首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The LDL receptor (LDLR) and scavenger receptor class B type I (SR-BI) play physiological roles in LDL and HDL metabolism in vivo. In this study, we explored HDL metabolism in LDLR-deficient mice in comparison with WT littermates. Murine HDL was radiolabeled in the protein (125I) and in the cholesteryl ester (CE) moiety ([3H]). The metabolism of 125I-/[3H]HDL was investigated in plasma and in tissues of mice and in murine hepatocytes. In WT mice, liver and adrenals selectively take up HDL-associated CE ([3H]). In contrast, in LDLR−/− mice, selective HDL CE uptake is significantly reduced in liver and adrenals. In hepatocytes isolated from LDLR−/− mice, selective HDL CE uptake is substantially diminished compared with WT liver cells. Hepatic and adrenal protein expression of lipoprotein receptors SR-BI, cluster of differentiation 36 (CD36), and LDL receptor-related protein 1 (LRP1) was analyzed by immunoblots. The respective protein levels were identical both in hepatic and adrenal membranes prepared from WT or from LDLR−/− mice. In summary, an LDLR deficiency substantially decreases selective HDL CE uptake by liver and adrenals. This decrease is independent from regulation of receptor proteins like SR-BI, CD36, and LRP1. Thus, LDLR expression has a substantial impact on both HDL and LDL metabolism in mice.  相似文献   

2.
Immunological mechanisms have been implicated in the atherogenic process since immunoglobulins are frequently found in the atherosclerotic aorta. We have previously shown that modifications of homologous low density lipoproteins (LDL) make it immunogenic. In particular we have demonstrated that immunization with homologous nonenzymatically glucosylated LDL (glcLDL) results in the generation of antibodies specific to the derivatized lysine residue, and that such antibodies do not react with native LDL epitopes. In the present study we immunized rabbits with reductively glucosylated rabbit LDL and then determined the effects of the circulating antibodies on the rates of plasma clearance and on the sites of degradation of LDL in which varying degrees of glucosylation had been achieved. In normal chow-fed animals, the plasma clearance of glcLDL was retarded in proportion to the extent of lysine derivatization. In contrast, in immunized animals the clearance of glcLDL was greatly accelerated. When 10% or more of lysine residues were derivatized, clearance of glcLDL was accelerated 50- to 100-fold. Even when only 5% of lysines were derivatized, plasma clearance was accelerated 2- to 3-fold. Cholesterol feeding inhibited LDL clearance from plasma and decreased LDL uptake of LDL receptor-rich tissues. In a similar manner, glucosylation of LDL inhibited its ability to bind to the LDL receptor and redirected sites of LDL degradation away from LDL receptor-rich tissues. Thus degradation of glcLDL by liver and adrenal was markedly diminished. The presence of antibodies to glcLDL also redirected sites of degradation of the modified LDL, primarily to the reticuloendothelial cells of the liver. There was no evidence for specific targeting of glcLDL-immunoglobulin complexes to the aorta; instead they were targeted to the liver. These data suggest that the presence of humoral antibodies to modified LDL acts to rapidly remove such LDL from plasma and specifically targets such complexes to reticuloendothelial cells, primarily in the liver. In this manner such antibodies may serve a useful purpose.  相似文献   

3.
We have reported that obese leptin-deficient mice (ob/ob) lacking the low-density lipoprotein receptor (LDLR(-/-)) develop severe hyperlipidemia and spontaneous atherosclerosis. In the present study, we show that obese leptin receptor-deficient mice (db/db) lacking LDLR have a similar phenotype, even in the presence of elevated plasma leptin levels. We investigated the mechanism for the hyperlipidemia in obese LDLR(-/-) mice by comparing lipoprotein production and clearance rates in C57BL/6, ob/ob, LDLR(-/-) and ob/ob;LDLR(-/-) mice. Hepatic triglyceride production rates were equally increased ( approximately 1.4-fold, P<.05) in both LDLR(-/-) and ob/ob;LDLR(-/-) mice compared to C57BL/6 and ob/ob mice. LDL clearance was decreased ( approximately 1.3- fold, P<.01) to a similar extent in LDLR(-/-) and ob/ob;LDLR(-/-) mice compared to C57BL/6 and ob/ob controls. While VLDL clearance was delayed in LDLR(-/-) compared to C57BL/6 and ob/ob mice (2-fold, P<.001), this delay was exaggerated in ob/ob;LDLR(-/-) mice (3.8-fold, P<001). The VLDL clearance defects were due to decreased hepatic uptake compared to C57BL/6 (54% and 26% for LDLR(-/-) and ob/ob;LDLR(-/-), respectively, P<.001). When VLDL was collected from C57BL/6, ob/ob, LDLR(-/-), and ob/ob;LDLR(-/-) donors and injected into LDLR(-/-) recipient mice, counts remaining in the liver were 1.4-fold elevated in mice receiving LDLR(-/-) VLDL and 2-fold increased in mice receiving ob/ob;LDLR(-/-) VLDL compared to controls receiving C57BL/6 VLDL (P<.01). Thus, the increase in plasma lipoproteins in ob/ob;LDLR(-/-) mice is caused by delayed VLDL clearance. This appears to be due to defects in both the liver and the lipoproteins themselves in these obese mice.  相似文献   

4.
The plasma clearance and tissue distribution of radioiodinated low-density lipoprotein (LDL), beta-very low density lipoprotein (beta-VLDL), and acetoacetylated LDL were studied in cholesterol-fed rabbits. Radioiodinated LDL ([125I]LDL) was cleared more slowly than either [125I]beta-VLDL or acetoacetylated-[125I]LDL and its fractional catabolic rate was one-half that of [125I]beta-VLDL and one-ninth that of acetoacetylated-[125I]LDL. Forty-eight hours after the injection of the labeled lipoproteins, the hepatic uptake was the greatest among the organs evaluated with the uptake of [125I]LDL being one-third that of either [125I]beta-VLDL or acetoacetylated-[125I]LDL. The reduction in the hepatic uptake of LDL due to a down-regulation of the receptors would account for this retarded plasma clearance.  相似文献   

5.
Familial hypercholesterolemia is an inherited disease in humans, caused by a deficiency of low density lipoprotein (LDL) receptors, that we have used as a model for developing liver-directed gene therapies. Our strategy is to reconstitute hepatic LDL receptor expression in vivo by administering a DNA-protein complex that is capable of targeting the delivery of functional LDL receptor genes to hepatocytes. Infusion of this DNA-protein complex into the peripheral circulation of a rabbit animal model for familial hypercholesterolemia resulted in hepatocyte-specific gene transfer and a temporary amelioration of hypercholesterolemia. This noninvasive approach to gene therapy should have applications in the treatment of a wide spectrum of human diseases.  相似文献   

6.
The role of macrophage lipoprotein lipase (LPL) expression in atherosclerotic lesion formation was examined in low density lipoprotein receptor (LDLR(-/-)) mice using dietary conditions designed to induce either fatty streak lesions or complex atherosclerotic lesions. First, LDLR(-/-) mice chimeric for macrophage LPL expression were created by transplantation of lethally irradiated female LDLR(-/-) mice with LPL(-/-) (n = 12) or LPL(+/+) (n = 14) fetal liver cells as a source of hematopoietic cells. To induce fatty streak lesions, these mice were fed a Western diet for 8 weeks, resulting in severe hypercholesterolemia. There were no differences in plasma post-heparin LPL activity, serum lipid levels, or lipoprotein distribution between these two groups. The mean lesion area in the proximal aorta in LPL(-/-) --> LDLR(-/-) mice was significantly reduced by 33% compared with LPL(+/+) --> LDLR(-/-) mice, and a similar reduction (38%) in lesion area was found by en face analysis of the aortae. To induce complex atherosclerotic lesions, female LDLR(-/-) mice were lethally irradiated, transplanted with LPL(-/-) (n = 14), LPL(+/-) (n = 13), or LPL(+/+) (n = 14) fetal liver cells, and fed the Western diet for 19 weeks. Serum cholesterol and triglyceride levels did not differ between the three groups. After 19 weeks of diet, the lesions in the proximal aorta were complex with relatively few macrophages expressing LPL protein and mRNA in LPL(+/+) --> LDLR(-/-) mice. Analysis of cross-sections of the proximal aorta demonstrated no differences in the extent of lesion area between the groups, whereas en face analysis of the aortae revealed a dose-dependent effect of macrophage LPL on mean aortic lesion area in LPL(-/-) --> LDLR(-/-), LPL(-/+) --> LDLR(-/-), and LPL(+/+) --> LDLR(-/-) mice (1.8 +/- 0. 2%, 3.5 +/- 0.5% and 5.9 +/- 0.8%, respectively). Taken together, these data indicate that macrophage LPL expression in the artery wall promotes atherogenesis during foam cell lesion formation, but this impact may be limited to macrophage-rich lesions.  相似文献   

7.
These studies were undertaken to determine the role of receptor-independent low density lipoprotein (LDL) transport in cholesterol balance across individual tissues and the whole animal. Homologous LDL, which measures total LDL transport, and methylated heterologous LDL, which measures receptor-independent LDL uptake, were cleared from the plasma at very different rates in the NZ control rabbit (3,900 and 1,010 microliter/hr per kg, respectively) whereas in the WHHL rabbit both preparations were cleared at essentially the same rate (approximately 1,070 microliter/hr per kg). Receptor-independent LDL clearance was detected in all tissues of the NZ control rabbit and these varied from 32 (spleen) to less than 0.5 (skeletal muscle) microliter/hr per g. In contrast, receptor-dependent LDL uptake was found in only about half of these same organs. In the WHHL rabbit, the rates of receptor-independent LDL transport were the same as in the NZ control rabbit, but no receptor-dependent uptake was detected. Using these clearance values it was calculated that in the control rabbit nearly 70% of LDL-cholesterol was removed from the plasma by the liver and 89% of this was receptor-mediated. With loss of receptor activity, however, the burden of LDL degradation was shifted away from the liver so that approximately 70% of LDL-cholesterol uptake took place in the extra-hepatic tissues of the WHHL rabbit. Thus, in the normal animal, the primary function of receptor-dependent LDL transport is to promote the rapid uptake and disposal of plasma LDL by the liver. In the absence of such receptor activity, cholesterol balance across most individual organs and the whole animal remains essentially normal and is mediated by the receptor-independent process. Because of the much lower absolute clearance rates manifested by this transport mechanism, however, substantial and predictable elevations in the circulating plasma LDL-cholesterol levels are required to maintain this balance.  相似文献   

8.
The precursor-product relationship of very low density (VLDL) and low density lipoproteins (LDL) was studied. VLDL obtained from normal (NTG) and hypertriglyceridemic (HTG) subjects was fractionated by zonal ultracentrifugation and subjected to in vitro lipolysis. The individual subfractions and their isolated lipolysis products, as well as IDL and LDL, were rigorously characterized. A striking difference in the contribution of cholesteryl ester to VLDL is noted. In NTG subfractions, the cholesteryl ester to protein ratio increases with decreasing density (VLDL-I----VLDL-III). This is the expected result of triglyceride loss through lipolysis and cholesteryl ester gain through core-lipid transfer protein action. In HTG subfractions there is an abnormal enrichment of cholesteryl esters that is most marked in VLDL-I and nearly absent in VLDL-III. Thus, the trend of the cholesteryl ester to protein ratios is reversed, being highest in HTG-VLDL-I and lowest in VLDL-III. This is incompatible with the precursor-product relationship described by the VLDL----IDL----LDL cascade. In vitro lipolysis studies support the conclusion that not all HTG-VLDL can be metabolized to LDL. While all NTG subfractions yield products that are LDL-like in size, density, and composition, only HTG-VLDL-III, whose composition is most similar to normal, does so. HTG VLDL-I and VLDL-II products are large and light populations that are highly enriched in cholesteryl ester. We suggest that this abnormal enrichment of HTG-VLDL with cholesteryl ester results from the prolonged action of core-lipid transfer protein on the slowly metabolized VLDL mass. This excess cholesteryl ester load, unaffected by the process of VLDL catabolism, remains entrapped within the abnormal particle. Therefore, lipolysis yields an abnormal, cholesteryl ester-rich product that can never become LDL.  相似文献   

9.
To establish low density lipoprotein receptor (LDLR) mutant rats as a hypercholesterolemia and atherosclerosis model, we screened the rat LDLR gene for mutations using an N-ethyl-N-nitrosourea mutagenesis archive of rat gene data, and identified five mutations in its introns and one missense mutation (478T>A) in exon 4. The C160S mutation was located in the ligand binding domain of LDLR and was revealed to be equivalent to mutations (C160Y/G) identified in human familial hypercholesterolemia (FH) patients. The wild type, heterozygous, and homozygous mutant rats were fed a normal chow diet or a high fat high cholesterol (HFHC) diet from the age of 10 weeks for 16 weeks. The LDLR homozygous mutants fed the normal chow diet showed higher levels of plasma total cholesterol and LDL cholesterol than the wild type rats. When fed the HFHC diet, the homozygous mutant rats exhibited severe hyperlipidemia and significant lipid deposition from the aortic arch to the abdominal aorta as well as in the aortic valves. Furthermore, the female homozygous mutants also developed xanthomatosis in their paws. In conclusion, we suggest that LDLR mutant rats are a useful novel animal model of hypercholesterolemia and atherosclerosis.  相似文献   

10.
Low density lipoprotein and high density lipoprotein were isolated from rat serum by sequential ultracentrifugation in the density intervals 1.025-1.050 g/ml and 1.125-1.21 g/ml, respectively. The isolated lipoproteins were radioiodinated using ICl. Low density lipoprotein was further purified by concanavalin A affinity chromatography and concentrated by ultracentrifugation. 95% of the purified low density lipoprotein radioactivity was precipitable by tetramethylurea, while only 4% was associated with lipids. The radioiodinated high density lipoprotein was incubated for 1 h at 4 degrees C with unlabelled very low density lipoprotein, followed by reisolation by sequential ultracentrifugation. Only 3% of the radioactivity was associated with lipids and 90% was present on apolipoprotein A-I. The serum decay curves of labelled and subsequently purified rat low and high density lipoprotein, measured over a period of 28 h, clearly exhibited more than one component, in contrast to the monoexponential decay curves of iodinated human low density lipoprotein. The decay curves were not affected by the methods used to purify the LDL and HDL preparations. The catabolic sites of the labelled rat lipoproteins were analyzed in vivo using leupeptin-treated rats. In vivo treatment of rats with leupeptin did not affect the rate of disappearance from serum of intravenously injected labelled rat low density lipoprotein and high density lipoprotein. Leupeptin-dependent accumulation of radioiodine occurred almost exclusively in the liver after intravenous injection of iodinated low density lipoprotein, while both the liver and the kidneys showed leupeptin-dependent accumulation of radioactivity after injection of iodinated high density lipoprotein.  相似文献   

11.
The turnover and composition of normal and hyperlipemic (h.l.) low density lipoproteins (LDL) of rabbits, were studied. They were obtained by ultracentrifugation and labeled by Bolton and Hunter method. Normal and h.l. LDL labeled with 125I were injected directly and crossed to both groups of rabbits. Normal and h.l. LDL had a different protein/lipid ratio. The analysis of fractional catabolic rate of LDL and the half-life of the phases of rapid and slow decay, show that h.l. LDL had a fractional catabolic rate that is the half of normal LDL and an increased half life of the phases of rapid and slow decay. Apparently, two factors: a) defective LDL receptor in the h.l. rabbit and b) different physico-chemical properties between normal and h.l. LDL, would be the reason for this difference. Besides, when normal and h.l. 125I LDL were injected into h.l. and normal rabbit, respectively, LDL changed according to the injected rabbit, as can be deduced from the analysis of the half life of the phase of slow decay.  相似文献   

12.
We previously reported that upper thoracic exposure to ionizing radiation (IR) accelerates fatty streak formation in C57BL/6 mice and that such effects are inhibited by overexpression of the antioxidant enzyme CuZn-superoxide dismutase (SOD). Notably, IR-accelerated lesion formation is strictly dependent on a high fat diet (i.e., atherogenic lipoproteins) but does not involve alterations in circulating lipid or lipoprotein levels. We thus proposed that IR promotes changes in the artery wall that enhance the deposition of lipoprotein lipids. To address this hypothesis, we examined the effects of IR on aortic accumulation and degradation of low density lipoproteins (LDL). Ten-week-old C57BL/6 mice were exposed to a single (8-Gy) dose of (60)Co radiation to the upper thoracic area or were sham irradiated (controls) and were then placed on the high fat diet. Five days postexposure, the mice received either (125)I-labeled LDL ((125)I-LDL) (which was used to measure intact LDL) or (125)I-labeled tyramine cellobiose ((125)I-TC)-LDL (which was used to measure both intact and cell-degraded LDL) via tail vein injection. On the basis of trichloroacetic acid (TCA)-precipitable counts in retroorbital blood samples, > or =95% of donor LDL was cleared within 24 h and there were no differences in time-averaged plasma concentrations of the two forms of LDL among irradiated and control mice. Aortic values increased markedly within the first hour and thereafter exhibited a slow increase up to 24 h. There were no differences between irradiated and control mice at 1 h, when values primarily reflected LDL entry, but a divergence was observed thereafter. At 24 h, (125)I-TC-associated counts were 1.8-fold higher in irradiated mice (P = 0.10). In contrast, (125)I-LDL-associated counts were 30% lower in irradiated mice (P< 0.05), suggesting that most of the retained (125)I-TC was associated with LDL degradation products. Consistent with the proposed involvement of oxidative or redox-regulated events, IR-induced LDL degradation was lower in SOD-transgenic than wild-type mice (P<0.05). The importance of LDL oxidation was suggested by observations that IR-induced LDL degradation was significantly reduced by preenriching LDL with alpha-tocopherol. On the basis of these results, we propose that IR elicits SOD-inhibitable changes in the artery wall that enhance LDL oxidation and degradation leading to the deposition of LDL-borne lipids. These studies provide additional support for the role of oxidation in lipoprotein lipid deposition and atherogenesis and suggest that IR promotes an arterial environment that stimulates this process in vivo.  相似文献   

13.
Biochemical, immunological, and genetic techniques were used to investigate the genetic defects in three types of low density lipoprotein (LDL) receptor-deficient hamster cells. The previously isolated ldlB, ldlC, and ldlD mutants all synthesized essentially normal amounts of a 125,000-D precursor form of the LDL receptor, but were unable to process this receptor to the mature form of 155,000 D. Instead, these mutants produced abnormally small, heterogeneous receptors that reached the cell surface but were rapidly degraded thereafter. The abnormal sizes of the LDL receptors in these cells were due to defective processing of the LDL receptor's N- and O-linked carbohydrate chains. Processing defects in these cells appeared to be general since the ldlB, ldlC, and ldlD mutants also showed defective glycosylation of a viral glycoprotein, alterations in glycolipid synthesis, and changes in resistance to several toxic lectins. Preliminary structural studies suggested that these cells had defects in multiple stages of the Golgi-associated processing reactions responsible for synthesis of glycolipids and in the N-linked and O-linked carbohydrate chains of glycoproteins. Comparisons between the ldl mutants and a large number of previously isolated CHO glycosylation defective mutants showed that the genetic defects in ldlB, ldlC, and ldlD cells were unique and that only very specific types of carbohydrate alteration could dramatically affect LDL receptor function.  相似文献   

14.
These studies have been carried out in rabbits with alloxan-induced diabetes in order to see if insulin deficiency affects low density lipoprotein (LDL) catabolism. The results showed that plasma LDL-cholesterol was lower in diabetic rabbits, associated with a fall in the cholesterol to protein ratio of LDL particles. In addition, 125I-LDL disappeared more slowly from plasma of diabetic rabbits, leading to a significant reduction in fractional catabolic rate and a decrease in residence time of 125I-LDL. These data demonstrated that LDL composition and catabolism are greatly altered as a consequence of insulin deficiency.  相似文献   

15.
Low density lipoprotein (LDL) is catabolized by both receptor-dependent and receptor-independent pathways; methylated LDL (MeLDL) is catabolized only by receptor-independent mechanisms. Rats were injected with either LDL or MeLDL labeled with [14C]sucrose and the tissue sites of degradation were determined 24 h later. On degradation, the 14C-labeled ligand remains trapped intracellularly as a cumulative measure of degradation. The fractional catabolic rate (FCR) of [14C]sucrose-MeLDL was lower than that of [14C]sucrose-LDL (0.056 +/- 0.015 versus 0.118 +/- 0.025 h-1, p less than 0.01). Liver was the predominant site of catabolism of both LDL and MeLDL; more than 85% of catabolism was attributable to parenchymal cells in both cases. The fraction of the plasma LDL pool "cleared" per tissue weight per unit of time was determined for individual tissues. The differences in these rates for LDL and MeLDL are an approximation of receptor-mediated uptake of LDL. According to this method, 67.4% of hepatic uptake was attributable to receptors, as was 69.5% of adrenal, 65.4% of ovarian, 52.4% of intestinal, and 44.2% of renal uptake. In other studies, rats were continuously infused with LDL to down-regulate and saturate receptor prior to injection of labeled LDL or MeLDL. Rats infused with LDL exhibited a lower FCR for [14C]sucrose-LDL compared to controls (0.077 versus 0.120 h-1); the FCR for sucrose-MeLDL was unchanged by LDL infusion. The fractional degradation rate of [14C]sucrose-LDL by individual tissues was lowered by LDL infusion in liver, adrenal, ovary, and intestine (41.4, 57.3, 23.1, and 32.4% lower than controls, respectively). The determination of receptor dependency by this independent approach supports the conclusions reached using [14C]sucrose-LDL and [14C]sucrose-MeLDL in normolipemic animals.  相似文献   

16.
We investigated the properties of very low density lipoprotein (VLDL) from two types of Watanabe heritable hyperlipidemic (WHHL) rabbits: one with a high incidence of coronary atherosclerosis (type 1), and the other with a low incidence (type 2). When incubated with mouse peritoneal macrophages, VLDL from type 1 WHHL rabbit (type 1-VLDL) stimulated cholesteryl ester synthesis 10.5-fold more than VLDL from the type 2 WHHL rabbit (type 2-VLDL) did. Moreover, a similar difference was seen in the stimulation of cholesteryl ester synthesis in peritoneal macrophages isolated from the WHHL rabbits. The mass ratios of cholesterol to protein in type 1- and type 2-VLDL were 5.69 and 2.05, respectively. Agarose gel electrophoresis of type 1-VLDL showed beta mobility, and that of type 2-VLDL showed pre-beta mobility. No difference was seen between the sizes of VLDL particles of the two types. The amount of apolipoprotein E in type 1-VLDL was greater than that in type 2-VLDL. In conclusion, the difference between type 1 and type 2 WHHL rabbits is at least partly due to the presence in type 1 animals of VLDL particles rich in cholesteryl esters and apolipoprotein E, particles which are very similar to beta-VLDL in conformation.  相似文献   

17.
(1) The receptor mediated endocytosis of homologous LDL by human skin fibroblasts can be significantly enhanced by prior incubation of the cells with sphingolipids. Gangliosides GM1 or GD1a, their desialylated derivatives and sphingosine stimulate binding and uptake to LDL by up to 40% of normal values. The effect is observed in normal fibroblasts, LDL receptor deficient fibroblasts or in tunicamycin-treated cells with a reduced number of functional receptors but is dependent on the time of preincubation of the cells and the concentration of the sphingolipid in the medium. (2) Detailed studies on the ganglioside effect revealed, that cell bound gangliosides intensify the LDL-induced supression of [14C]acetate incorporation into cholesterol. (3) The receptor dependence and relative receptor specificity of the sphingolipid effect is evident from the fact that (a) after complete suppression of receptor synthesis gangliosides fail to stimulate uptake of LDL, that (b) fatty acids or lipids not containing sphingosine are without effect and that (c) the receptor specific internalisation of α2-macroglobulin or epidermal growth factor is not influenced by exogenous sphingolipids.  相似文献   

18.
Lysophosphatidylcholine (LPC) is considered a major proatherogenic component of oxidized low density lipoprotein based on its proinflammatory actions in vitro. LPC stimulates macrophage and T-cell chemotaxis via the G protein-coupled receptor G2A and may thus promote inflammatory cell infiltration during atherosclerotic lesion development. However, G2A also mediates proapoptotic effects of LPC and may therefore promote the death of inflammatory cells within developing lesions. To determine how these effects of LPC modify atherogenesis, we examined atherosclerotic lesion development in G2A-sufficient and G2A-deficient low density lipoprotein receptor knockout mice. Although LPC species capable of activating G2A-dependent responses were increased during lesion development, G2A-deficient mice developed lesions similar in size to those in their G2A-sufficient counterparts. Loss of G2A during atherosclerotic lesion development did not reduce macrophage and T-cell infiltration but instead resulted in increased lesional macrophage content associated with reduced numbers of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeled cells and decreased collagen deposition. These data indicate that the ability of LPC to stimulate macrophage and T-cell chemotaxis via G2A is not manifested in vivo and that G2A-mediated proapoptotic rather than chemotactic action is most penetrant during atherogenesis and may modify the stability of atherosclerotic lesions by promoting macrophage death.  相似文献   

19.
A mutant low density lipoprotein (LDL) receptor with abnormal ligand binding and recycling abilities was found in a patient with familial hypercholesterolemia. The molecular weights of the precursor and the mature form of the receptor were 72,000 and 115,000, respectively, which were about 45,000 smaller than those of the normal receptor. The mutant receptor was concluded to be present on the cell surface because the mature form was susceptible to Pronase digestion, and specific monoclonal antibody against the LDL receptor (IgG-C7) could bind to the cell surface. This mutant receptor could not bind LDL, but could bind other ligands for the LDL receptor, beta-migrating very low density lipoprotein, and the apolipoprotein E-lipid complex. After the receptor bound to the ligand, it disappeared from the cell surface of the mutant cells faster than that of normal cells, showing that, in the mutant cells, the receptor was not efficiently recycled back to the cell surface. Southern blotting of the genomic DNA from the patient showed a large deletion of about 12 kilobases around the epidermal growth factor precursor homology domain. For further characterization of the mutant, we cloned a 9.4-kilobase EcoRI/XbaI fragment, which was expected to contain the deletion joint. Mapping and sequencing analyses of the receptor gene showed that exons 7-14 were deleted. The nucleotide sequence suggested that this mutation may have occurred by recombination between repetitive Alu sequences in introns 6 and 14 of the receptor gene. The recombination brought about a complete deletion of the gene coding the epidermal growth factor precursor homology domain. The characteristics of the receptor protein produced by this mutation were similar to those of an artificial mutation constructed by Davis et al. (Davis, C. G., Goldstein, J. L., Südhof, T. C., Anderson, R. G. W., Russell, D. W., and Brown, M. S. (1987) Nature 326, 760-765) in which the whole gene coding this domain was deleted. The clinical phenotype of the patient having this mutation was similar to that of so-called "receptor-defective" type familial hypercholesterolemia, in which cells show detectable, but markedly reduced activity of the LDL receptor.  相似文献   

20.
Familial hypercholesterolemia (FH) is a congenital disorder of plasma low density lipoprotein (LDL) metabolism resulting from the defect or malfunction of LDL receptors on the cell surface. In most cases of FH, LDL binding to the cell surface is disrupted, while in some special cases LDL binding to the receptors occurs normally but the internalization of the bound LDL is inhibited (internalization-defective type). We studied the biosynthesis and transport of the LDL receptor in cultured fibroblasts obtained from one of the internalization-defective mutants by using [35S]methionine labeling and detection with anti-LDL receptor antibody. The mutant cells synthesized LDL receptors with a molecular weight slightly smaller than normal as shown in SDS-polyacrylamide gel electrophoresis. A large portion of the synthesized receptors was secreted into the medium while the other portion was associated with the cells. The apparent molecular weight of the receptors secreted into the medium was about 10 kDa smaller than that of the cell-associated receptors. The cell-associated form was converted into the secreted form following a prolonged incubation of the cells, showing the precursor-product relationship between the cell-associated and the secreted forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号