首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphate-activated glutaminase (EC 3.5.1.2; l-glutamine amidohydrolase) purified from pig kidney and brain is activated by CoA and short-chain acyl-CoA derivatives. Acetyl-CoA is the most powerful activator (K(A) about 0.2mm). Acetyl-CoA is maximally effective in the absence of other activating anions such as phosphate and citrate, and at low glutamine concentrations. The negative co-operative substrate activation observed at pH7 becomes more pronounced in the presence of acetyl-CoA. Similarly to phosphate, acetyl-CoA produces at high protein concentrations a different type of activation, which is time-dependent, depends on protein concentration and is accompanied by an increase in the sedimentation coefficient. Acetyl-CoA, phosphate and citrate appear to have binding sites in common. No significant difference was observed between kidney and brain phosphate-activated glutaminase.  相似文献   

2.
Role of phosphoenolpyruvate carboxylation in Acetobacter xylinum   总被引:5,自引:1,他引:4       下载免费PDF全文
Glucose-grown cells of Acetobacter xylinum oxidized acetate only when the reaction mixture was supplemented with catalytic quantities of glucose or intermediates of the citrate cycle. Extracts, prepared by sonic treatment, catalyzed the formation of oxalacetate when incubated with phosphoenolpyruvate (PEP) and bicarbonate. Oxalacetate was not formed in the presence of pyruvate plus adenosine triphosphate. The ability to promote carboxylation of PEP was lower in succinate-grown cells than in glucose-grown cells. PEP carboxylase, partially purified from extracts by ammonium sulfate fractionation, catalyzed the stoichiometric formation of oxalacetate and inorganic phosphate from PEP and bicarbonate. The enzyme was not affected by acetyl-coenzyme A or inorganic phosphate. It was inhibited by adenosine diphosphate in a manner competitive with PEP (K(1) = 1.3 mm) and by dicarboxylic acids of the citrate cycle; of these, succinate was the most potent inhibitor. It is suggested that the physiological role of PEP carboxylase in A. xylinum is to affect the net formation of C(4) acids from C(3) precursors, which are essential for the maintainance of the citrate cycle during growth on glucose. The relationship of PEP carboxylase to other enzyme systems metabolizing PEP and oxalacetate in A. xylinum is discussed.  相似文献   

3.
Phosphate activated glutaminase comprises two kinetically distinguishable enzyme forms in cultures of cerebellar granule cells, of cortical neurons and of astrocytes. Specific activity of glutaminase is higher in cultured neurons compared with astrocytes. Glutaminase is activated by phosphate in all cell types investigated, however, glutaminase in astrocytes reguires a much higher concentration of phosphate for half maximal activation. One of the products, glutamate, inhibits the enzyme strongly, whereas the other product ammonia has only a slight inhibitory action on the enzyme.  相似文献   

4.
Marine Micrococcus luteus K-3 constitutively produced two salt-tolerant glutaminases, designated glutaminase I and II. Glutaminase I was homogeneously purified about approximately, 1620-fold with a 4% yield, and was a dimer with a molecular weight of about 86,000. Glutaminase II was partially purified about 190-fold with a 0.04% yield. The molecular weight of glutaminase II was also 86,000. Maximum activity of glutaminase I was observed at pH 8.0, 50°C and 8–16% NaCl. The optimal pH and temperature of glutaminase II were 8.5 and 50°C. The activity of glutaminase II was not affected by the presence of 8 to 16% NaCl. The presence of 10% NaCl enhanced thermal stability of glutaminase I. Both enzymes catalyzed the hydrolysis of l-glutamine, but not its hydroxylaminolysis. The Km values for l-glutamine were 4.4 (glutaminase I) and 6.5 mM (glutaminase II). Neither of the glutaminases were activated by the addition of 2 mM phosphate or 2 mM sulfate. p-Chloromercuribenzoate (0.01 mM) significantly inhibited glutaminase I, but not glutaminase II. The conserved sequences LA**V and V**GGT*A were observed in the N-terminal amino acid sequences of glutaminase I, similar to that for other glutaminases.  相似文献   

5.
Physiological role of glutaminase activity in Saccharomyces cerevisiae   总被引:1,自引:0,他引:1  
The participation of glutaminase activity in glutamine degradation was studied in a wild-type strain (S288C) of Saccharomyces cerevisiae. Evidence is presented that this strain has two glutaminase activities, a readily extractable form (glutaminase B) and a membrane-bound enzyme (glutaminase A). Glutaminase A and B activities could also be distinguished by their thermostability, pyruvate sensitivity and pH optimum. Glutaminase B activity was negatively modulated by some 2-oxo acids, and in vivo pyruvate accumulation inhibited this activity. A mutant strain (CN10) with an altered glutaminase B activity was isolated and partially characterized. Its glutaminase B activity was more sensitive to inhibition by pyruvate and 2-oxoglutarate than the wild type, thus resulting in inactivation of this enzyme in vivo. The physiological role of glutaminase activity is discussed with regard to the phenotype shown by the mutant strain.  相似文献   

6.
—Pig brain glutaminase (EC 3.5.1.2 L-glutamine amidohydrolase) has been purified about 5000-fold from acetone powder. Glutaminase exists in different molecular forms, dependent on the ionic composition of the buffer. The three main forms are similar to those of kidney glutaminase and therefore called the tris-HCl enzyme, the phosphate enzyme, and the phosphate-borate enzyme. The sedimentation coefficients, as estimated by sucrose gradient technique, are 7·3, 8·7, and 53, respectively. Glutaminase has a pH optimum of about 9, but the pH curves of the tris-HCl enzyme and the phosphate-borate enzyme have different shapes. The apparent pK1 of the tris-HCl enzyme-substrate complex is similar to pK2 of inorganic phosphate, the apparent pK2 of both the tris-HCl and the phosphateborate enzyme complexes is similar to pK2 of glutamine. By use of the electron microscope we were able to see the phosphate-borate enzyme.  相似文献   

7.
1. In respiring rat liver mitochondria EDTA stimulates glutaminase activity measured in the presence of phosphate and HCO3- ions. The stimulation can be reversed by the addition of low concentrations of MgCl2. EGTA does not stimulate glutamine hydrolysis. 2. Glutaminase activity assayed in disrupted mitochondria is not significantly affected by EDTA or MgCl2. 3. The addition of EDTA results in a decrease in the concentration of phosphate required for half-maximal glutaminase activity. 4. Depletion of mitochondrial Mg2+ by the addition of the ionophore A23187 also stimulates glutamine hydrolysis in both the presence and the absence of EDTA. The effect of the ionophore can be abolished by the addition of MgCl2. 5. Hypo-osmotic incubation conditions increase the rate of mitochondrial glutamine hydrolysis. The effect of hypo-osmoticity on glutaminase is much less when EDTA is present. 6. It is suggested that glutaminase is partially and indirectly inhibited by endogenous mitochondrial Mg2+ and that the inner membrane may play a role in the regulation of glutaminase activity.  相似文献   

8.
Citrate and succinate uptake by potato mitochondria   总被引:8,自引:7,他引:1       下载免费PDF全文
The uptake of [14C]citrate and [14C]succinate was studied in potato mitochondria (Solanum tuberosum var. Russet Burbank) using cellulose pore filtration and was found to occur by the same mechanisms as described for mammalian mitochondria. Potato mitochondria, in the absence of respiration, have a very low capacity for uptake by exchange with endogenous anions, taking up only 2.4 nanomoles citrate and 2.0 nanomoles succinate per milligram protein. Maximum citrate uptake of over 17 nanomoles per milligram protein occurs in the presence of inorganic phosphate, a dicarboxylic acid, and an external energy source (NADH), conditions where net anion accumulation proceeds, mediated by the interlinking of the inorganic phosphate, dicarboxylate, and tricarboxylate carriers. Maximum succinate uptake in the absence of respiratory inhibitors requires only added inorganic phosphate.  相似文献   

9.
Partially purified rat liver mitochondrial glutaminase shows a sigmoidal dependence on glutamine concentration, and an absolute requirement for inorganic phosphate as activator. Reconstitution with a mitochondrial membrane fraction changes the kinetic properties of the enzyme making the glutamine dependence more hyperbolic and reducing the concentration of phosphate required for half-maximum activation. Glutaminase activity in isolated mitochondria is known to be increased as a result of mitochondrial swelling. In mitochondria suspended in isotonic medium, the properties of glutaminase resemble of the isolated enzyme while in swollen mitochondria the kinetic properties revert to those exhibited by the enzyme in association with the mitochondrial membrane. It is postulated that mitochondrial glutaminase is regulated in situ by reversible association with the inner mitochondrial membrane which is mediated by mitochondrial swelling. This mechanism may explain the short-term hormonally induced activation of the enzyme observed in isolated hepatocytes.  相似文献   

10.
1. Fatty n-acyl-CoA derivatives in the concentration range 5muM-0.1mM and with 5-18 fatty acyl carbons have dual effects on phosphate-activated glutaminase from pig brain and kidney. Generally, fatty acyl-CoA derivatives in low concentrations activate the enzyme, but inhibit at higher concentrations; phosphate and citrate potentiate the activation, displaying positive co-operatively, and protect against inactivation. The fatty acyl-CoA derivatives affect glutaminase similarly to Bromothymol Blue, but differently from acetyl-CoA, which activates the enzyme only at very low phosphate or citrate concentrations. 2. Saturated fatty acyl-CoA derivatives, with 5-10 fatty acyl carbons, only activate the enzyme in the concentration range 0-0.1 mM. When the fatty acyl chain is elongated, the fatty acyl-CoA derivatives gradually become more powerful inhibitors of glutaminase at the expense of their activating capacity. In particular, palmitoyl-CoA and stearoyl-CoA are strong inhibitors at concentrations (10 muM) at which the corresponding free fatty acids and fatty acyl-carnitine derivatives have no effect. 3. The unsaturated fatty acyl-CoA derivatives, oleoyl-CoA and linoleoyl-CoA, behave as potent activators in the lower part of the concentration range tested (0-0.05mM), and as inhibitors in the upper part of this range (0.02-0.10mM). Oleic acid and linoleic acid have similar properties, but their activating capacity is less pronounced. 4. Phosphate both prevented and reversed the inhibition, but no restoration of activity was possible once the enzyme became inactivated. 5. By changing the pH from 7.0 to 8.0 the activating capacity of the fatty acyl-CoA derivatives is increased, as is their concentration range for activation. 6. The fatty acyl-CoA derivatives are somewhat more potent activator for brain glutaminase, but otherwise they affect the two enzymes similarly.  相似文献   

11.
The permeability properties of the inner membrane of mung bean mitochondria were studied by osmotic swelling techniques. Rapid mitochondrial swelling was observed in isotonic ammonium phosphate, which indicated that an active phosphate/hydroxyl antiporter was present. The phosphate carrier was specifically inhibited by sulfhydryl reagents. Mitochondria did not swell in isotonic ammonium salts of malate, succinate, or fumarate, either in the presence or absence of 10 millimolar phosphate. Additionally, no swelling was observed in ammonium citrate upon addition of malate plus phosphate. Consequently, no evidence was obtained with the osmotic swelling technique for a coupled exchange of phosphate for dicarboxylic acids across the membrane.  相似文献   

12.
Summary The dough-leavening power of baker’s yeast, Saccharomyces cerevisiae, is strongly influenced by conditions under which the pressed yeast is maintained prior to bread dough preparation. In this study, the influence of the yeast cell’s pre-treatment with organic acids (malic, succinic, and citric acids) was investigated at a wide range of pH values when the pressed yeast samples were exposed to 30 °C. Increased fermentative activity was observed immediately after pre-treatment of the cells with organic acids. When the pH of the pressed yeast containing added citric acid was raised from 3.5 to 7.5, increases in both fermentative and maltase activities were obtained. Improvements in viability and levels of total protein were also observed during storage in the presence of citric acid, notably at pH 7.5. Glycerol-3-phosphate dehydrogenase activity and levels of internal glycerol also increased in the presence of citrate. On the other hand, pressed yeast samples containing succinic acid at pH 7.5 showed decreased viability during storage despite the maintenance of high levels of fermentative activity, similar to pressed yeast containing malic acid at pH 4.5 and 7.5. Decreases in intracellular levels of trehalose were observed during storage in all cases. Overall, the results of this study revealed the potential benefits of adding organic acids to pressed yeast preparations for baking purposes.  相似文献   

13.
Liver glutaminase is stimulated by an increase in NH4+ concentration and NH4+ is an absolute requirement for activity at approximate physiological concentrations of phosphate and glutamine. Increases in the concentration of NH4+ cannot, however, overcome the inhibitory effect of a decrease in pH. In addition, the concentration of NH4+ required for half-maximal rate decreases as pH increases. This decrease is the result of two factors: a direct effect of pH on the apparent affinity of the enzyme for NH4+, and an indirect effect of pH brought about by an increase in the apparent affinity of the enzyme for phosphate which results in a further decrease in the M0.5 for NH4+. In addition, liver glutaminase responds strongly to the concentration of citrate over a physiologically relevant range at approximate physiological concentrations of NH4+, phosphate, and glutamine. An increase in citrate concentration stimulates glutaminase by increasing the affinity of the enzyme for glutamine. The apparent affinity of the enzyme for citrate increases as pH increases. The strong response of liver glutaminase to pH, NH4+, and citrate and the fact that the hydrolysis of glutamine can supply metabolites and effectors for urea synthesis suggest a possible regulatory role of glutaminase in ureagenesis.  相似文献   

14.
The activity of rat liver glutaminase from sedimented fractions of freeze-thawed mitochondria is strongly affected by variation in pH over a physiologically relevant range at approximate physiological concentrations of activators. As pH increases from 7.1 to 7.7 at 0.7 mM ammonium and 10 mM phosphate, the S0.5 for glutamine decreases 3.5-fold, from 38 to 11 mM. This results in an 8-fold increase in reaction velocity at 10 mM glutamine. In addition, the M0.5 for phosphate activation decreases from 21 to 8.9 mM as pH increases from 7.1 to 7.7. This apparent effect of pH on the affinity of glutaminase for phosphate is similar to previous reports of the pH effect on activation by ammonium (Verhoeven, A. J., Van Iwaarden, J. F., Joseph, S. K., and Meijer, A. J. (1983) Eur. J. Biochem. 133, 241-244; McGivan, J. D., and Bradford, N. M. (1983) Biochim. Biophys. Acta 159, 296-302). Glutaminase does not respond to variation in pH between 7.1 and 7.7 when phosphate and ammonium are saturating. The effects of the two modifiers are additive. Each is still effective, as is pH, when the other is saturating. Therefore, it appears that the effects of pH on the apparent affinity of the enzyme for ammonium and phosphate account for the enzyme's response to pH. These results may help explain previous reports of minimal effects of pH on glutaminase at saturating concentrations of related substances (McGivan, J. D., Lacey, J. H., and Joseph, K. (1980) Biochim. J. 192, 537-542; Horowitz, M. L., and Knox, W. E. (1968) Enzymol. Biol. Clin. 9, 241-255; McGivan, J. D., and Bradford, N. M. (1983) Biochim. Biophys. Acta 759, 296-302). Glutaminase binds glutamine cooperatively with Hill coefficients ranging from 1.7 to 2.2, which suggests at least two and probably three or more interacting binding sites for glutamine. The strong response of liver glutaminase to pH and the fact that the reaction can supply metabolites for urea synthesis suggest a possible regulatory role of glutaminase in ureagenesis.  相似文献   

15.
Chloroplast phosphofructokinase from spinach (Spinacia oleracea L.) was purified approximately 40-fold by a combination of fractionations with ammonium sulfate and acetone followed by chromatography on DEAE-Sephadex A-50. Positive cooperative kinetics was observed for the interaction between the enzyme and the substrate fructose 6-phosphate. The optimum pH shifted from 7.7 toward 7.0 as the fructose 6-phosphate concentration was taken below 0.5 mm. The second substrate was MgATP(2-) (Michaelis constant 30 mum). Free ATP inhibited the enzyme. Chloroplast phosphofructokinase was sensitive to inhibition by low concentration of phosphoenolpyruvate and glycolate 2-phosphate (especially at higher pH); these compounds inhibited in a positively cooperative fashion. Inhibitions by glycerate 2-phosphate (and probably glycerate 3-phosphate), citrate, and inorganic phosphate were also recorded; however, inorganic phosphate effectively relieved the inhibitions by phosphoenolpyruvate and glycolate 2-phosphate. These regulatory properties are considered to complement those of ADP-glucose pyrophosphorylase and fructosebisphosphatase in the regulation of chloroplast starch metabolism.  相似文献   

16.
Levi C  Preiss J 《Plant physiology》1976,58(6):753-756
ADP-glucose was found to be the primary sugar nucleotide used for glycogen synthesis by Synechococcus 6301. ADP-glucose pyrophosphorylase was partially purified 12-fold from this blue-green bacterium. The enzyme was activated 8- to 25-fold by glycerate 3-phosphate. Fructose 6-phosphate, fructose 1,6-bisphosphate, 5'-adenylate, and adenosine diphosphate activated the enzyme, but less than glycerate 3-phosphate. The enzyme was inhibited by inorganic phosphate. The I(0.5) of phosphate was 0.072 mm, and in the presence of 2 mm glycerate 3-phosphate, increased to 1.8 mm. The substrate saturation curves for glucose 1-phosphate and ATP were hyperbolic in both the presence and absence of glycerate 3-phosphate or phosphate. The saturation curve for MgCl(2) was sigmoidal; 2 mm glycerate 3-phosphate decreased the sigmoidicity from a Hill slope n value of 5.6 to 2.8, and increased the MgCl(2) optimum from 3 mm to 6 to 7 mm.  相似文献   

17.
A series of potassium salts of organic anions were examined for their effect on the volume change of bean shoot mitochondria as measured by spectrophotometric light scatterings. A passive osmotic swelling (substrate independent) as well as an active osmotic swelling (substrate dependent) was shown with a series of organic anions. Both oxidizable substrates and non-oxidizable substrates induce swelling. The monocarboxylic acids including acetate, β-OH-butyrate, propionate, and pyruvate induce active swelling which is partially inhibited by the presence of an ATP generating system or the uncoupler 2,4-dinitrophenol (DNP). Dicarboxylic acids produce less extensive rates and amounts of active swelling. Moreover, the swelling induced by dicarboxylic acids is inhibited less completely by an ATP generating system or by DNP. Metabolizable substrates including citrate, pyruvate, glutarate, and α-oxo-glutarate induced swelling despite their poor rates or lack of oxidation. It was concluded that with these anions, penetration across the inner membrane as measured by osmotic swelling of isolated mitochondria is not the rate limiting step in their metabolism.  相似文献   

18.
Fructose-2,6-bisphosphatase from rat liver   总被引:16,自引:0,他引:16  
An enzyme that catalyzes the stoichiometric conversion of fructose 2,6-bisphosphate into fructose 6-phosphate and inorganic phosphate has been purified from rat liver. This fructose 2,6-bisphosphatase copurified with phosphofructokinase 2 (ATP: D-fructose 6-phosphate 2-phosphotransferase) in the several separation procedures used. The enzyme was active in the absence of Mg2+ and was stimulated by triphosphonucleotides in the presence of Mg2+ and also by glycerol 3-phosphate, glycerol 2-phosphate and dihydroxyacetone phosphate. It was strongly inhibited by fructose 6-phosphate at physiological concentrations and this inhibition was partially relieved by glycerol phosphate and dihydroxyacetone phosphate. The activity of fructose 2,6-bisphosphatase was increased severalfold upon incubation in the presence of cyclic-AMP-dependent protein kinase and cyclic AMP. The activation resulted from an increase in V (rate at infinite concentration of substrate) and from a greater sensitivity to the stimulatory action of ATP and of glycerol phosphate at neutral pH. The activity of fructose 2,6-bisphosphatase could also be measured in crude liver preparations and in extracts of hepatocytes. It was then increased severalfold by treatment of the cells with glucagon, when measured in the presence of triphosphonucleotides.  相似文献   

19.
Cyanobacteria have a tremendous activity to adapt to environmental changes of their growth conditions. In this study, Synechocystis sp. PCC 6803 was used as a model organism to focus on the alternatives of cyanobacterial energy metabolism. Glucose oxidation in Synechocystis sp. PCC6803 was studied by inactivation of slr1843, encoding glucose-6-phosphate dehydrogenase (G6PDH), the first enzyme of the oxidative pentose phosphate pathway (OPPP). The resulting zwf strain was not capable of glucose supported heterotrophic growth. Growth under autotrophy and under mixotrophy was similar to that of the wild-type strain, even though oxygen evolution and uptake rates of the mutant were decreased in the presence of glucose. The organic acids citrate and succinate supported photoheterotrophic growth of both WT and zwf. Proteome analysis of soluble and membrane fractions allowed identification of four growth condition-dependent proteins, pentose-5-phosphate 3-epimerase (slr1622), inorganic pyrophosphatase (sll0807), hypothetical protein (slr2032) and ammonium/methylammonium permease (sll0108) revealing details of maintenance of the cellular carbon/nitrogen/phosphate balance under different modes of growth.  相似文献   

20.
1. Glutaminase and glutamine synthetase are simultaneously active in the intact liver, resulting in an energy consuming cycling of glutamine at a rate up to 0.2 mumol per g per min. 2. An increase in portal glutamine concentration was followed by an increased flux through glutaminase, but flux through glutamine synthetase remained unchanged. Glutaminase flux was also increased by ammonium ions or glucagon; these effects were additive. 3. Glutamine synthetase flux was increased by ammonium ions, but this activation was partly overcome by increasing portal glutamine concentrations. Glutamine synthetase flux was slightly increased by glucagon at portal glutamine concentrations of about 0.2-0.3 mM, but was strongly inhibited above 0.6 mMs. 4. During experimental metabolic acidosis there was an increased net release of glutamine by the liver, being due to opposing changes of flux through glutaminase and glutamine synthetase. Conversely, an increased glutamine uptake by the liver during metabolic alkalosis was observed due to an inhibition of glutamine synthetase and an activation of glutaminase. However, the two enzyme activities respond differently depending on whether glucagon or ammonium ions are present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号