首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 6 毫秒
1.
Molecular cloning of cDNA for rat liver gap junction protein   总被引:42,自引:30,他引:42       下载免费PDF全文
An affinity-purified antibody directed against the 27-kD protein associated with isolated rat liver gap junctions was produced. Light and electron microscopic immunocytochemistry showed that this antigen was localized specifically to the cytoplasmic surfaces of gap junctions. The antibody was used to select cDNA from a rat liver library in the expression vector lambda gt11. The largest cDNA selected contained 1,494 bp and coded for a protein with a calculated molecular mass of 32,007 daltons. Northern blot analysis indicated that brain, kidney, and stomach express an mRNA with similar size and homology to that expressed in liver, but that heart and lens express differently sized, less homologous mRNA.  相似文献   

2.
An extended synthetic oligonucleotide (58-mer) has been used to identify and characterize a human liver gap junction cDNA. The cDNA is 1,574 bases long and contains the entire coding region for a gap junction protein. In vitro translation of the RNA products of this cDNA is consistent with it coding for a 32,022-D protein. Southern blot analysis indicates that the gap junction gene is present as a single copy, and that it can be detected in a variety of organisms using the human liver cDNA as a probe. The human cDNA has been used to screen a rat liver cDNA library, and a rat liver junction cDNA clone has been isolated. The rat liver clone is 1,127 bases in length, and it has strong sequence homology to the human cDNA in the protein-coding region, but less extensive homology in the 3'-untranslated region.  相似文献   

3.
4.
We report here experiments undertaken in pairs of hepatocytes that demonstrate a marked voltage sensivity of junctional conductance and, thus, contradict earlier findings reported by this laboratory (Spray, D.C., R.D.ginzberg, E.A., E. A. Morales, Z. Gatmaitan and I.M. Arias, 1986, J. Cell Biol. 101:135-144; Spray C.D. R.L. White, A.C. Campos de Carvalho, and M.V.L. Bennett. 1984. Biophys. J. 45:219-230) and by others (Dahl, G., T. Moller, D. Paul, R. Voellmy, and R. Werner. 1987. Science [Wash. DC] 236:1290-1293; Riverdin, E.C., and R. Weingart. 1988. Am. J. Physiol. 254:C226-C234). Expression in exogenous systems, lipid bilayers in which fragments of isolated gap junction membranes were incorporated (Young, J.D.-E., Z. Cohn, and N.B. Gilula. 1987. Cell. 48:733-743.) and noncommunicating cells transfected with connexin32 cDNA (Eghbali, B., J.A. Kessler, and D.C. Spray. 1990. Proc. Natl. Acad. Sci. USA. 87:1328-1331), support these findings and indicate that the voltage-dependent channel is composed of connexin32, the major gap junction protein of rat liver (Paul, D. 1986. J. Cell Biol. 103:123-134).  相似文献   

5.
《The Journal of cell biology》1987,105(6):2621-2629
Northern blot analysis of rat heart mRNA probed with a cDNA coding for the principal polypeptide of rat liver gap junctions demonstrated a 3.0- kb band. This band was observed only after hybridization and washing using low stringency conditions; high stringency conditions abolished the hybridization. A rat heart cDNA library was screened with the same cDNA probe under the permissive hybridization conditions, and a single positive clone identified and purified. The clone contained a 220-bp insert, which showed 55% homology to the original cDNA probe near the 5' end. The 220-bp cDNA was used to rescreen a heart cDNA library under high stringency conditions, and three additional cDNAs that together spanned 2,768 bp were isolated. This composite cDNA contained a single 1,146-bp open reading frame coding for a predicted polypeptide of 382 amino acids with a molecular mass of 43,036 D. Northern analysis of various rat tissues using this heart cDNA as probe showed hybridization to 3.0-kb bands in RNA isolated from heart, ovary, uterus, kidney, and lens epithelium. Comparisons of the predicted amino acid sequences for the two gap junction proteins isolated from heart and liver showed two regions of high homology (58 and 42%), and other regions of little or no homology. A model is presented which indicates that the conserved sequences correspond to transmembrane and extracellular regions of the junctional molecules, while the nonconserved sequences correspond to cytoplasmic regions. Since it has been shown previously that the original cDNA isolated from liver recognizes mRNAs in stomach, kidney, and brain, and it is shown here that the cDNA isolated from heart recognizes mRNAs in ovary, uterus, lens epithelium, and kidney, a nomenclature is proposed which avoids categorization by organ of origin. In this nomenclature, the homologous proteins in gap junctions would be called connexins, each distinguished by its predicted molecular mass in kilodaltons. The gap junction protein isolated from liver would then be called connexin32; from heart, connexin43.  相似文献   

6.
7.
Recent studies have revealed a second class of gap-junction-forming proteins in vertebrates. These genes are termed pannexins, and it has been suggested that they perform similar functions as connexins. Pannexin1 is expressed in diverse tissues including the central nervous system and seems to form gap junction channels in the Xenopus oocyte expression system. Since protein interacting partners have frequently been described for connexins, the most prominent family of gap junction forming proteins, we thus started to search for candidate genes of pannexin interacting partners. Kvbeta3, a protein belonging to the family of regulatory beta-subunits of the voltage-dependent potassium channels, was identified as a binding partner of pannexin1 in an E. coli two-hybrid system. This result was verified by confocal laser scanning microscopy using double transfected Neuro2A cells. The colocalization of both proteins at the plasma membrane is suggestive of functional interaction.  相似文献   

8.
9.
We have identified a Tetrahymena thermophila cDNA-containing plasmid (pC6) which hybridizes to a 1.47-kB RNA whose changes in cellular concentration parallel the changes in synthetic rate of a major cell surface protein. From a molecular and genetic analysis of strains expressing the gene (SerH3) encoding this protein, and of strains expressing immunologically distinct alleles of this gene, we conclude that pC6 encodes a portion of the SerH3 allele.  相似文献   

10.
Wen H  Ao S 《Gene》2001,263(1-2):85-92
The retinoblastoma protein (pRb) functions as a critical master regulator in cell cycle regulation, which is an important cell-regulatory process, through its interaction with various cellular proteins. Using the C-terminus of human pRb and the yeast two-hybrid system, a novel protein named RBP21 that contains 187 amino acid residues with a calculated molecular weight of 21 kDa was identified as a pRb-binding protein. Sequence analysis indicates that RBP21 shares homology with other retinoblastoma-binding proteins in the pRb-binding motif LxCxE at the C-terminal region. In vitro specific interaction between pRb and RBP21 was confirmed using in vitro translation products. When overexpressed in COS-7 cells, RBP21 could co-immunoprecipitate with pRb. This interaction requires the LxCxE motif of RBP21 and the entire pocket region of pRb. Each point mutation of the conserved amino acid residues in pRb-binding motif of RBP21 abolished its specific interaction with pRb. RH mapping result showed that this novel gene was mapped to chromosome region 15q21.1-21.3. Northern blot analysis suggested that RBP21 was widely expressed in various human tissues and cancer cell lines. When expressed in HeLa cells as a green fluorescent protein fusion, RBP21 was distributed throughout the cell.  相似文献   

11.
The 27 kDa protein, a major component of rat liver gap junctions, was shown to be phosphorylated in vitro by protein kinase C. The stoichiometry of the phosphorylation indicated that approx. 0.33 mol phosphate was incorporated per mol 27 kDa protein. Phosphorylation was entirely dependent on the presence of calcium and was virtually specific for serine residues. For comparison, the gap junction protein was also examined for its phosphorylation by cAMP-dependent protein kinase, the extent of phosphorylation being one-tenth that exerted by protein kinase C.  相似文献   

12.
In barley leaves, there is a dramatic alteration of gene expression upon treatment with jasmonates leading to the accumulation of newly formed proteins, designated as jasmonate-inducible proteins (JIPs). In the present study, a new jasmonate-inducible cDNA, designated pHvJS37, has been isolated by differential screening of a γgt10 cDNA library constructed from mRNA of jasmonate-treated barley leaf segments. The open reading frame (ORF) encodes a 39-9 kDa polypeptide which cross-reacts with antibodies raised against the in vivo JIP-37. The hydropathic plot suggests that the protein is mainly hydrophilic, containing two hydrophilic domains near the C-terminus. Database searches did not show any sequence homology of pHv.JS37 to known sequences. Southern analysis revealed at least two genes coding for JIP-37 which map to the distal portion of the long arm of chromosome 3 and are closely related to genes coding for JIP-23. The expression pattern of the JIP-37 genes over time shows differential responses to jasmonate, abscisic acid (ABA), osmotic stress (such as sorbitol treatment) and desiccation stress. No expression was found under salt stress. From experiments using an inhibitor and intermediates of jasmonate synthesis such as α-linolenic acid and 12-oxophytodienoic acid, we hypothesize that there is a stress-induced lipid-based signalling pathway in which an endogenous rise of jasmonate switches on JIP-37 gene expression. Using immunocytochemical techniques, JIP-37 was found to be simultaneously located in the nucleus, the cytoplasm and the vacuoles.  相似文献   

13.
Monoclonal antibodies (2-3E2, 6-3G11, and 7-3H6) against gap junction plaques purified from rat liver were prepared and characterized. Immunoblot analysis of liver gap junctions revealed that all three antibodies reacted with the 27-kDa protein, but not with the 22-kDa one. The 2-3E2 and 6-3G11 antibodies both reacted with the 27-kDa protein in gap junctions purified from livers of the rat, mouse, rabbit, and guinea pig; the 7-3H6 antibody, however, failed to react with the 27-kDa protein from guinea pig liver. The 7-3H6 antibody reacted strongly with the 24- to 26-kDa degradation products of the 27-kDa protein. Indirect immunofluorescence showed that the 6-3G11 and 7-3H6 antibodies both gave the same specific fluorescence labeling on rat liver cryosections, suggesting that these two antibodies recognized the cytoplasmic sites of the 27-kDa protein. Immunoblot analysis of protease-digested fragments from the 27-kDa protein revealed that the 7-3H6 antibody reacted with the 24- and 17-kDa fragments (including portions of the carboxyl-terminal domain of the 27-kDa protein) produced with endoproteinases Arg-C and Lys-C, respectively. Immunoblot analysis of CNBr fragments of the 27-kDa protein revealed that all three antibodies reacted with the 10-kDa fragment, which is thought to be the carboxyl-terminal domain of the 27-kDa protein. These results demonstrate that three monoclonal antibodies recognize different epitopes of the cytoplasmic sites (probably the carboxyl-terminal domain) of the 27-kDa liver gap junction protein.  相似文献   

14.
15.
Immunological properties of gap junction protein from mouse liver   总被引:9,自引:0,他引:9  
Hepatic gap junctions were purified as plaques from BALB/c mice and separated by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS). Antisera were raised in rabbits and rats against gap junction plaques as well as protein bands of the following apparent molecular weights: 44K to 49K ("dimer" proteins), 26K, and 21K. Using an enzyme immunoassay, we found that the reactivities of the different antisera towards gap junction plaques decreased in the following order: anti-plaque antisera, anti-26K antisera, anti-"dimer" protein antisera, and anti-21K antisera. The gap junction protein bands separated by SDS-polyacrylamide gel electrophoresis were transferred by blotting onto nitrocellulose paper and the immunological cross-reactivities were compared: the anti-26K antisera reated with the dimer protein bands and the 26K band but did not cross-react with the 21K protein band. The rabbit anti-21K antiserum reacted weakly with the 21K protein. The missing immunological cross-reaction of the 26K and the 21K protein band can be most easily explained if both proteins were independent of each other. No inhibition of metabolic cooperation between fibroblastoid mouse 3T6 cells was observed in the presence of Fab fragments prepared from rabbit antiplaque antiserum or from rabbit anti 26K antiserum. When the total proteins of plasma membranes from mouse liver were separated by SDS-polyacrylamide electrophoresis, only the 26K protein reacted with rabbit anti 26K antiserum. This result opens the possibility for direct quantitation of gap junction protein in tissues and cell fractions.  相似文献   

16.
The cDNA for rat glutathione peroxidase mRNA was isolated from liver cDNA library in lambda gt11 by cross-hybridization using the mouse cDNA, and it's nucleotide sequence was determined. The selenocysteine which constitutes an active center of this enzyme was encoded by TGA, a nonsense codon in general, as was the cases with mouse and human glutathione peroxidase. Northern blot analysis elucidated that the mRNA for glutathione peroxidase was markedly diminished in selenium deficient rat liver as compared with that of normal rat livers. The result suggested that the de novo synthesis of the mRNA would be regulated by selenium.  相似文献   

17.
There is a reduction in the 28-kD gap junction protein detectable by immunofluorescence in livers of partially hepatectomized rats and in cultured hepatocytes stimulated to proliferate. By the coordinate use of antibodies directed to the hepatic junction protein (HJP28) and the use of a monoclonal antibody that recognizes bromodeoxyuridine (BrdU) incorporated into DNA, we have been able to study the relationship between detectable gap junction protein and cell division. Hepatocytes that label with BrdU in the regenerating liver and in cell culture show a significant reduction of HJP28. Cells that do not synthesize DNA, on the other hand, show normal levels and distribution of immunoreactive gap junction protein. We postulate that the quantitative changes in gap junction expression might play an important role in the control of proliferation in the liver.  相似文献   

18.
The major gap junction polypeptide in most tissues has an apparent molecular mass of 27 kDa with a 47 kDa dimer present in junction-enriched fractions. However, a 54 kDa protein recognized by gap junction-specific antibodies has been reported and a complementary DNA (cDNA) sequence for both human and rat liver gap junctions codes for a 32 kDa protein. In this paper we show that these are all forms of the same gap junction protein that can be observed on SDS-polyacrylamide gels simply by varying the concentration of acrylamide in the gels. A 64 kDa dimer is also obtainable. Antibodies to the gap junction protein or to a synthetic peptide constructed to match the rat liver gap junction amino-terminal sequence recognize all of these forms. Under some conditions a 54 kDa dimer is 'preferred', explaining the presence of this species in whole tissue homogenate Western blots. These results clarify several controversies and indicate that the protein forming the gap junction channel probably undergoes no major post-translational modification as the cDNA sequence codes for a protein of molecular mass 32 kDa and this protein species and its 64 kDa dimer are demonstrable on SDS-polyacrylamide gels under appropriate conditions.  相似文献   

19.
20.
The rat liver sinusoidal endothelial cell (LEC) hyaluronan (HA)receptor was previously identified using a photoaffinity HAderivative (J. BioL Chem., 267, 20451–20456, 1992). Twopolypeptides with Mr = 175,000 and 166,000, were consistentlycrosslinked, suggesting that the LEC HA receptor is an oligomer.Whether one or both subunits participate in HA binding, wasnot determined. Here we investigate the HA-subunit interactionsand the potential oligomeric nature of the LEC HA receptor.When Sephacryl-400 gel filtration chromatography was used toenrich the HA receptor, the 175 kDa polypeptide was the majorband seen by SDS-PAGE analysis. Little staining was seen at166 kDa, suggesting that the 175 kDa protein could be separatedfrom the 166 kDa protein and still retain HA-binding activity.A ligand blot assay was used to determine if each individualsubunit could bind HA. LEC proteins were separated by nonreducingSDS-PAGE, and then immobilized onto nitrocellulose. 125I-HAbound to a 175 kDa polypeptide but not to the 166 kDa protein.A high molecular weight band of  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号