首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The use of H2PtCl6 is proposed for the selective visualization of the poly-DAB reaction product created, in aldehyde-fixed tissue, with the cytochemical reaction according to Graham and Karnovsky (1966) or to Hoefsmit (1975).At sites known to contain peroxidatic activity, at the ultrastructural level, an electron-dense reaction product is acquired in otherwise unstained ultrathin sections. The presence of the element platinum in these sites has been demonstrated by X-ray microanalysis, for both the endogenous peroxidase and peroxidase conjugated to antibodies.The absolute platinum concentration has been established in erythrocytes and the granules in eosinophils and monocytes by co-embedded, Pt-containing Chelex ion-exchange beads next to the cells.By the application of the method of integrated morphometrical and chemical analysis (de Bruijn and Zeelen 1984; de Bruijn 1985; de Bruijn and Cleton 1985), both the elemental concentration and the area occupied have been calculated for eosinophil granules. The mean Pt net-intensity values of the cytoplasmic areas, known not to contain the enzyme peroxidase has been measured, and compared to the mean net-intensity Pt values of the granules. It was noted that the cytoplasmic Pt net-intensity values were not zero. The two sets of values are expressed as a mean Pt granule/cytoplasm ratio, this ratio creates a value for the selectivity of the reaction.The application of a postfixation reaction with OsO4-containing media, at pH 7.4, in addition to the H2PtCl6 reaction, resulted in a contrasted poly-DAB reaction product at all sites known to contain peroxidatic activity. However, X-ray microanalysis revealed that in addition to platinum, osmium was present.A reaction mechanism for the cytochemical poly-DAB contrast-staining at low pH, based upon the reaction proposed by Wild (1963), is postulated.In honour of Prof. P. van Duijn  相似文献   

2.
Summary A method histochemical localization of prostaglandin synthetase using DAB, potassium cyanide and polyunsaturated fatty acid has been revised. The arachidonic acid-induced DAB oxidation observed in the secretory epithelium of sheep vesicular glands and in collecting tubules as well as interstitial cells of rabbit kidney medulla was found to be insensitive to antiinflammatory cyclooxygenase (formerly referred as prostaglandin synthetase) inhibitors, such as indomethacin, aspirin, mefenamic acid and paracetamol, whereas aminotriazole caused complete inhibition of the reaction. Furthermore, DAB was oxidized in the presence of polyunsaturated fatty acids inconvertible to prostaglandins (linoleic and linolenic acid) as well as in the presence of H2O2 — in the latter case reaction possessed identical features with that induced by fatty acids. Ultrastructurally, the reaction product was localized on the membranes of nuclear envelope and endoplasmic reticulum. On the ground of the results obtained a hypothesis is presented, that the polyunsaturated fatty acid-induced DAB oxidation is due to a peroxidatic activity of the investigated tissues. Possible relations between such peroxidatic activity and prostaglandin biosynthesis are discussed.  相似文献   

3.
Summary In rat liver, three different enzymes with peroxidatic activity are demonstrated with modifications of the DAB-technique: peroxidase in the endoplasmic reticulum of Kupffer cells, catalase in peroxisomes and cytochrome oxidase in mitochondria. The major problem of the DAB-methods is their limited specifity so that often in tissues incubated for one enzyme the other two proteins are also stained simultaneously. We have studied the conditions for selective staining of each of these three enzymes in rat liver fixed either by perfusion with glutaraldehyde or by immersion in a modified Karnovsky's glutaraldehyde-formaldehyde fixative. The observations indicate that in perfusion fixed material selective staining can be obtained by reduction of the incubation time (5 min) and the use of optimal conditions for each enzyme. In livers fixed by immersion the distribution of the staining is patchy and irregular and usually longer incubation times (15–30 min) are required. Selective staining of peroxidase in Kupffer cells was obtained by brief incubation at room temperature in a medium containing 2.5 mM DAB in cacodylate buffer pH 6.5 and 0.02% H2O2. The exclusive staining for cytochrome oxidase in cristae of mitochondria was achieved after short incubation in 2.5 mM DAB in phosphate buffer pH 7.2 containing 0.05% cytochrome c. For selective demonstration of catalase in peroxisomes the tissue was incubated in 5 mM DAB in Teorell-Stenhagen (or glycine-NaOH) butffer at pH 10.5 and 0.15% H2O2. The prolongation of the incubation time in peroxidase medium caused marked staining of both mitochondria and peroxisomes. In the cytochrome oxidase medium longer incubations led to slight staining of peroxisomes. The catalase medium was quite selective for this enzyme so that even after incubation for 120 min only peroxisomes stained.  相似文献   

4.
A rabbit antiserum was prepared against rat liver microsomal cytochrome b5, and utilized in demonstrating the participation of this cytochrome in the microsomal stearyl-CoA desaturation reaction. The antiserum inhibited the NADH-cytochrome c reductase activity of rat liver microsorncs, but it did not inhibit either NADH-ferricyanide or NADPH-cytochrome c reductase activity of the microsomes. Thus, the inhibitory effect of the antiserum on the microsomal electron-transferring reactions seemed to be specific to those which require the participation of cytochrome b5.The NADH-dependent and NADPH-dependent desaturations of stearyl CoA by rat liver microsomes were strongly inhibited by the antiserum. The reduction of cytochrome b5 by NADH-cytochrome b5 reductase as well as the reoxidation of the reduced cytochrome b3 by the desaturase, the terminal cyanide-sensitive factor of the desaturation system, was also strongly inhibited by the antiserum. When about 90%, of cytochrome b5 was removed from rat liver microsomes by protease treatment, the desaturation activity of the microsomes became much more sensitive to inhibition by the antiserum. These results confirmed our previous conclusion that the reducing equivalent for the desaturation reaction is transferred from NAD(P)H to the cyanidesensitive factor mainly via cytochrome b5 in the microsomal membranes.  相似文献   

5.
Mutagenesis studies have been used to investigate the role of a heme ligand containing protein loop (67-79) in the activation of di-heme peroxidases. Two mutant forms of the cytochrome c peroxidase of Pseudomonas aeruginosa have been produced. One mutant (loop mutant) is devoid of the protein loop and the other (H71G) contains a non-ligating Gly at the normal histidine ligand site. Spectroscopic data show that in both mutants the distal histidine ligand of the peroxidatic heme in the un-activated enzyme is lost or is exchangeable. The un-activated H71G and loop mutants show, respectively, 75% and 10% of turnover activity of the wild-type enzyme in the activated form, in the presence of hydrogen peroxide and the physiological electron donor cytochrome c(551). Both mutant proteins show the presence of constitutive reactivity with peroxide in the normally inactive, fully oxidised, form of the enzyme and produce a radical intermediate. The radical product of the constitutive peroxide reaction appears to be located at different sites in the two mutant proteins. These results show that the loss of the histidine ligand from the peroxidatic heme is, in itself, sufficient to produce peroxidatic activity by providing a peroxide binding site and that the formation of radical intermediates is very sensitive to changes in protein structure. Overall, these data are consistent with a major role for the protein loop 67-79 in the activation of di-heme peroxidases and suggest a "charge hopping" mechanism may be operative in the process of intra-molecular electron transfer.  相似文献   

6.
The inhibitors usually associated with the activity of the cytochrome oxidase system—cyanide and carbon monoxide—are also effective in reducing the oxidation of H2 by intact cells of Azotobacter vinelandii. The hydrogenase system is more sensitive to CO than is the respiratory system. Oxidation of a carbon source and of hydrogen by Azotobacter cells is inhibited in a quantitatively different manner by the following compounds: sodium azide, hydroxylamine, sodium iodoacetate, and sodium fluoride. In every case, a concentration range which is definitely inhibitory for respiration has little or no effect on the hydrogenase activity. The differential inhibition by hydroxylamine explains certain observations in the literature which have been erroneously interpreted as demonstrating a specific inhibition by NH2OH of biological nitrogen fixation. This supposed demonstration has been offered as support for the hypothesis that NH2OH is an intermediate in the fixation reaction. The differential inhibitors can be used for detection of hydrogenase in cultures possessing a high endogenous respiration. The method is illustrated by an experiment with root nodule bacteria from pea and cowpea nodules. No hydrogenase was found in either.  相似文献   

7.
Prominent staining of rat hepatic microbodies was obtained by incubating sections of aldehyde-fixed rat liver in a modified Graham and Karnovsky's medium for ultrastructural demonstration of peroxidase activity. The electron-opaque reaction product was deposited uniformly over the matrix of the microbodies. The microbodies were identified by their size, shape, presence of tubular nucleoids, and other morphologic characteristics, and by their relative numerical counts. The staining reaction was inhibited by the catalase inhibitor, aminotriazole, and by KCN, azide, high concentrations of H2O2, and by boiling of sections. These inhibition studies suggest that the peroxidatic activity of microbody catalase is responsible for the staining reaction. In the absence of exogenous H2O2 appreciable staining of microbodies was noted only after prolonged incubation. Addition of sodium pyruvate, which inhibits endogenous generation of H2O2 by tissue oxidases, or of crystalline catalase, which decomposes such tissue-generated H2O2, completely abolished microbody staining in the absence of H2O2. Neither diaminobenzidine nor the product of its oxidation had any affinity to bind nonenzymatically to microbody catalase and thus stain these organelles. The staining of microbodies was optimal at alkaline pH of 8.5. The biological significance of this alkaline pH in relation to the similar pH optima of several microbody oxidases is discussed. In addition to staining of microbodies, a heat-resistant peroxidase activity is seen in some of the peribiliary dense bodies. The relation of this reaction to the peroxidase activity of lipofuscin pigment granules is discussed.  相似文献   

8.
The catalytic mechanism of Pseudomonas cytochrome c peroxidase   总被引:1,自引:0,他引:1  
The catalytic mechanism of Pseudomonas cytochrome c peroxidase has been studied using rapid-scan spectrometry and stopped-flow measurements. The reaction of the totally ferric form of the enzyme with H2O2 was slow and the complex formed was inactive in the peroxidatic cycle, whereas partially reduced enzyme formed highly reactive intermediates with hydrogen peroxide. Rapid-scan spectrometry revealed two different spectral forms, one assignable to Compound I and the other to Compound II as found in the reaction cycle of other peroxidases. The formation of Compound I was rapid approaching that of diffusion control. The stoichiometry of the peroxidation reaction, deduced from the formation of oxidized electron donor, indicates that both the reduction of Compound I to Compound II and the conversion of Compound II to resting (partially reduced) enzyme are one-electron steps. It is concluded that the reaction mechanism generally accepted for peroxidases is applicable also to Pseudomonas cytochrome c peroxidase, the intramolecular source of one electron in Compound I formation, however, being reduced heme c.  相似文献   

9.
Summary The lacrimal gland (Glandula orbitalis externa) of rat contains both peroxidase and catalase and was used as a model for biochemical and cytochemical distinction between peroxidase and catalase. Both enzymes were isolated by ammonium sulfate precipitation from tissue homogenates, and the effects of fixation with glutaraldehyde and various conditions of incubation were investigated colorimetrically using DAB as hydrogen donor. The lacrimal gland peroxidase is strongly inhibited by glutaraldehyde treatment. In contrast, for catalase the fixation with glutaraldehyde is the prerequisite for demonstration of its peroxidatic activity. The maximal peroxidatic activity was obtained after treatment of catalase with 3% glutaraldehyde, higher concentrations being inhibitory. For lacrimal gland peroxidase, the maximal rate of oxidation of DAB is at pH 6.5, whereas for catalase it is at pH 10.5. The optimal concentration of H2O2 for lacrimal gland peroxidase is at 10−3 M and for peroxidatic activity of catalase at 10−1 M. These optimal conditions obtained biochemically were applied to tissue sections of rat lacrimal gland. After the fixation of tissue with a low concentration of glutaraldehyde and incubation in the DAB medium at neutral pH containing 10−3 M H2O2 (Peroxidase medium), the reaction product was localized in the cisternae of the rough endoplasmic reticulum, in elements of the Golgi apparatus, and in secretory granules. After the fixation of tissue with 3% glutaraldehyde and incubation in the DAB-medium containing 10−1 M H2O2 and at pH 10.5 (catalase medium), the staining in the endoplasmic reticulum, the Golgi-apparatus and in secretory granules was completely inhibited and reaction product was localized exclusively in small (0.2–0.5 μ) particles similar to small peroxisomes described in various other cell-types. This work was presented in part at the twenty-fifth Annual Meeting of the Histochemical Society, April 5–6, 1974. Atlantic City, N.J., J. Histochem. Cytochem.22, 288 (1974).  相似文献   

10.
The use of H2PtCl6 is proposed for the selective visualization of the poly-DAB reaction product created, in aldehyde-fixed tissue, with the cytochemical reaction according to Graham and Karnovsky (1966) or to Hoefsmit (1975). At sites known to contain peroxidatic activity, at the ultrastructural level, an electron-dense reaction product is acquired in otherwise unstained ultrathin sections. The presence of the element platinum in these sites has been demonstrated by X-ray microanalysis, for both the endogenous peroxidase and peroxidase conjugated to antibodies. The absolute platinum concentration has been established in erythrocytes and the granules in eosinophils and monocytes by co-embedded, Pt-containing Chelex ion-exchange beads next to the cells. By the application of the method of integrated morphometrical and chemical analysis (de Bruijn and Zeelen 1984; de Bruijn 1985; de Bruijn and Cleton 1985), both the elemental concentration and the area occupied have been calculated for eosinophil granules. The mean Pt net-intensity values of the cytoplasmic areas, known not to contain the enzyme peroxidase has been measured, and compared to the mean net-intensity Pt values of the granules. It was noted that the cytoplasmic Pt net-intensity values were not zero. The two sets of values are expressed as a mean Pt granule/cytoplasm ratio, this ratio creates a value for the "selectivity" of the reaction. The application of a postfixation reaction with OsO4- containing media, at pH 7.4, in addition to the H2PtCl6 reaction, resulted in a contrasted poly-DAB reaction product at all sites known to contain peroxidatic activity. However, X-ray microanalysis revealed that in addition to platinum, osmium was present.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Activity of cytochrome c oxidase and the level of endogenous cytochrome c were investigated light microscopically in adult rat and mouse kidney by incubating unfixed frozen sections with diaminobenzidine (DAB) in the absence or presence of exogenous cytochrome c. The results suggest that DAB staining intensity mainly reflects the local density of mitochondria and only occasionally visualizes the differences in cytochrome oxidase activity and/or endogenous cytochrome c content. Most intense reaction was observed in proximal and distal tubules both in rat and mouse. Finer differentiation of reactivity in particular nephron segments and interspecies differences between rat and mouse kidney are also described.  相似文献   

12.
 The di-haem cytochrome c peroxidase of Paracoccus denitrificans is a calcium binding dimer of 37.5 kDa subunits. It is responsible for reduction of H2O2 to H2O with oxidation of cytochrome c 550 and is isolated in a fully oxidised state (inactive) in which one haem (centre I) is in a high-spin/low-spin equilibrium and high potential and the other (centre II) is low-spin and low potential. The enzyme undergoes direct electron transfer (without the need for mediators) with a 4,4′-dithiodipyridine-modified gold electrode and the response of both haem groups can be observed. By combination of the cyclic and pulse voltammetric data with the established spectroscopic information, it was demonstrated that entry of one electron to the high potential haem leads (in a mechanism involving strong haem-haem interactions) to a complex change of spin states and redox potentials of both haems in order to attain a "ready state" for binding, reduction and cleavage of the hydrogen peroxide. In the absence of endogenous calcium, haem communication can be completely disconnected and is recovered only when Ca2+ is added, an essential step for the formation of the peroxidatic site. The intricate electrochemical behaviour of this enzyme was interpreted as a mechanism involving, both reduction and oxidation of the high potential haem, an interfacial electron transfer coupled to a homogenous chemical reaction (EC mechanism). We discuss two different models for the sequence of events leading to the appearance of the active pentacoordinated peroxidatic haem. Received: 29 April 1998 / Accepted: 3 September 1998  相似文献   

13.
Peroxiredoxins (Prx) are efficient thiol-dependent peroxidases and key players in the mechanism of H2O2-induced redox signaling. Any structural change that could affect their redox state, oligomeric structure, and/or interaction with other proteins could have a significant impact on the cascade of signaling events. Several post-translational modifications have been reported to modulate Prx activity. One of these, overoxidation of the peroxidatic cysteine to the sulfinic derivative, inactivates the enzyme and has been proposed as a mechanism of H2O2 accumulation in redox signaling (the floodgate hypothesis). Nitration of Prx has been reported in vitro as well as in vivo; in particular, nitrated Prx2 was identified in brains of Alzheimer disease patients. In this work we characterize Prx2 tyrosine nitration, a post-translational modification on a noncatalytic residue that increases its peroxidase activity and its resistance to overoxidation. Mass spectrometry analysis revealed that treatment of disulfide-oxidized Prx2 with excess peroxynitrite renders mainly mononitrated and dinitrated species. Tyrosine 193 of the YF motif at the C terminus, associated with the susceptibility toward overoxidation of eukaryotic Prx, was identified as nitrated and is most likely responsible for the protection of the peroxidatic cysteine against oxidative inactivation. Kinetic analyses suggest that tyrosine nitration facilitates the intermolecular disulfide formation, transforming a sensitive Prx into a robust one. Thus, tyrosine nitration appears as another mechanism to modulate these enzymes in the complex network of redox signaling.  相似文献   

14.
The influence of different kinds of dietary fat (8%) and of endogenous lipid peroxidation with regard to cytochrome c oxidase activity and cytochrome a + a3 concentrations in mitochondria from rat liver has been investigated. It was possible to confirm that the dietary fat induced higher phospholipid degradation in mitochondrial membranes; moreover an endogenous oxidative stress induced by adriamycin was able to increase the peroxidative effects. We have found that the peroxidative effects could sometimes induce an apparent enhancement of cytochrome oxidase activity due to a significant increase of cytochrome a + a3 content. This finding lets us suppose that both changes in the lipid environment and some peroxidation damage could occur in the membrane as a consequence of the fat assumed. Furthermore we should suggest that an induction of the synthesis of cytochrome a + a3 might be related to an enhanced production of peroxides at membrane level.  相似文献   

15.
Intracellular catalase activity was measured in isolated rat hepatocytes by adding H2O2 under anaerobic conditions and measuring O2 evolution. Hydrogen peroxide was introduced either by continuous infusion or by pulse injection. Continuous infusion at a rate similar to the endogenous H2O2 production rate provided results that 60–70% of the H2O2 was metabolized by the catalatic reaction. Comparison of rates of O2 evolution to estimated rates of H2O2 metabolism obtained by the methanol-titration method (H. Sies and B. Chance, 1970, FEBS Lett.11, 172–176) indicated that the contribution of the peroxidatic reaction of catalase was small. The intracellular activity of glutathione peroxidase was estimated as the catalase-independent metabolism and used to determine the rate of intracellular H2O2 metabolism by the peroxidase. The results provide a quantitative basis for analysis of the physiological and toxicological aspects of H2O2 metabolism by liver.  相似文献   

16.
The distribution of endogenous peroxidase activity in rat, mouse and human thyroid follicle cells was studied with electron microscopic cytochemistry after incubation in 3-3'-diaminobenzidine (DAB). In all three species enzyme activity was found at the apical plasma membrane (facing the follicle lumen) as well as in intracellular compartments. The enzyme activity in the apical plasma membrane was more sensitive to changes in fixation conditions than the activity in intracellular compartments. Under optimal conditions more than 90% of the follicle cells in normal rat thyroids displayed a cytochemical reaction at the apical plasma membrane. In all three species the reaction product at the apical plasma membrane formed a gradient which extended into the colloid which otherwise was unreactive. Evidence obtained indicated that this gradient was not due to the presence of soluble peroxidase in the lumen but most likely signified the diffusion of the reaction product from the membrane-bound enzyme.  相似文献   

17.
The Delta6-desaturase catalyzes key steps in long-chain polyunsaturated fatty acid biosynthesis. Although the gene coding for this enzyme has been isolated in diverse animal species, the protein structure remains poorly characterized. In this work, rat Delta6-desaturase expressed in COS-7 cells was shown to localize in the endoplasmic reticulum. As the enzyme contains an N-terminal cytochrome b5-like domain, we investigated by site-directed mutagenesis the role of this domain in the enzyme activity. The typical HPGG motif of the cytochrome b5-like domain, and particularly histidine in this motif, is required for the activity of the enzyme, whatever the substrate. Neither endogenous COS-7 cytochrome b5 nor coexpressed rat endoplasmic reticulum cytochrome b5 could rescue the activity of mutated forms of Delta6-desaturase. Moreover, when rat endoplasmic reticulum cytochrome b5 was coexpressed with wild-type desaturase, both proteins interacted and Delta6-desaturase activity was significantly increased. The identified interaction between these proteins is not dependent on the desaturase HPGG motif. These data suggest distinct and essential roles for both the desaturase cytochrome b5-like domain and free endoplasmic reticulum cytochrome b5 for Delta6-desaturase activity.  相似文献   

18.
Aging of aqueous guaiacol (o-methoxyphenol) solutions over a period of several months led to the spontaneous formation of peroxidatic compound(s) and other unidentified oxidation products of guaiacol. This accelerated the oxidation of guaiacol catalyzed by lactoperoxidase (LPO) severalfold depending on the pH of the reaction mixture. The peroxide(s) acted like H2O2 while the aromatic oxidation products may be more reactive than guaiacol. Five- to 12-month-old 20 mm stock solutions contained even 0.05-0.3% of H2O2 equivalents. The formation of the peroxidatic compound(s) was found to be a photochemical process which progressed in a few hours at 254 nm and slowly (detectable in 2-week-old solutions) in regular glass bottles kept under normal laboratory illumination. The kinetics and pH dependence of the oxidation of aged guaiacol solutions by LPO were distinctly different from those found with fresh substrate. The spontaneously formed peroxidatic compound is possibly a better oxygen donor in LPO assays than H2O2. The spontaneously formed aromatic oxidation products of guaiacol may include compounds that contain diphenoquinone groups. The complexity of the oxidation of guaiacol and the multitude of reaction products formed require special consideration in kinetic studies of LPO. The use of 2,2′-azino-di(3-ethylbenzthiazoline-6-sulfonic acid) as a LPO substrate was studied. The published method utilizing this substrate was modified into a more sensitive procedure by readjusting some of the reaction conditions.  相似文献   

19.
The cytochrome contents of rough endoplasmic reticulum (ER) of lactating bovine and rat mammary epithelial cells and of the membranes surrounding the fat globules in bovine and human milk (MFGM) were analyzed with spectrophotometric (at +20 °C and ?196 °C) and immunological methods. Two cytochrome components were found. One was identified as cytochrome b5 by the characteristic split of the α-band in reduced versus oxidized difference spectra at low temperature, by the reduction with NADH, which was insensitive against rotenone and antimycin, and by the solubility upon trypsin treatment. This component showed cross-reaction with the microsomal cytochrome b5 from rat hepatocytes using rabbit antibodies against the purified cytochrome b5 fragment released from rat liver microsomes by trypsin treatment. The in situ localization of cytochrome b5 in mammary epithelial cells was demonstrated by indirect immunofluorescence microscopy in both frozen sections of tissue and cultured cells. The second cytochrome component was identified as cytochrome P-420 by the characteristic spectral bands in the CO-difference spectrum and the dithionite-difference spectrum, by the reaction with cyanide, and by the insolubility upon trypsin treatment of the membranes. In addition, we found evidence for the existence of a form of cytochrome P-420 in these membranes which does not bind CO. The presence of cytochrome P-420 in mammary gland ER and MFGM fractions was not due to preparative artifacts. No cytochrome P-450 was observed in these membranes. The significance of the occurrence of these redox components in ER and surface membrane of mammary gland epithelium and other cells is discussed.  相似文献   

20.
Azotobacter vinelandii cells readily oxidize the dye 3,3′-diaminobenzidine (DAB), which has been previously used as an electron donor for studies on the mitochondrial cytochromec oxidase reaction. The DAB oxidase activity inA. vinelandii cells was 10-fold lower than that noted for theN,N,N′,N′-tetramethyl-p-phenylenediamine (TMPD) oxidase reaction, which is commonly used to measure terminal oxidase activity both in bacteria and mitochondria. Analyses of cell-free extracts show that DAB oxidase activity is concentrated almost exclusively in theA. vinelandii membrane fractions, most notably in the “R3” electron transport particle (ETP). Oxidation studies, which employed both whole cells and the ETP fraction, show DAB oxidase activity to be markedly sensitive to KCN, NaN3, and NH2OH. A manometric assay system was developed which readily measured DAB oxidase activity in bacteria. Preliminary studies indicate that ascorbate-DAB oxidation inAzotobacter vinelandii measures terminal cytochrome oxidase activity in a manner similar to the TMPD oxidase reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号