首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Expansins and coleoptile elongation in wheat   总被引:2,自引:0,他引:2  
Gao Q  Zhao M  Li F  Guo Q  Xing S  Wang W 《Protoplasma》2008,233(1-2):73-81
Expansins are now generally accepted to be the key regulators of wall extension during plant growth. The aim of this study was to characterize expansins in wheat coleoptiles and determine their roles in regulating cell growth. Endogenous and reconstituted wall extension activities of wheat coleoptiles were measured. The identification of beta-expansins was confirmed on the basis of expansin activity, immunoblot analysis, and beta-expansin inhibition. Expansin activities of wheat coleoptiles were shown to be sensitive to pH and a number of exogenously applied factors, and their optimum pH range was found to be 4.0 to 4.5, close to that of alpha-expansins. They were induced by dithiothreitol, K(+), and Mg(2+), but inhibited by Zn(2+), Cu(2+), Al(3+), and Ca(2+), similar to those found in cucumber hypocotyls. An expansin antibody raised against TaEXPB23, a vegetative expansin of the beta-expansin family, greatly inhibited acid-induced extension of native wheat coleoptiles and only one protein band was recognized in Western blot experiments, suggesting that beta-expansins are the main members affecting cell wall extension of wheat coleoptiles. The growth of wheat coleoptiles was closely related to the activity and expression of expansins. In conclusion, our results suggest the presence of expansins in wheat coleoptiles, and it is possible that most of them are members of the beta-expansin family, but are not group 1 grass pollen allergens. The growth of wheat coleoptiles is intimately correlated with expansin expression, in particularly that of beta-expansins.  相似文献   

3.
4.
We aimed to evaluate whether changes in maize (Zea mays) leaf expansion rate in response to environmental stimuli or developmental gradients are mediated by common or specific expansins, a class of proteins known to enhance cell wall extensibility. Among the 33 maize expansin or putative expansin genes analyzed, 19 were preferentially expressed at some point of the leaf elongation zone and these expansins could be organized into three clusters related to cell division, maximal leaf expansion, and cell wall differentiation. Further analysis of the spatial distribution of expression was carried out for three expansins in leaves displaying a large range of expansion rates due to water deficit, genotype, and leaf developmental stage. With most sources of variation, the three genes showed similar changes in expression and consistent association with changes in leaf expansion. Moreover, our analysis also suggested preferential association of each expansin with elongation, widening, or both of these processes. Finally, using in situ hybridization, expression of two of these genes was increased in load-bearing tissues such as the epidermis and differentiating xylem. Together, these results suggest that some expansins may be preferentially related to elongation and widening after integrating several spatial, environmental, genetic, and developmental cues.  相似文献   

5.
6.
7.
8.
9.
Expansins are cell wall proteins implicated in the control of plant growth via loosening of the extracellular matrix. They are encoded by a large gene family, and data linked to loss of single gene function to support a role of expansins in leaf growth remain limited. Here, we provide a quantitative growth analysis of transgenics containing an inducible artificial microRNA construct designed to down-regulate the expression of a number of expansin genes that an expression analysis indicated are expressed during the development of Arabidopsis (Arabidopsis thaliana) leaf 6. The results support the hypothesis that expansins are required for leaf growth and show that decreased expansin gene expression leads to a more marked repression of growth during the later stage of leaf development. In addition, a histological analysis of leaves in which expansin gene expression was suppressed indicates that, despite smaller leaves, mean cell size was increased. These data provide functional evidence for a role of expansins in leaf growth, indicate the importance of tissue/organ developmental context for the outcome of altered expansin gene expression, and highlight the separation of the outcome of expansin gene expression at the cellular and organ levels.  相似文献   

10.
11.
Expansins and cell growth   总被引:10,自引:0,他引:10  
Expansins are now generally accepted to be key regulators of wall extension during growth. Several alternative roles for expansins have emerged in which the emphasis of their action is on wall breakdown or softening in processes such as fruit ripening, pollination, germination and abscission. Expansins are commonly encoded by substantial gene families and have classically been divided into two subfamilies, referred to as alpha- and beta-expansins. Two further subfamilies have now been identified: gamma-expansins, which were first described in Arabidopsis, and delta-expansins, which were identified in rice and are absent from Arabidopsis. Both are truncated versions of alpha- and beta-expansins, with gamma-expansins representing the amino-terminal half of a mature expansin and delta-expansins the carboxy-terminal half of a beta-expansin. Functional roles for gamma- and delta-expansins have yet to be defined, although recent data indicate a signalling role for gamma-expansins.  相似文献   

12.
An expansin gene expressed in ripening strawberry fruit   总被引:29,自引:0,他引:29       下载免费PDF全文
Tissue softening accompanies the ripening of many fruit and initiates the processes of irreversible deterioration. Expansins are plant cell wall proteins proposed to disrupt hydrogen bonds within the cell wall polymer matrix. Expression of specific expansin genes has been observed in tomato (Lycopersicon esculentum) meristems, expanding tissues, and ripening fruit. It has been proposed that a tomato ripening-regulated expansin might contribute to cell wall polymer disassembly and fruit softening by increasing the accessibility of specific cell wall polymers to hydrolase action. To assess whether ripening-regulated expansins are present in all ripening fruit, we examined expansin gene expression in strawberry (Fragaria x ananassa Duch.). Strawberry differs significantly from tomato in that the fruit is derived from receptacle rather than ovary tissue and strawberry is non-climacteric. A full-length cDNA encoding a ripening-regulated expansin, FaExp2, was isolated from strawberry fruit. The deduced amino acid sequence of FaExp2 is most closely related to an expansin expressed in early tomato development and to expansins expressed in apricot fruit rather than the previously identified tomato ripening-regulated expansin, LeExp1. Nearly all previously identified ripening-regulated genes in strawberry are negatively regulated by auxin. Surprisingly, FaExp2 expression was largely unaffected by auxin. Overall, our results suggest that expansins are a common component of ripening and that non-climacteric signals other than auxin may coordinate the onset of ripening in strawberry.  相似文献   

13.
扩展蛋白是一种细胞壁蛋白,可调节细胞壁的松弛和伸展。目前研究表明,扩展蛋白几乎参与调节植物生长发育的整个进程。扩展蛋白还与植物的多种抗性反应有关,在植物对干旱、高盐以及病虫害等生物胁迫和非生物胁迫响应方面起着重要的调节作用。干旱胁迫下扩展蛋白基因的表达与植物的抗旱性有一定的关系;植物的耐盐性受到扩展蛋白基因表达的影响;淹水促进植物的伸长生长与扩展蛋白的表达密切相关;扩展蛋白调节细胞壁松弛为植物抗病性研究提供了新的思路。  相似文献   

14.
15.
Expansins were first identified as cell wall-loosening proteins; they are involved in regulating cell expansion, fruits softening and many other physiological processes. However, our knowledge about the expansin family members and their evolutionary relationships in fruit trees, such as apple, is limited. In this study, we identified 41 members of the expansin gene family in the genome of apple (Malus × Domestica L. Borkh). Phylogenetic analysis revealed that expansin genes in apple could be divided into four subfamilies according to their gene structures and protein motifs. By phylogenetic analysis of the expansins in five plants (Arabidopsis, rice, poplar, grape and apple), the expansins were divided into 17 subgroups. Our gene duplication analysis revealed that whole-genome and chromosomal-segment duplications contributed to the expansion of Mdexpansins. The microarray and expressed sequence tag (EST) data showed that 34 Mdexpansin genes could be divided into five groups by the EST analysis; they may also play different roles during fruit development. An expression model for MdEXPA16 and MdEXPA20 showed their potential role in developing fruit. Overall, our study provides useful data and novel insights into the functions and regulatory mechanisms of the expansin genes in apple, as well as their evolution and divergence. As the first step towards genome-wide analysis of the expansin genes in apple, our results have established a solid foundation for future studies on the function of the expansin genes in fruit development.  相似文献   

16.
Distribution of expansins in graviresponding maize roots   总被引:5,自引:0,他引:5  
To test if expansins, wall loosening proteins that disrupt binding between microfibrils and cell wall matrix, participate in the differential elongation of graviresponding roots, Zea mays L. cv. Merit roots were gravistimulated and used for immunolocalization with anti-expansin. Western blots showed cross-reaction with two proteins of maize, one of the same mass as cucumber expansin (29 kDa), the second slightly larger (32 kDa). Maize roots contained mainly the larger protein, but both were found in coleoptiles. The expansin distribution in cucumber roots and hypocotyls was similar to the distribution in maize. Roots showed stronger expansin signals on the expanding convex side than the concave flank as early as 30 min after gravistimulation. Treatment with brefeldin A, a vesicle transport inhibitor, or the auxin transport inhibitor, naphthylphthalamic acid, showed delayed graviresponse and the appearance of differential staining. Our results indicate that expansins may be transported and secreted to cell walls via vesicles and function in wall expansion.  相似文献   

17.
The plant-specific expansin proteins constitute an ancient and major gene family known to have roles in regulating diverse biological processes in plants. Although the functions of many expansin genes have been identified in wheat and other species, little is known about the evolution and genomic locations of the expansin genes in wheat (Triticum aestivum). In this study, a total of 87 expansin genes were identified in the wheat genome, including 52 EXPAs, 42 EXPBs and 4 EXLAs. The EXLB gene was not found in the wheat genome. Phylogenetic tree and comparative analysis revealed amplification of the EXPBs in rice, maize and wheat. The predicted wheat expansins were distributed across 14 of 21 chromosomes with different densities, 3 tightly co-located clusters and 15 paralogous pairs, indicating that tandem duplication and segmental duplication events also played roles in the evolution of expansins in wheat. In addition, the gene structures and conserved protein domains of wheat expansins suggest high levels of conservation within the phylogenetic subgroups. Analysis of a published microarray database showed that most wheat expansin genes exhibit different expression levels in different tissues and developmental stages. To our knowledge, this is the first report of a genome-wide analysis of the wheat expansin gene family, which should provide valuable information for further elucidating the classification and putative functions of the entire gene family.  相似文献   

18.
Expansins are plant proteins that have the capacity to induce extension in isolated cell walls and are thought to mediate pH-dependent cell expansion. J.K.C. Rose, H.H. Lee, and A.B. Bennett ([1997] Proc Natl Acad Sci USA 94: 5955-5960) reported the identification of an expansin gene (LeExp1) that is specifically expressed in ripening tomato (Lycopersicon esculentum) fruit where cell wall disassembly, but not cell expansion, is prominent. Expansin expression during fruit ontogeny was examined using antibodies raised to recombinant LeExp1 or a cell elongation-related expansin from cucumber (CsExp1). The LeExp1 antiserum detected expansins in extracts from ripe, but not preripe tomato fruit, in agreement with the pattern of LeExp1 mRNA accumulation. In contrast, antibodies to CsExp1 cross-reacted with expansins in early fruit development and the onset of ripening, but not at a later ripening stage. These data suggest that ripening-related and expansion-related expansin proteins have distinct antigenic epitopes despite overall high sequence identity. Expansin proteins were detected in a range of fruit species and showed considerable variation in abundance; however, appreciable levels of expansin were not present in fruit of the rin or Nr tomato mutants that exhibit delayed and reduced softening. LeExp1 protein accumulation was ethylene-regulated and matched the previously described expression of mRNA, suggesting that expression is not regulated at the level of translation. We report the first detection of expansin activity in several stages of fruit development and while characteristic creep activity was detected in young and developing tomato fruit and in ripe pear, avocado, and pepper, creep activity in ripe tomato showed qualitative differences, suggesting both hydrolytic and expansin activities.  相似文献   

19.
Plant cells are caged within a distended polymeric network (the cell wall), which enlarges by a process of stress relaxation and slippage (creep) of the polysaccharides that make up the load-bearing network of the wall. Protein mediators of wall creep have recently been isolated and characterized. These proteins, called expansins, appear to disrupt the noncovalent adhesion of matrix polysaccharides to cellulose microfibrils, thereby permitting turgor-driven wall enlargement. Expansin activity is specifically expressed in the growing tissues of dicotyledons and monocotyledons. Sequence analysis of cDNAs indicates that expansins are novel proteins, without previously known functional motifs. Comparison of expansin cDNAs from cucumber, pea, Arabidopsis and rice shows that the proteins are highly conserved in size and amino acid sequence. Phylogenetic analysis of expansin sequences suggests that this multigene family diverged before the evolution of angiosperms. Speculation is presented about the role of this gene family in plant development and evolution.  相似文献   

20.
Huang J  Takano T  Akita S 《Planta》2000,211(4):467-473
 Rice is the only cereal in which germination and coleoptile elongation occur in hypoxia or anoxia. Little is known of the molecular basis directly underlying coleoptile cell extension. In this paper, we describe the expression of α-expansin genes in embryos during seed development and young seedlings grown under various oxygen concentrations. The genes Os-EXP2 and Os-EXP1 were predominantly expressed in the developing seeds, mainly in newly developed leaves, coleoptiles, and seminal roots. These expansins expressed in the developing seeds may give cells the potential to expand after seed imbibition begins. In coleoptiles, Os-EXP4 and Os-EXP2 mRNAs were greatly induced by submergence, while they were weakly detected in aerobic or anoxic conditions. Under submerged soil conditions, the signals hybridized with probes Os-EXP4 and Os-EXP2 in coleoptiles were strongest when coleoptiles elongated in the water layer. These data show that expansin gene expression is highly correlated with coleoptile elongation in response to oxygen concentrations. The Os-EXP4 gene was also expressed in leaves, mesocotyls, and coleorhizas of young seedlings. The growth of these tissues was also correlated with the presence of expansins. Therefore, the evidence derived from this study clearly demonstrates that expansins are indispensable for the growing tissues of rice seedlings. Received: 23 December 1999 / Accepted: 24 February 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号