首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated the effects of destruction of the geniculo-hypothalamic tract (GHT) on the circadian system of golden hamsters. In the first experiment, intact hamsters were housed in constant darkness, and phase shifts in running-wheel activity rhythms were assessed following 15-min light pulses administered at circadian time (CT) 12 (defined as the beginning of activity), CT 14, CT 18, and CT 20. Responses to light pulses at the same CTs were then reassessed after GHT lesions. Hamsters with complete lesions showed decreases in phase advances caused by light pulses at CT 18 and CT 20. Phase delays elicited by light at CT 12 and CT 14 were not altered. In a second study, intact and GHT-ablated hamsters housed in constant light received 6-hr dark pulses at various CTs. Hamsters with complete GHT ablation showed smaller advances than controls to dark pulses centered on CT 8-10. After 110 days in constant light, 7 of 10 intact hamsters showed splitting of their activity rhythms into two components, while only 1 of the 8 similarly treated ablated hamsters displayed dissociated activity components. Ablated hamsters had significantly shorter free-running periods during the first 35 days of exposure to constant light than did the intact hamsters. These results demonstrate that destruction of the GHT in the hamster alters phase shifting in response to periods of light or dark, and they indicate a role for the GHT in mediating several photic effects on the circadian system.  相似文献   

2.
This article describes the phase response curve (PRC), the effect of light on Fos immunoreactivity (Fos-IR) in the suprachiasmatic nucleus (SCN), and the effect of SCN lesions on circadian rhythms in the murid rodent, Arvicanthis niloticus. In this species, all individuals are diurnal when housed without a running wheel, but running in a wheel induces a nocturnal pattern in some individuals. First, the authors characterized the PRC in animals with either the nocturnal or diurnal pattern. Both groups of animals were less affected by light during the middle of the subjective day than during the night and were phase delayed and phase advanced by pulses in the early and late subjective night, respectively. Second, the authors characterized the Fos response to light at circadian times 5, 14, or 22. Light induced an increase in Fos-IR within the SCN during the subjective night but not subjective day; this effect was especially pronounced in the ventral SCN, where retinal inputs are most concentrated, but was also evident in other regions. Both light and time influenced Fos-IR within the lower subparaventricular area. Third, SCN lesions caused animals to become arrhythmic when housed in a light-dark cycle as well as constant darkness. In summary, Arvicanthis appear to be very similar to nocturnal rodents with respect to their PRC, temporal patterns of light-induced Fos expression in the SCN, and the effects of SCN lesions on activity rhythms.  相似文献   

3.
A variety of nonphotic influences on circadian rhythms have been documented in mammals. In hamsters, one such influence, running in a novel wheel, is mediated in part by the pathway extending from neuropeptide-Y (NPY)-containing cells within the intergeniculate leaflet (IGL) of the thalamus to the hypothalamic suprachiasmatic nucleus (SCN). Arvicanthis niloticus is a species in which all individuals are diurnal with respect to general activity and body temperature when they are housed without a running wheel, but access to a running wheel induces a subset of individuals to become nocturnal. In the first study, the authors evaluated the possibility that nocturnal and diurnal patterns of wheel running in Arvicanthis are correlated with differences in IGL function. Adult male Arvicanthis housed in a 12:12 light-dark (LD) cycle were monitored in wheels, classified as nocturnal or diurnal, and then perfused either 4 h after lights-on or 4 h after lights-off. Sections through the intergeniculate leaflet were processed for immunohistochemical labeling of Fos and NPY. The percentage of NPY cells that expressed Fos was significantly influenced by an interaction between time of day and phenotype such that it rose from night to day in diurnal animals, and from day to night in nocturnal animals. In the second experiment, the authors established that running in a wheel actually induces Fos in the IGL of Arvicanthis. Specifically, the proportion of NPY cells expressing Fos was increased by access to wheels in nocturnal animals at night and in diurnal animals during the day. In the third experiment, the authors established that lesions of the IGL eliminate NPY fibers within the SCN, suggesting that these IGL cells project to the SCN in this species as has been established in other rodents. Together, these data demonstrate a clear difference in NPY cell function in nocturnal and diurnal Arvicanthis that appears to be caused, at least in part, by the differences in their wheel-running patterns, and that NPY cells within the IGL project to the SCN in Arvicanthis.  相似文献   

4.
Institutional animal care committees may one day require for the welfare of captive hamsters more floor space and the introduction of tunnels and toys. As hamsters are popular animal subjects in chronobiological research, and as clock phase is usually measured through running wheel activity, it is important to determine what effect cage enrichment might have on daily wheel use. Here the daily number of wheel revolutions, the daily duration of the running activity phase, the phase relationship between lights-off and onset of running activity, and the free-running period of circadian activity rhythms were measured in Syrian hamsters, Mesocricetus auratus, housed in single cages or in multiple cages linked by tunnels and supplied with commercial wooden toys. Free-running periodicity was not affected by cage enrichment. In multiple-cage systems, there were fewer daily revolutions, shorter wheel-running activity phases, and delayed running activity onsets. These effects, however, were small as compared to interindividual and week-to-week variation. They were statistically significant only under a light:dark cycle, not in constant darkness, and only when interindividual variation was eliminated through a paired design or when the number of cages was increased to five (the maximum tested). Daily wheel use is thus affected by cage enrichment, but only slightly.  相似文献   

5.
Locomotor activity rhythms in a significant proportion of Siberian hamsters (Phodopus sungorus sungorus) become arrhythmic after the light-dark (LD) cycle is phase-delayed by 5 h. Arrhythmia is apparent within a few days and persists indefinitely despite the presence of the photocycle. The failure of arrhythmic hamsters to regain rhythms while housed in the LD cycle, as well as the lack of any masking of activity, suggested that the circadian system of these animals had become insensitive to light. We tested this hypothesis by examining light-induced gene expression in the suprachiasmatic nucleus (SCN). Several weeks after the phase delay, arrhythmic and re-entrained hamsters were housed in constant darkness (DD) for 24 h and administered a 30-min light pulse 2 h after predicted dark onset because light induces c-fos and per1 genes at this time in entrained animals. Brains were then removed, and tissue sections containing the SCN were processed for in situ hybridization and probed with c-fos and per1 mRNA probes made from Siberian hamster cDNA. Contrary to our prediction, light pulses induced robust expression of both c-fos and per1 in all re-entrained and arrhythmic hamsters. A separate group of animals held in DD for 10 days after the light pulse remained arrhythmic. Thus, even though the SCN of these animals responded to light, neither the LD cycle nor DD restored rhythms, as it does in other species made arrhythmic by constant light (LL). These results suggest that different mechanisms underlie arrhythmicity induced by LL or by a phase delay of the LD cycle. Whereas LL induces arrhythmicity by desynchronizing SCN neurons, phase delay-induced arrhythmicity may be due to a loss of circadian rhythms at the level of individual SCN neurons.  相似文献   

6.
Aging alters numerous aspects of circadian biology, including the amplitude of rhythms generated by the suprachiasmatic nuclei (SCN) of the hypothalamus, the site of the central circadian pacemaker in mammals, and the response of the pacemaker to environmental stimuli such as light. Although previous studies have described molecular correlates of these behavioral changes, to date only 1 study in rats has attempted to determine if there are age-related changes in the expression of genes that comprise the circadian clock itself. We used in situ hybridization to examine the effects of age on the circadian pattern of expression of a subset of the genes that comprise the molecular machinery of the circadian clock in golden hamsters. Here we report that age alters the 24-h expression profile of Clock and its binding partner Bmal1 in the hamster SCN. There is no effect of age on the 24-h profile of either Per1 or Per2 when hamsters are housed in constant darkness. We also found that light pulses, which induce smaller phase shifts in old animals than in young, lead to decreased induction of Per1, but not of Per2, in the SCN of old hamsters.  相似文献   

7.
8.
Most of the biochemical, physiological and behavioural events in living organisms show diurnal fluctuations, normally synchronized with 24-h environmental rhythms, such as the light-dark cycle. The suprachiasmatic nucleus (SCN) of the hypothalamus is considered to be a pacemaker of the circadian rhythms in several mammals. The light-dark cycle is the primary synchronizing agent for many of the circadian rhythms which are regulated by the SCN. The photic information reaches the SCN also through a neuropeptide Y(NPY)-like immunoreactive pathway from the ventro-lateral geniculate nucleus. We found that in 12-h-dark and 12-h-light housed rats the NPY-like immunoreactive innervation of the ventro-lateral part of the SCN shows a 24 h rhythm with values rising gradually during the light phase and falling during the dark phase. Besides this rhythm, we found two peaks corresponding to the switching on and switching off of the light. The average level of NPY-like immunoreactivity, as assessed by means of semiquantitative immunocytochemistry and expressed in 'arbitrary units', is reduced in rats housed in total darkness for 2 weeks. These results confirm the physiological role of NPY in the timing of the circadian activity of the SCN.  相似文献   

9.
"Splitting" of circadian activity rhythms in Syrian hamsters maintained in constant light appears to be the consequence of a reorganized SCN, with left and right halves oscillating in antiphase; in split hamsters, high mRNA levels characteristic of day and night are simultaneously expressed on opposite sides of the paired SCN. To visualize the splitting phenomenon at a cellular level, immunohistochemical c-Fos protein expression in the SCN and brains of split hamsters was analyzed. One side of the split SCN exhibited relatively high c-Fos levels, in a pattern resembling that seen in normal, unsplit hamsters during subjective day in constant darkness; the opposite side was labeled only within a central-dorsolateral area of the caudal SCN, in a region that likely coincides with a photo-responsive, glutamate receptor antagonist-insensitive, pERK-expressing cluster of cells previously identified by other laboratories. Outside the SCN, visual inspection revealed an obvious left-right asymmetry of c-Fos expression in the medial preoptic nucleus and subparaventricular zone of split hamsters killed during the inactive phase and in the medial division of the lateral habenula during the active phase (when the hamsters were running in their wheels). Roles for the dorsolateral SCN and the mediolateral habenula in circadian timekeeping are not yet understood.  相似文献   

10.
Circadian rhythms in Syrian hamsters can be phase advanced by activity or arousal stimulated during the daily rest phase ("subjective day"). A widely used method for stimulating activity is confinement to a novel wheel. Some hamsters decline to run, and some procedures may reduce the probability of running. The authors evaluated food deprivation (FD) as a method to promote running. Given evidence that perturbations of cell metabolism or glucose availability may affect circadian clock function in some tissues or species, they also assessed the effects of FD on free-running circadian phase, resetting responses to photic and nonphotic stimuli and plasma glucose. In constant light, a 27-h fast significantly increased running in a novel wheel and marginally increased the average size of resulting phase shifts. FD, without novel wheel confinement, was associated with some very large phase shifts or disruption of rhythmicity in hamsters that spontaneously ran in their home wheels during the subjective day. Hamsters that ran only during the usual active phase (subjective night) or that were prevented from running did not exhibit phase shifts, despite refeeding in the mid-subjective day. Using an Aschoff Type II design for measuring shifts, a 27-h fast significantly increased the number of hamsters that ran continuously when confined to a novel wheel but did not affect the dose-response relation between the amount of running and the size of the resulting shift. A day of fasting also did not affect the size of phase delay or advance shifts to 30-min light pulses in the subjective night. Plasma glucose was markedly reduced by wheel running in combination with fasting but was increased by running in nonfasted hamsters. These results establish FD as a useful tool for stimulating activity in home cage or novel wheels and indicate that in Syrian hamsters, significant alterations in glucose availability, associated with running, fasting, and refeeding, have surprisingly little effect on circadian pacemaker function.  相似文献   

11.
Circadian (~24 h) rhythms of cellular network plasticity in the central circadian clock, the suprachiasmatic nucleus (SCN), have been described. The neuronal network in the SCN regulates photic resetting of the circadian clock as well as stability of the circadian system during both entrained and constant conditions. EphA4, a cell adhesion molecule regulating synaptic plasticity by controlling connections of neurons and astrocytes, is expressed in the SCN. To address whether EphA4 plays a role in circadian photoreception and influences the neuronal network of the SCN, we have analyzed circadian wheel‐running behavior of EphA4 knockout (EphA4?/?) mice under different light conditions and upon photic resetting, as well as their light‐induced protein response in the SCN. EphA4?/? mice exhibited reduced wheel‐running activity, longer endogenous periods under constant darkness and shorter periods under constant light conditions, suggesting an effect of EphA4 on SCN function. Moreover, EphA4?/? mice exhibited suppressed phase delays of their wheel‐running activity following a light pulse during the beginning of the subjective night (CT15). Accordingly, light‐induced c‐FOS (FBJ murine osteosarcoma viral oncogene homolog) expression was diminished. Our results suggest a circadian role for EphA4 in the SCN neuronal network, affecting the circadian system and contributing to the circadian response to light.  相似文献   

12.
Circadian rhythms in Syrian hamsters can be phase shifted by procedures that stimulate wheel running ("exercise") in the mid-subjective day (the hamster's usual sleep period). The authors recently demonstrated that keeping hamsters awake by gentle handling, without continuous running, is sufficient to mimic this effect. Here, the authors assessed whether wakefulness, independent of wheel running, also mediates phase shifts to dark pulses during the midsubjective day in hamsters free-running in constant light (LL). With running wheels locked during a 3 h dark pulse on day 3 of LL, hamsters (N = 16) averaged only 43+/-15 min of spontaneous wake time and phase shifted only 24+/-43 min. When wheels were open during a dark pulse, two hamsters remained awake, ran continuously, and showed phase advance shifts of 7.3 h and 8.7 h, respectively, whereas the other hamsters were awake <60 min and shifted only 45+/-38 min. No animals stayed awake for 3 h without running. Additional time in LL (10 and 20 days) did not potentiate the waking or phase shift response to dark pulses. When all hamsters were sleep deprived with wheels locked during a dark pulse, phase advance shifts averaged 261+/-110 min and ranged up to 7.3 h. These shifts are large compared to those previously observed in response to the 3 h sleep deprivation procedure. Additional tests revealed that this potentiated shift response is dependent on LL prior to sleep deprivation but not LL after sleep deprivation. A final sleep deprivation test showed that a small part of the potentiation may be due to suppression of spontaneous wheel running by LL. These results indicate that some correlate of waking, other than continuous running, mediates the phase-shifting effect of dark pulses in the mid-subjective day. The mechanism by which LL potentiates shifting remains to be determined. The lack of effect of subsequent LL on the magnitude of shifts to sleep deprivation in the dark suggests that LL reduces responsivity to light by processes that take >3 h of dark to reverse.  相似文献   

13.
Circadian rhythms are highly important not only for the synchronization of animals and humans with their periodic environment but also for their fitness. Accordingly, the disruption of the circadian system may have adverse consequences. A certain number of animals in our breeding stock of Djungarian hamsters are episodically active throughout the day. Also body temperature and melatonin lack 24-h rhythms. Obviously in these animals, the suprachiasmatic nuclei (SCN) as the central pacemaker do not generate a circadian signal. Moreover, these so-called arrhythmic (AR) hamsters have cognitive deficits. Since motor activity is believed to stabilize circadian rhythms, we investigated the effect of voluntary wheel running. Hamsters were bred and kept under standardized housing conditions with food and water ad libitum and a 14 L/10 D lighting regimen. AR animals were selected according to their activity pattern obtained by means of passive infrared motion detectors. In a first step, the daily activity behavior was investigated for 3 weeks each without and with running wheels. To estimate putative photic masking effects, hamsters were exposed to light (LPs) and DPs and also released into constant darkness for a minimum of 3 weeks. A novel object recognition (NOR) test was performed to evaluate cognitive abilities both before and after 3 weeks of wheel availability. The activity patterns of hamsters with low wheel activity were still AR. With more intense running, daily patterns with higher values in the dark time were obtained. Obviously, this was due to masking as LPs did suppress and DPs induced motor activity. When transferred to constant darkness, in some animals the daily rhythm disappeared. In other hamsters, namely those which used the wheels most actively, the rhythm was preserved and free-ran, what can be taken as indication of a reconstitution of circadian rhythmicity. Also, animals showing a 24-h activity pattern after 3 weeks of extensive wheel running were able to recognize the novel object in the NOR test but not so before. The results show that voluntary exercise may reestablish circadian rhythmicity and improve cognitive performance.  相似文献   

14.
Previous anatomical and physiological studies have implicated the lateral habenula, and especially its medial division (LHbM), as a candidate component of the circadian timing system in rodents. We assayed lateral habenula rhythmicity in rodents using c‐FOS immunohistochemistry and found a robust rhythm in immunoreactive cell counts in the LHbM, with higher counts during the dark phase of a light‐dark (LD) cycle and during subjective night in constant darkness. We have also observed an obvious asymmetry of c‐FOS expression in the LHbM of behaviorally “split” hamsters in constant light, but only during their active phase (when they were running in wheels). Locomotor activity rhythms appear to be regulated by the suprachiasmatic nucleus (SCN) via multiple output pathways, one of which might be diffusible while the other might be neural, involving the lateral habenula.  相似文献   

15.
Previous anatomical and physiological studies have implicated the lateral habenula, and especially its medial division (LHbM), as a candidate component of the circadian timing system in rodents. We assayed lateral habenula rhythmicity in rodents using c-FOS immunohistochemistry and found a robust rhythm in immunoreactive cell counts in the LHbM, with higher counts during the dark phase of a light-dark (LD) cycle and during subjective night in constant darkness. We have also observed an obvious asymmetry of c-FOS expression in the LHbM of behaviorally "split" hamsters in constant light, but only during their active phase (when they were running in wheels). Locomotor activity rhythms appear to be regulated by the suprachiasmatic nucleus (SCN) via multiple output pathways, one of which might be diffusible while the other might be neural, involving the lateral habenula.  相似文献   

16.
The adjustment of hamsters to advanced light-dark (LD) cycles can be greatly accelerated by scheduling a single 3-hr bout of extra activity in a novel running wheel, starting about 7 hr before the time when the animals become active in the preceding LD cycle. The present experiments were designed to provide stronger evidence that this effect depends on a shift in the pacemaker rather than on masking. It was shown that when hamsters were put into continuous darkness (DD) 1 day after the exercise-accelerated phase shift, their free-running rhythms took off from a time nearer to the onset of darkness in the new LD cycle than in the preceding LD cycle. An incidental finding was that in DD the free-running period of the hamsters with the accelerated phase shifts was longer than that of the control animals. Further evidence that the 3-hr exercise pulse had produced a greater phase advance than that occurring in undisturbed control animals was obtained by giving a light pulse at the same clock time to all animals after they had been in DD for 8 days. The animals that had previously exercised for the additional 3-hr phase-advanced in response to the light pulse, while the undisturbed control animals phase-delayed.  相似文献   

17.
ABSTRACT

The present study investigates the circadian behavior of spontaneously hypertensive rats (SHRs) during the pre-hypertensive and hypertensive stage, with the aim to gain insight into whether observed changes in the functionality of suprachiasmatic nucleus (SCN) in the hypertensive state are cause or consequence of hypertension. Four types of animals were used in this study: (1) SHRs which develop hypertension genetically; (2) their normotensive controls, Wistar Kyoto rats (WKYs); (3) Wistar rats whereby hypertension was surgically induced (2 Kidney 1 Clamp (2K1C) method); and (4) sham-operated control Wistar rats. Period length and activity levels and amplitude changes of locomotor and wheel running activity were determined, in constant conditions, as a measure of the functionality of the SCN. Hereto two conditions were used, constant darkness (0 lux) and constant dim (5 lux) light. SHRs showed a shortened period of their locomotor and running wheel activity rhythms in constant darkness during both pre-hypertensive and hypertensive stages and exhibited period lengthening in constant dim light conditions, only during hypertensive stages. Total amount as well as the amplitude of daily running wheel rhythms showed an inverse correlation with the period length, and this relation was significantly different in SHRs compared to WKYs. None of the aforementioned changes in circadian rhythms were observed after the surgical induction of hypertension. The present findings suggest early functional changes of the SCN in the etiology of spontaneous hypertension.  相似文献   

18.
Behavioral and Serotonergic Regulation of Circadian Rhythms   总被引:5,自引:0,他引:5  
Endogenous depression is often accompanied by alterations in core parameters of circadian rhythms, and antidepressant treatments, including serotonergic drugs, sleep deprivation and exercise, alter circadian phase or period in humans or animal models. Antidepressants may act in part through the circadian system, and behavioral antidepressants through a common serotonergic path to the clock. This review evaluates the evidence from animal models that serotonin (5-HT) mediates phase-shifting effects of behavioral stimuli on circadian rhythms. In rodents, 'exercise' stimulated during the rest phase of the rest-activity cycle induces large phase shifts of circadian rhythms. These shifts can be mimicked by short-term sleep deprivation without intense activity. During wheel running or sleep deprivation, 5-HT release in the suprachiasmatic nucleus (SCN) circadian clock is significantly elevated. Lesions of 5-HT afferents to the SCN attenuate phase shifts or entrainment induced by activity in response to some stimuli (e.g., triazolam injections in hamsters, treadmill running in mice) but not others (e.g., novel wheel confinement in hamsters). Antagonists selective to 5HT1, 2 or 7 receptors do not attenuate shifts induced by wheel running, although 5-HT2/7 antagonists do partially block shifts to saline injections. 5-HT agonists (e.g., 8-OH-DPAT) induce large shifts in vitro, but much smaller shifts in vivo, particularly if administered directly to the SCN. Procedures for inducing 5-HT supersensitivity in vivo result in larger shifts to 8-OH-DPAT. 5-HT stimuli may affect the clock by direct and indirect pathways, particularly through the thalamic intergeniculate leaflet, and the role of these pathways may differ across species. At the level of the SCN, 5-HT likely acts through 5-HT7 receptors on neurons and possibly also glial cells. These receptors may be useful targets for the development of antidepressant drugs. In aggregate, the literature provides mixed support for the hypothesis that exercise or behavioral arousal shift the circadian clock by a 5-HT pathway; the role of indirect pathways, interactions with other transmitters, cellular adaptations to denervation, glial cells, and species differences remain to be more fully clarified. Serotonergic and behavioral stimuli provide an intriguing route to elucidate the circadian clockworks and their possible role in depression.  相似文献   

19.
The golden hamster (Mesocricetus auratus) is one of the most frequently used laboratory animals, particularly in chronobiological studies. One reason is its very robust and predictable rhythms, although the question arises whether this is an inbreeding effect or rather is typical for the species. We compared the daily (circadian) activity rhythms of wild and laboratory golden hamsters. The laboratory hamsters were derived from our own outbred stock (Zoh:GOHA). The wild hamsters included animals captured in Syria and their descendants (F1). Experiments were performed under entrained (light: dark [LD] 14h:10h) and under free-running (constant darkness, DD) conditions. Locomotor activity was recorded using passive infrared detectors. Under entrained conditions, the animals had access to a running wheel for a certain time to induce additional activity. After 3 weeks in constant darkness, a light pulse (15 min, 100 lux) was applied at circadian time 14 (CT14). Both laboratory and wild hamsters showed well-pronounced and very similar activity rhythms. Under entrained conditions, all hamsters manifested about 80% of their total 24h activity during the dark portion of the LD cycle. The robustness of the daily rhythms was also similar. However, interindividual variability was higher in wild hamsters for both measures. All animals used the running wheels almost exclusively during the dark portion of the LD cycle, although the wild hamsters were three times more active. The period length, measured in constant darkness, was significantly shorter in wild (23.93h ± 0.10h) than in laboratory hamsters (24.06 ± 0.07h). The light-induced phase changes were not different (about 1.5h). In summary, these results indicate that the laboratory hamster is not much different from the wild type. (Chronobiology International, 18(6), 921932, 2001)  相似文献   

20.
Running wheels are widely used in studies on biological rhythms. In mice wheel diameters have ranged from 11 cm to 23 cm. We provided mice with running wheels of two different sizes: 15 cm diameter and 11 cm diameter. The amount of running in the 12-h light:12-h dark condition and the endogenous period of wheel running in constant darkness was determined over 40 days. On the 1st day in constant darkness all animals were exposed to a 15-min light pulse at circadian time 13. The animals in the small wheel ran significantly less both in 12 h light: 12 h dark and constant darkness, and showed a longer endogenous period in constant darkness compared to animals in the large wheel. Moreover, after the light pulse at circadian time 13, mice in the small wheel showed a significantly smaller phase delay in running wheel activity than mice in the larger wheels. The data suggest that the magnitude of a photic phase shift depends on the amount and timing of activity the animals display in relation to this stimulus. It can be concluded that technical features of the running wheel can influence the circadian period of wheel running.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号