectra of liquid-ordered domains (lo) are distinctly different from liquid-disordered (ld) and solid-ordered (so) membrane regions. At a MAS frequency of 10 kHz the methylene proton resonance of hydrocarbon chains in the ld phase has a linewidth of 50 Hz. The corresponding linewidth is 1 kHz for the lo phase and several kHz for the so phase. According to results of 1H NMR dipolar echo spectroscopy, the broadening of MAS resonances in the lo phase results from an increase in effective strength of intramolecular proton dipolar interactions between adjacent methylene groups, most likely because of a lower probability of gauche/trans isomerization in lo. In spectra recorded as a function of temperature, the onset of lo domain (raft) formation is seen as a sudden onset of line broadening. Formation of small domains yielded homogenously broadened resonance lines, whereas large lo domains (diameter >0.3 microm) in an ld environment resulted in superposition of the narrow resonances of the ld phase and the much broader resonances of lo. 1H MAS NMR may be applied to detection of rafts in cell membranes.  相似文献   

11.
Solid state NMR spectra from uniformly (13)C, (15)N enriched bacteriorhodospin (bR) purified from H. salinarium were acquired at 18.8 T using magic angle spinning methods. Isolated resonances of 2D (13)C-(13)C spectra exhibited 0.50-0.55 ppm line-widths. Several amino acid types could be assigned, and at least 12 out of 15 Ile peaks could be resolved clearly and identified based on their characteristic chemical shifts and connectivities. This study confirms that high resolution solid state NMR spectra can be obtained for a 248 amino acid uniformly labeled membrane protein in its native membrane environment and indicates that site-specific assignments are likely to be feasible with heteronuclear multidimensional spectra.  相似文献   

12.
Pyridoxal 5'-phosphate labeled to the extent of 90% with 13C in the 4' (aldehyde) and 5' (methylene) positions has been synthesized. 13C NMR spectra of this material and of natural abundance pyridoxal 5'-phosphate are reported, as well as 13C NMR spectra of the Schiff base formed by reaction of pyridoxal 5'-phosphate with n-butylamine, the secondary amine formed by reduction of this Schiff base, the thiazolidine formed by reaction of pyridoxal 5'-phosphate with cysteine, the hexahydropyrimidine formed by reaction of pyridoxal 5'-phosphate with 1,3-diaminobutane, and pyridoxamine 5'-phosphate. The range of chemical shifts for carbon 4' in these compounds is more than 100 ppm, and thus this chemical shift is expected to be a sensitive indicator of structure in enzyme-bound pyridoxal 5'-phosphate. The chemical shift of carbon 5', on the other hand, is insensitive to these structure changes. 13C NMR spectra have been obtained at pH 7.8 and 9.4 for D-serine dehydratase (Mr = 46,000) containing natural abundance pyridoxal 5'-phosphate and containing 13C-enriched pyridoxal 5'-phosphate. The enriched material contains two new resonances not present in the natural abundance material, one at 167.7 ppm with a linewidth of approximately 24 Hz, attributed to carbon 4' of the Schiff base in the bound coenzyme, and one at 62.7 Hz with a linewidth of approximately 48 Hz attributed to carbon 5' of the bound Schiff base. A large number of resonances due to individual amino acids are assigned. The NMR spectrum changes only slightly when the pH is raised to 9.4. The widths of the two enriched coenzyme resonances indicate that the coenzyme is rather rigidly bound to the enzyme but probably has limited motional freedom relative to the protein. 13C NMR spectra have been obtained for L-glutamate decarboxylase containing natural abundance pyridoxal 5'-phosphate and 13C-enriched pyridoxal 5'-phosphate. Under conditions where the two enriched 13C resonances are clearly visible in D-serine dehydratase, no resonances are visible in enriched L-glutamate decarboxylase, presumably because the coenzyme is rigidly bound to the protein and the 300,000 molecular weight of this enzyme produces very short relaxation times for the bound coenzyme and thus very broad lines.  相似文献   

13.
We studied domain formation in mixtures of the monounsaturated lipids SOPC and POPE as a function of temperature and composition by NMR. Magic angle spinning at kHz frequencies restored resolution of (1)H NMR lipid resonances in the fluid phase, whereas the linewidth of gel-phase lipids remained rather broad and spinning frequency dependent. In regions of fluid- and gel-phase coexistence, spectra are a superposition of resonances from fluid and gel domains, as indicated by the existence of isosbestic points. Quantitative determination of the amount of lipid in the coexisting phases is straightforward and permitted construction of a binary phase diagram. Lateral rates of lipid diffusion were determined by (1)H MAS NMR with pulsed field gradients. At the onset of the phase transition near 25 degrees C apparent diffusion rates became diffusion time dependent, indicating that lipid movement is obstructed by the formation of gel-phase domains. A percolation threshold at which diffusion of fluid-phase lipid becomes confined to micrometer-size domains was observed when approximately 40% of total lipid had entered the gel phase. The results indicate that common phosphatidylethanolamines may trigger domain formation in membranes within a physiologically relevant temperature range. This novel NMR approach may aid the study of lipid rafts.  相似文献   

14.
Natural abundance 13C NMR spectra of three DNA oligomers have been obtained. Most of the base resonances are well resolved from one another. A combination of two independent methods was used in making assignments: a one-dimensional spectral comparison method and a two-dimensional proton-detected 1H-13C correlated experiment for the protonated carbons. There are large shielding changes (between 1.62 and -1.40 ppm) upon thermal dissociation of the duplex. The shapes of the chemical shift vs temperature curves are largely independent of sequence. The base carbon resonance frequencies are sensitive to hydrogen bonding, base stacking, sugar conformation, and changes in the glycosyl torsion angle.  相似文献   

15.
The folding, structure and biological function of many proteins are inherently dynamic properties of the protein molecule. Often, the respective molecular processes are preserved upon protein crystallization, leading, in X-ray diffraction experiments, to a blurring of the electron density map and reducing the resolution of the derived structure. Nuclear magnetic resonance (NMR) is known to be an alternative method to study molecular structure and dynamics. We designed and built a probe for phosphorus solid state NMR that allows for the first time to study static properties as well as dynamic processes in single-crystals of a protein by NMR spectroscopy. The sensitivity achieved is sufficient to detect the NMR signal from individual phosphorus sites in a 0.3mm(3) size single-crystal of GTPase Ras bound to the nucleotide GppNHp, that is, the signal from approximately 10(15) phosphorus nuclei. The NMR spectra obtained are discussed in terms of the conformational variability of the active center of the Ras-nucleotide complex. We conclude that, in the crystal, the protein complex exists in three different conformations. Magic angle spinning (MAS) NMR spectra of a powder sample of Ras-GppNHp show a splitting of one of the phosphate resonances and thus confirm this conclusion. The MAS spectra provide, furthermore, evidence of a slow, temperature-dependent dynamic exchange process in the Ras protein crystal.  相似文献   

16.
L J Rinkel  I Tinoco  Jr 《Nucleic acids research》1991,19(13):3695-3700
One- and two-dimensional nuclear magnetic resonance (NMR) experiments were used to study the conformation of the DNA hexadecanucleotide d(CACGTGTGTGCGTGCA) in aqueous solution. NMR spectra were recorded for the compound in D2O and in H2O/D2O (90/10) over the temperature range 1 degree C-60 degrees C. Assignments of imino proton resonances and of non-exchangeable proton resonances (except for some H4', H5' and H5" resonances) are given. The 1H-NMR spectra indicate that below about 20 degrees C, the compound exists as a single monomolecular species. Between 20 degrees C and 55 degrees C the oligonucleotide occurs as a mixture of structures in fast exchange on the NMR time scale, except for the temperature region 30 degrees - 34 degrees C, where substantial line broadening indicates intermediate exchange; above 60 degrees C the single strand predominates. The imino proton spectra, chemical shift values, and scalar coupling and NOE data reveal that the monomeric form, which is exclusively present below 20 degrees C, consists of a structure with a B-DNA double helix region of six base pairs, both ends of which are closed by hairpin loops of only two nucleotides, giving the molecule a dumbbell-like structure: [sequence: see text].  相似文献   

17.
We have recorded (13)C NMR spectra of [2-(13)C]-, [1-(13)C]-, [3-(13)C],- and [1,2,3-(13)C(3)]Ala-labeled bacteriorhodopsin (bR), and its mutants, A196G, A160G, and A103C, by means of cross polarization-magic angle spinning (CP-MAS) and dipolar decoupled-magic angle spinning (DD-MAS) techniques, to reveal the conformation and dynamics of bR, with emphasis on the loop and C-terminus structures. The (13)C NMR signals of the loop (C-D, E-F, and F-G) regions were almost completely suppressed from [2-(13)C]-, [1-(13)C]Ala-, and [1-(13)C]Gly-labeled bR, due to the presence of conformational fluctuation with correlation times of 10(-4) s that interfered with the peak-narrowing by magic angle spinning. The observation of such suppressed peaks for specific residues provides a unique means of detecting intermediate frequency motions on the time scale of ms or micros in the surface loops of membrane proteins. Instead, the three well-resolved (13)C CP-MAS NMR signals of [2-(13)C]Ala-bR, at 50.38, 49.90, and 47.96 ppm, were ascribed to the C-terminal alpha-helix previously proposed from the data for [3-(13)C]Ala-bR: the former two peaks were assigned to Ala 232 and 238, in view of the results of successive proteolysis experiments, while the highest-field peak was ascribed to Ala 235 prior to Pro 236. Even such (13)C NMR signals were substantially broadened when (13)C NMR spectra of fully labeled [1,2,3-(13)C]Ala-bR were recorded, because the broadening and splitting of peaks due to the accelerated transverse relaxation rate caused by the increased number of relaxation pathways through a number of (13)C-(13)C homo-nuclear dipolar interactions and scalar J couplings, respectively, are dominant among (13)C-labeled nuclei. In addition, approximate correlation times for local conformational fluctuations of different domains, including the C-terminal tail, C-terminal alpha-helix, loops, and transmembrane alpha-helices, were estimated by measurement of the spin-lattice relaxation times in the laboratory frame and spin-spin relaxation times under the conditions of cross-polarization-magic angle spinning, and comparative study of suppressed specific peaks between the CP-MAS and DD-MAS experiments.  相似文献   

18.
High-resolution solid-state 13C NMR spectra of the light-harvesting antenna complex (LH1) from Rhodospirillum rubrum were observed for the first time by cross-polarization (CP), magic angle spinning (MAS) methods with a total elimination of spinning side band technique (TOSS). Chemical shift analysis of the CP/MAS/TOSS 13C NMR spectra confirmed that the LH1 consists mainly of -helices in the solid state. Time constants of cross polarization (TCH) and relaxation time T1 in a rotating frame (T1H) were determined from the experiments at various contact times. Smaller values of TCH were obtained for the carbons attached directly with protons in a rigid state. Relaxation times T1H revealed the dynamic structure of the complex and showed that bacteriochlorophyll a in the LH1 has high internal mobility even in the solid state. The proton spin-lattice relaxation time in a laboratory frame (T1H) determined by the 13C NMR signal amplitude changes suggested that protons in the LH1 proteins have such strong interaction among them that the spins of all protons in the protein can diffuse through spin-lattice-relaxation.  相似文献   

19.
Middleton DA  Jakobsen LO  Esmann M 《FEBS letters》2006,580(28-29):6685-6689
Binding of uniformly (13)C labelled ATP to Na,K-ATPase was studied by (13)C cross-polarization magic-angle spinning (CP-MAS) NMR. In the presence of 30 mM Na(+) , and with sample- and time-averaging, NMR spectra obtained at 4 degrees C exhibited several resonances for the bound nucleotide. Chemical shifts suggested that site-specific changes in the micro-environment or conformation of the nucleotide occurred in the high affinity binding site. These experiments permit further studies of nucleotide dynamics, structure and binding under physiologically relevant conditions.  相似文献   

20.
Fourier transform 13C NMR spectra of E. coli tRNA enriched on 13C in either position 2 of adenine (60 atom % 13C) or in position 2 of uracil (82%) and cytosine (63%) were taken at 25.16 MHz over the temperature range 10 degrees - 76 degrees. For C2 of adenine the peak as initially 5 ppm wide, but narrowed to 0.5 ppm as the molecule unfolded. C2 of uracil displayed behavior similar to that of adenine while the cytosine peak, initially relatively narrow at low temperature, sharpened less dramatically. Comparison of spectra at 26.16 MHz and 67.9 MHz showed that the peak widths for folded tRNA were determined largely by chemical shift non-equivalence. T2 T2 measurements suggested that intrinsic line widths of most cytosine C2 peaks were 4 Hz and 2-3 Hz for uracil. Adenine C2 with a directly bonded proton had resonances of about 40 Hz line width. T1 values were measured for C2 of adenine and the ribose carbons of tRNA. Consideration of dipolar relaxation and chemical shift anisotrophy led to a calculated rotational correlation time of 1.6 +/- 0.4 x 10(-8) sec for the adenines and 1.3 +/- 0.3 x 10(-8) sec for the ribose carbons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号