首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The region of the colicin E1 polypeptide that interacts with immunity protein has been localized to a 168-residue COOH-terminal peptide. This is the length of a proteolytically generated peptide fragment of colicin E1 against which imm+ function can be demonstrated in osmotically shocked cells. The role of particular amino acids of the COOH-terminal peptide in the expression of the immune phenotype was studied. Chemical modification showed that the two histidine residues (His 427 and His 440) and the single cysteine residue (Cys 505) present in the COOH-terminal peptide were not necessary for the colicin-immunity protein interaction. The immunity protein was localized in the cytoplasmic membrane fraction, consistent with previous work of others on the colicin Ia immunity protein and the prediction from the immunity protein amino acid sequence that it is a hydrophobic protein. The distribution of hydrophobic residues along the immunity polypeptide was calculated.  相似文献   

2.
The product of the malE—lacZ gene fusion was reported to compete with some proteins including outer membrane lipoprotein in the protein translocation across the Echerichia coli membrane. The fusion product also inhibited colicin E1 export. Furthermore, globomycin, which accumulated prolipoprotein in the membrane, inhibited the translocation of colicin E1 in the wild-type cells, but not in lipoprotein-negative mutant cells. Since colicin E1 contains the internal signal-like sequence [Proc. Natl. Acad. Sci. USA (1982) 79, 2827–2831], these results suggest that colicin E1 is exported by the aid of this sequence at a common site for maltose-binding protein and lipoprotein translocation.  相似文献   

3.
The TonB protein plays a key role in the energy-coupled transport of iron siderophores, of vitamin B12, and of colicins of the B-group across the outer membrane of Escherichia coli. In order to obtain more data about which of its particular amino acid sequences are necessary for TonB function, we have cloned and sequenced the tonB gene of Serratia marcescens. The nucleotide sequence predicts an amino acid sequence of 247 residues (Mr 27,389), which is unusually proline-rich and contains the tandem sequences (Glu-Pro)5 and (Lys-Pro)5. In contrast to the TonB proteins of E. coli and Salmonella typhimurium, translation of the S. marcescens TonB protein starts at the first methionine residue of the open reading frame, which is the only amino acid removed during TonB maturation and export. Only the N-terminal sequence is hydrophobic, suggesting its involvement in anchoring the TonB protein to the cytoplasmic membrane. The S. marcescens tonB gene complemented an E. coli tonB mutant with regard to uptake of iron siderophores, and sensitivity to phages T1 and phi 80, and to colicins B and M. However, an E. coli tonB mutant transformed with the S. marcescens tonB gene remained resistant to colicins Ia and Ib, to colicin B derivatives carrying the amino acid replacements Val/Ala and Val/Gly at position 20 in the TonB box, and they exhibited a tenfold lower activity with colicin D. In addition, the S. marcescens TonB protein did not restore T1 sensitivity of an E. coli exbB tolQ double mutant, as has been found for the overexpressed E. coli TonB protein, indicating a lower activity of the S. marcescens TonB protein. Although the S. marcescens TonB protein was less prone to proteolytic degradation, it was stabilized in E. coli by the ExbBD proteins. In E. coli, TonB activity of S. marcescens depended either on the ExbBD or the TolQR activities.  相似文献   

4.
The central region of the colicin A polypeptide chain has been fused to the N-terminal part of beta-lactamase through genetic recombination. This region comprising amino acid residues 70-335 confers on the hybrid protein the ability to protect sensitive cells from the lethal action of colicin A. Although colicin A belongs to the cytoplasmic compartment of E. coli, export of the hybrid protein to the periplasmic space was promoted by the signal peptide of beta-lactamase.  相似文献   

5.
Plasmids have been constructed in which the Escherichia coli alkaline phosphatase promoter and signal sequence have been fused to the staphylococcal nuclease gene to promote the high-level expression and secretion of this gene product in E. coli. We determined that the first amino acid residue after the signal sequence can determine whether this protein was processed and exported to the periplasmic space. Fractionation and protease accessibility studies were used to show that the export-defective, nuclease precursor is internal to the cytoplasmic membrane barrier of the cell. Furthermore, this export defect was suppressed in a strain containing a prlA mutation. These findings are novel in that this region of the polypeptide chain has been implicated in processing but not export and that prlA mutations have not been previously known to suppress such defects.  相似文献   

6.
L Gilson  H K Mahanty    R Kolter 《The EMBO journal》1990,9(12):3875-3884
The extracellular secretion of the antibacterial toxin colicin V is mediated via a signal sequence independent process which requires the products of two linked genes: cvaA and cvaB. The nucleotide sequence of cvaB reveals that its product is a member of a subfamily of proteins, involved in the export of diverse molecules, found in both eukaryotes and prokaryotes. This group of proteins, here referred to as the 'MDR-like' subfamily, is characterized by the presence of a hydrophobic region followed by a highly conserved ATP binding fold. By constructing fusions between the structural gene for colicin V, cvaC, and a gene for alkaline phosphatase, phoA, lacking its signal sequence, it was determined that 39 codons in the N-terminus of cvaC contained the structural information to allow CvaC-PhoA fusion proteins to be efficiently translocated across the plasma membrane of Escherichia coli in a CvaA/CvaB dependent fashion. This result is consistent with the location of point mutations in the cvaC gene which yielded export deficient colicin V. The presence of the export signal at the N-terminus of CvaC contrasts with the observed C-terminal location of the export signal for hemolysin, which also utilizes an MDR-like protein for its secretion. It was also found that the CvaA component of the colicin V export system shows amino acid sequence similarities with another component involved in hemolysin export, HlyD. The role of the second component in these systems and the possibility that other members of the MDR-like subfamily will also have corresponding second components are discussed. A third component used in both colicin V and hemolysin extracellular secretion is the E. coli host outer membrane protein, TolC.  相似文献   

7.
8.
It is believed that one or more basic residues at the extreme amino terminus of precursor proteins and the lack of a net positive charge immediately following the signal peptide act as topological determinants that promote the insertion of the signal peptide hydrophobic core into the cytoplasmic membrane of Escherichia coli cells with the correct orientation required to initiate the protein export process. The export efficiency of precursor maltose-binding protein (pre-MBP) was found to decrease progressively as the net charge in the early mature region was increased systematically from 0 to +4. This inhibitory effect could be further exacerbated by reducing the net charge in the signal peptide to below 0. One such MBP species, designated MBP-3/+3 and having a net charge of -3 in the signal peptide and +3 in the early mature region, was totally export defective. Revertants in which MBP-3/+3 export was restored were found to harbor mutations in the prlA (secY) gene, encoding a key component of the E. coli protein export machinery. One such mutation, prlA666, was extensively characterized and shown to be a particularly strong suppressor of a variety of MBP export defects. Export of MBP-3/+3 and other MBP species with charge alterations in the early mature region also was substantially improved in E. coli cells harboring certain other prlA mutations originally selected as extragenic suppressors of signal sequence mutations altering the hydrophobic core of the LamB or MBP signal peptide. In addition, the enzymatic activity of alkaline phosphatase (PhoA) fused to a predicted cytoplasmic domain of an integral membrane protein (UhpT) increased significantly in cells harboring prlA666. These results suggest a role for PrlA/SecY in determining the orientation of signal peptides and possibly other membrane-spanning protein domains in the cytoplasmic membrane.  相似文献   

9.
Aqualysin I is a subtilisin-type serine protease which is secreted into the culture medium by Thermus aquaticus YT-1, an extremely thermophilic Gram-negative bacterium. The nucleotide sequence of the entire gene for aqualysin I was determined, and the deduced amino acid sequence suggests that aqualysin I is produced as a large precursor, consisting of at least three portions, an NH2-terminal pre-pro-sequence (127 amino acid residues), the protease (281 residues), and a COOH-terminal pro-sequence (105 residues). When the cloned gene was expressed in Escherichia coli cells, aqualysin I was not secreted. However, a precursor of aqualysin I lacking the NH2-terminal pre-pro-sequence (38-kDa protein) accumulated in the membrane fraction. On treatment of the membrane fraction at 65 degrees C, enzymatically active aqualysin I (28-kDa protein) was produced in the soluble fraction. When the active site Ser residue was replaced with Ala, cells expressing the mutant gene accumulated a 48-kDa protein in the outer membrane fraction. The 48-kDa protein lacked the NH2-terminal 14 amino acid residues of the precursor, and heat treatment did not cause any subsequent processing of this precursor. These results indicate that the NH2-terminal signal sequence is cleaved off by a signal peptidase of E. coli, and that the NH2- and COOH-terminal pro-sequences are removed through the proteolytic activity of aqualysin I itself, in that order. These findings indicate a unique four-domain structure for the aqualysin I precursor; the signal sequence, the NH2-terminal pro-sequence, mature aqualysin I, and the COOH-terminal pro-sequence, from the NH2 to the COOH terminus.  相似文献   

10.
The topography of the colicin E1 immunity (Imm) protein was determined from the positions of TnphoA and complementary lacZ fusions relative to the three long hydrophobic segments of the protein and site-directed substitution of charged for nonpolar residues in the proposed membrane-spanning segments. Inactivation of the Imm protein function required substitution and insertion of two such charges. It was concluded that the 113-residue colicin E1 Imm protein folds in the membrane as three trans-membrane alpha-helices, with the NH2 and COOH termini on the cytoplasmic and periplasmic sides of the membrane, respectively. The approximate spans of the three helices are Asn-9 to Ser-28, Ile-43 to Phe-62, and Leu-84 to Leu-104. An extrinsic highly charged segment, Lys-66 to Lys-74, containing seven charges in nine residues, extends into the cytoplasmic domain. The specificity of the colicin E1 Imm protein for interaction with the translocation apparatus and the colicin E1 ion channel is proposed to reside in its peripheral segments exposed on the surface of the inner membrane. These regions include the highly charged segment Lys-66 to Lys-83 (loop 2) and the short (approximately eight-residue) NH2 terminus on the cytoplasmic side, and Glu-29 to Val-44 (loop 1) and the COOH-terminal segment Gly-105 to Asn-113 on the periplasmic side.  相似文献   

11.
Extracellular release of colicin A is non-specific.   总被引:17,自引:1,他引:16       下载免费PDF全文
The possible involvement of topogenic export sequences within the colicin A polypeptide chain has been investigated. Different constructs have been made using various techniques to introduce deletions in the central and NH2-terminal regions of colicin A. Together, these deletions span the region from amino acid 15 to the end of the protein. None of these regions was found to be required for extracellular release or had any effect on the efficiency of this process. By inserting a termination codon, a Shine-Dalgarno sequence and an initiation codon into the gene for colicin A, the NH2-terminal and central plus COOH-terminal domains could be demonstrated to be released to the same extent when produced as separate polypeptides as when produced as linked ones. The introduction into the COOH-terminal domain of mutations promoting cytoplasmic aggregation had no effect on the secretion of the NH2-terminal polypeptide. These results demonstrated that no specific interaction between the NH2- and COOH-terminal regions of the colicin A polypeptide chain is involved in the release of colicin A. We are led to conclude that there is no topogenic export signal in the polypeptide chain of colicin A involved in the release mechanism. Thus the process is non-specific with respect to the colicin itself and depends solely on the expression of the colicin A lysis protein (Cavard et al., 1985, 1987). The expression of the protein causes the release of not only the colicin but also many other cellular proteins, including beta-lactamase, EF-Tu, and chloramphenicol acetyltransferase.  相似文献   

12.
Neisseria gonorrhoeae prepilin export studied in Escherichia coli.   总被引:7,自引:5,他引:2       下载免费PDF全文
The pilE gene of Neisseria gonorrhoeae MS11 and a series of pilE-phoA gene fusions were expressed in Escherichia coli. The PhoA hybrid proteins were shown to be located in the membrane fraction of the cells, and the prepilin product of the pilE gene was shown to be located exclusively in the cytoplasmic membrane. Analysis of the prepilin-PhoA hybrids showed that the first 20 residues of prepilin can function as an efficient export (signal) sequence. This segment of prepilin includes an unbroken sequence of 8 hydrophobic or neutral residues that form the N-terminal half of a 16-residue hydrophobic region of prepilin. Neither prepilin nor the prepilin-PhoA hybrids were processed by E. coli leader peptidase despite the presence of two consensus cleavage sites for this enzyme just after this hydrophobic region. Comparisons of the specific molecular activities of the four prepilin-PhoA hybrids and analysis of their susceptibility to proteolysis by trypsin and proteinase K in spheroplasts allow us to propose two models for the topology of prepilin in the E. coli cytoplasmic membrane. The bulk of the evidence supports the simplest of the two models, in which prepilin is anchored in the membrane solely by the N-terminal hydrophobic domain, with the extreme N terminus facing the cytoplasm and the longer C terminus facing the periplasm.  相似文献   

13.
Summary Base substitutions have been introduced into the segment of the colicin E1 gene corresponding to the polypeptide region between the 404th and the 502nd residues which was considered to participate in colicin E1 export and bacteriocin activity. The methods used were in vitro localized mutagenesis with sodium bisulphite and in vivo mutagenesis using either nitrosoguanidine or ethyl methane sulphonate. Cells carrying mutagenized plasmids were screened by their inability to form a clear zone on a lawn of colicin E1 sensitive cells. Mutation sites were determined from the nucleotide sequence analysis and the altered amino acid residues were reduced. The mutant proteins were analysed for their ability to be exported to the periplasmic space and for their bacteriocin activity. Out of eight mutants obtained, three had a single amino acid replacement. Mutant proteins that had Ser and Glu in place of Pro-462 and Gly-502, respectively, showed a decrease in both the export and the bacteriocin activity. A mutant protein having Arg in place of Gly-439 showed a decrease only in the bacteriocin activity. These results suggest that the target region of colicin E1 contributes to the export as well as the bacteriocin activity but the two functions are supported in part by different amino acid residues of the protein.  相似文献   

14.
Summary A plasmid (pColAF1), derived from pColA, and lacking the region encoding Cai (colicin A immunity protein) and Cal (colicin A lysis protein) has been constructed. The strains carrying pColAF1 produce normal amounts of colicin A which remains in the cell cytoplasm and does not result in loss of viability. Similar results have also been obtained for transposon insertion mutants lacking Cai. Structure prediction analysis indicates that four peptide regions of Cai might span the cytoplasmic membrane. Since the NH2-and COOH-terminal regions are charged, this analysis suggests a topology of the 178 residues polypeptide chain in which regions 38 to 70 and 124 to 143 might be exposed at the outer side of the cytoplasmic membrane. With mutants constructed using recombinant DNA techniques, we could demonstrate that the removal of a 30 residue COOH-terminal region, and mutations altering the surface exposed loop comprised of aminoacid residues 124–143 abolish the protecting function of Cai.  相似文献   

15.
The mechanism by which E colicins recognize and then bind to BtuB receptors in the outer membrane of Escherichia coli cells is a poorly understood first step in the process that results in cell killing. Using N- and C-terminal deletions of the N-terminal 448 residues of colicin E9, we demonstrated that the smallest polypeptide encoded by one of these constructs that retained receptor-binding activity consisted of residues 343-418. The results of the in vivo receptor-binding assay were supported by an alternative competition assay that we developed using a fusion protein consisting of residues 1-497 of colicin E9 fused to the green fluorescent protein as a fluorescent probe of binding to BtuB in E. coli cells. Using this improved assay, we demonstrated competitive inhibition of the binding of the fluorescent fusion protein by the minimal receptor-binding domain of colicin E9 and by vitamin B12. Mutations located in the minimum R domain that abolished or reduced the biological activity of colicin E9 similarly affected the competitive binding of the mutant colicin protein to BtuB. The sequence of the 76-residue R domain in colicin E9 is identical to that found in colicin E3, an RNase type E colicin. Comparative sequence analysis of colicin E3 and cloacin DF13, which is also an RNase-type colicin but uses the IutA receptor to bind to E. coli cells, revealed significant sequence homology throughout the two proteins, with the exception of a region of 92 residues that included the minimum R domain. We constructed two chimeras between cloacin DF13 and colicin E9 in which (i) the DNase domain of colicin E9 was fused onto the T+R domains of cloacin DF13; and (ii) the R domain and DNase domain of colicin E9 were fused onto the T domain of cloacin DF13. The killing activities of these two chimeric colicins against indicator strains expressing BtuB or IutA receptors support the conclusion that the 76 residues of colicin E9 confer receptor specificity. The minimum receptor-binding domain polypeptide inhibited the growth of the vitamin B12-dependent E. coli 113/3 mutant cells, demonstrating that vitamin B12 and colicin E9 binding is mutually exclusive.  相似文献   

16.
17.
《The Journal of cell biology》1994,127(6):1617-1626
Occludin is an integral membrane protein localizing at tight junctions (TJ) with four transmembrane domains and a long COOH-terminal cytoplasmic domain (domain E) consisting of 255 amino acids. Immunofluorescence and laser scan microscopy revealed that chick full- length occludin introduced into human and bovine epithelial cells was correctly delivered to and incorporated into preexisting TJ. Further transfection studies with various deletion mutants showed that the domain E, especially its COOH-terminal approximately 150 amino acids (domain E358/504), was necessary for the localization of occludin at TJ. Secondly, domain E was expressed in Escherichia coli as a fusion protein with glutathione-S-transferase, and this fusion protein was shown to be specifically bound to a complex of ZO-1 (220 kD) and ZO-2 (160 kD) among various membrane peripheral proteins. In vitro binding analyses using glutathione-S-transferase fusion proteins of various deletion mutants of domain E narrowed down the sequence necessary for the ZO-1/ZO-2 association into the domain E358/504. Furthermore, this region directly associated with the recombinant ZO-1 produced in E. coli. We concluded that occludin itself can localize at TJ and directly associate with ZO-1. The coincidence of the sequence necessary for the ZO-1 association with that for the TJ localization suggests that the association with underlying cytoskeletons through ZO-1 is required for occludin to be localized at TJ.  相似文献   

18.
A synthetic peptide corresponding to the signal sequence of wild type Escherichia coli lambda-receptor protein (LamB) inhibits in vitro translocation of precursors of both alkaline phosphatase and outer membrane protein A into E. coli membrane vesicles (half-maximal inhibition at 1-2 microM). By contrast, the inhibitory effect was nearly absent in a synthetic peptide corresponding to the signal sequence from a mutant strain that harbors a deletion mutation in the LamB signal region and displays an export-defective phenotype for this protein in vivo. Two peptides derived from pseudorevertant strains that arose from the deletion mutant and exported LamB in vivo were found to inhibit in vitro translocation with effectiveness that correlated with their in vivo export ability. Controls indicated that these synthetic signal peptides did not disrupt the E. coli membrane vesicles. These results can be interpreted to indicate that the presequences of exported proteins interact specifically with a receptor either in the E. coli inner membrane or in the cytoplasmic fraction. However, biophysical data for the family of signal peptides studied here reveal that they will spontaneously insert into a lipid membrane at concentrations comparable to those that cause inhibition. Hence, an indirect effect mediated by the lipid bilayer of the membrane must be considered.  相似文献   

19.
We have determined the amino acid sequence of the N alpha-terminal portion of band 3, the anion transport protein of the human erythrocyte membrane. The material analyzed was a 201-residue, 23,053-Da fragment cleaved from the cytoplasmic end of band 3 by S-cyanylation. The sequence had these notable features. 1) The N alpha-terminal region was extraordinarily acidic, second only to a segment of similar size from the sigma factor of Escherichia coli RNA polymerase. The first 33 residues contained 6 aspartic acid and 12 glutamic acid residues, no basic residue, and a blocked N alpha-amino group. 2) The first 11 residues of the protein had a striking resemblance to the following 11 residues. 3) In contrast to the acidic N alpha-terminal third, the COOH-terminal two-thirds of the 23,053-Da fragment had a predominantly basic character. The highly acidic character of the N alpha-terminal portion of band 3 accounts for the capacity of this part of the protein to bind glycolytic enzymes in a highly electrostatic fashion, presumably through interaction with their cationic substrate-binding sites.  相似文献   

20.
The nucleotide sequence surrounding the promoter region of colicin E1 gene   总被引:19,自引:0,他引:19  
Y Ebina  F Kishi  T Miki  H Kagamiyama  T Nakazawa  A Nakazawa 《Gene》1981,15(2-3):119-126
The nucleotide sequence of 570 bp, covering the N-terminal portion of the colicin E1 gene, was determined. The sequence of the N-terminal four amino acids of the colicin E1 protein, determined by manual Edman degradation, agreed with that predicted from the nucleotide sequence. From analysis of the 5'-terminal sequences of RNAs synthesized in vitro, the promoter and operator regions of the colicin E1 gene were assigned. These data indicate the existence of two promoters, one of which is located in the coding region for colicin E1. DNA sequence homology of 16 bp was found between the putative operator regions of the colicin E1 and recA genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号