首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasma membranes from the mitogen-activated mouse Th2 cell clone D10.G4.1 have recently been shown to provide the cell contact-dependent signals necessary for the induction of small B cell proliferation. Together with the Th2-derived lymphokines IL-4 and IL-5, these membranes stimulate production of Ig isotypes identical to those produced when B cells were stimulated by intact Th2 cells. In contrast, Th1 clones are poor inducers of Ig production in vitro. This could be solely due to differences in the lymphokines released by Th1 and Th2 cells or to differences in the cell-cell contact signals delivered by activated Th1 and Th2 cells. We report that membranes from three different activated Th1 clones induced strong Ag-independent proliferation of small dense B cells. The level of B cell proliferation was enhanced approximately fourfold by the addition of lymphokine-containing supernatant from Con A-activated Th2 cells and was unaffected by any of the lymphokine-containing supernatants from Con A-activated Th1 clones. As with D10.G4.1 membranes, Th1 membranes alone induced B cell proliferation but not secretion of Ig. However, addition of supernatant from Con A-activated D10.G41 cells, but not any supernatants from Con A-activated Th1 cells, induced Ig secretion of all isotypes. These effects were shown to not simply result from increased B cell numbers after stimulation with Th2 lymphokines. Thus, Th1 cell clones seem to poorly induce antibody responses entirely because of their lymphokine repertoire and not because of differences or deficiencies in the ability of these cells to deliver cell contact-dependent signals to B cells.  相似文献   

2.
3.
Cross-linkage of membrane IgD on resting murine B cells, by anti-IgD mAb conjugated to dextran (alpha delta-dex), induces high levels of proliferation, and in the presence of IL-2 or IL-5, Ig secretion in vitro. The structural and functional similarities between alpha delta-dex and TNP-Ficoll for B cell responses led us to propose that alpha delta-dex could provide a model system for studying B cell activation induced by T cell-independent, type II Ag. In this report, we study the effects of Ig class switch and differentiation factors on Ig isotype production by murine B cells activated by alpha delta-dex, and directly compare these to responses obtained after activation by LPS. We show that an IL-4-containing CD4+ T cell supernatant (Th2 SN) stimulates large increases in IgG1 and IgE production by LPS-activated B cells, but fails to stimulate detectable levels of IgE by alpha delta-dex-activated cells, despite inducing high levels of secreted IgM and IgG1. This is correlated with undetectable steady state levels of both germ-line and rearranged (productive) IgE-specific RNA in B cells stimulated with alpha delta-dex + Th2 SN. Alpha delta-dex is selective in its failure to costimulate IgE production in that IFN-gamma-containing T cell supernatant (Th1 SN) and transforming growth factor-beta-supplemented Th2 SN selectively stimulate a large IgG2a and IgA secretory response, respectively. Anti-IgD conjugated to Sepharose beads, in distinct contrast to dextran, costimulates a strong IgE response. These findings underscore the importance of the specific B cell activator, in addition to IL-4, in the regulation of IgE production.  相似文献   

4.
Ag-specific and MHC-restricted Th clones of different Ag specificities and MHC haplotypes were tested for their ability to produce soluble factors capable of providing the signals required for B cell activation and IgG antibody production. Each of five Th clones tested generated significant helper activity in supernatants derived from coculture of the T cell clone with specific Ag and syngeneic APC. The same helper activity was detected in supernatants of clones stimulated with immobilized anti-CD3 antibody in the absence of Ag or APC. The secreted helper activity resembled the activity of the intact Th cells in that it was Ag-specific, carrier-hapten-linked and MHC-restricted. These T cell products functioned to activate only those B cells expressing MHC products which corresponded to the specificity of each Th clone. Thus, the specificity of the cell-free T cell product mimicked precisely that expressed by the intact Th cell and presumably mediated by the cell surface TcR. In addition to the apparent presence of specific helper factor in Th clone supernatants, a role for nonspecific lymphokines was also identified in these preparations. Although recombinant or purified IL-4 alone was not sufficient to stimulate hapten-primed B cells to secrete hapten-specific IgG antibodies, mAb specific for IL-4 blocked the induction of antibody secretion by Th cell supernatant. These results indicate that stimulation of B cells to produce hapten-specific IgG antibody requires at least two distinct signals: an Ag-specific T cell signal which is restricted by MHC products expressed on the B cells, and a nonspecific signal mediated at least in part by the lymphokine IL-4.  相似文献   

5.
Human gamma globulin-specific T helper cell (Th) clones, activated by HGG in the presence of antigen (Ag)-presenting cells, stimulated polyclonal B cell proliferation. Both Th1 and Th2 clones induced B cell proliferation, but Th1 clones were generally 5- to 10-fold less efficient than Th2 in this capacity. Th1 and Th2 each induced proliferation of both small and large B cells, although Th1 induced less B cell proliferation than Th2, regardless of B cell size. Th1-induced B cell proliferation was increased significantly by stimulating the Th1 clones with immobilized anti-CD3 mAb. The B cell response to Ag-activated Th1 clones was also increased by the addition of rIL-4 or culture supernatants from activated Th2 clones, and this enhancement was abolished by addition of anti-IL-4 mAb. The differential capacity of the Th subsets to stimulate B cells could not be attributed to differences in the degree of Ag-induced activation of the Th clones as reflected by Th proliferation or Th expression of activation markers, RL388 Ag, IL-2R, or TfR. Taken together the results suggest that even though Th1 and Th2 are similarly activated by Ag-presenting cells, Ag-activated Th2 interact more effectively with B cells than Ag-activated Th1. It is possible that inefficient interaction and subsequent intercellular signaling between Th1 and B cells results in inefficient Th1-induced B cell proliferation, and that this deficiency may be circumvented by signals (e.g., lymphokines) provided by Th2, or by the stimulation of Th1 with plate-bound anti-CD3 Ab rather than Ag.  相似文献   

6.
To test the hypothesis that resting and previously activated B lymphocytes differ in their proliferative and differentiative responses to various Th cell-derived stimuli, we have examined the interactions of purified small (resting) and large (activated) murine B cells with rabbit Ig-specific Th1 and Th2 clones in the presence of the Ag analogue, rabbit anti-mouse Ig antibody. Small numbers of Th2 cells induce strong Ag-dependent proliferation of and Ig secretion by both resting and activated B lymphocytes. In contrast, Th1 clones stimulate lower responses of activated B cells and fail to stimulate small resting B cells. An interaction with Th1 clones does make small B cells responsive to the Th2-derived cytokine, IL-4, indicating that Th1 clones are capable of delivering some but not all the stimuli necessary for the induction of humoral immunity. Finally, in order to compare the responses of small and large B cells to cognate interactions and secreted cytokines, we used an autoreactive I-Ak-specific Th2 line. This line induces proliferation of and Ig secretion by I-Ak expressing but not H-2d resting and activated B cells as a result of cognate interactions. However, when the H-2d B cells are bystanders in the presence of cytokine secretion by this Th2 line, or are directly exposed to Th2-derived cytokines, both small and large B cells are induced to proliferate but only the large B cells secrete antibody. These results indicate that the magnitude and nature of antibody responses depend on three principal factors: the cytokines produced by Th cells, the state of activation of the responding B lymphocytes, and whether the B cells are recipients of cognate help or are bystanders at the site of T cell stimulation. Our findings also confirm the view that cognate T-B interactions are most efficient for initiating B cell responses and may allow B cells to subsequently respond to a variety of T cell-derived cytokines.  相似文献   

7.
During T cell-B cell collaboration, plasma cell (PC) differentiation and Ig production are known to require T cell-derived soluble factors. However, the exact nature of the cytokines produced by activated T cells that costimulate PC differentiation is not clear. Previously, we reported that costimulation of purified human B cells with IL-21 and anti-CD40 resulted in efficient PC differentiation. In this study, we addressed whether de novo production of IL-21 was involved in direct T cell-induced B cell activation, proliferation, and PC differentiation. We found that activated human peripheral blood CD4(+) T cells expressed mRNA for a number of cytokines, including IL-21, which was confirmed at the protein level. Using a panel of reagents that specifically neutralize cytokine activity, we addressed which cytokines are essential for B cell activation and PC differentiation induced by anti-CD3-activated T cells. Strikingly, neutralization of IL-21 with an IL-21R fusion protein (IL-21R-Fc) significantly inhibited T cell-induced B cell activation, proliferation, PC differentiation, and Ig production. Inhibition of PC differentiation was observed even when the addition of IL-21R-Fc was delayed until after initial B cell activation and expansion had occurred. Importantly, IL-21 was found to be involved in PC differentiation from both naive and memory B cells. Finally, IL-21R-Fc did not inhibit anti-CD3-induced CD4(+) T cell activation, but rather directly blocked T cell-induced B cell activation and PC differentiation. These data are the first to document that B cell activation, expansion, and PC differentiation induced by direct interaction of B cells with activated T cells requires IL-21.  相似文献   

8.
CH12 tumor B cells specific for SRBC require SRBC as Ag and the lymphokine IL-5 (formerly known as BCGFII) for optimal proliferation and differentiation to Ig-secreting cells. Lysed SRBC and IL-5 purified to homogeneity synergize markedly, especially at low B cell densities. A sizable proportion of CH12 cells differentiate into Ig-secreting plaque-forming cells when low numbers of the B lymphoma cells (100 to 3000) are cultured with Ag and IL-5. IL-2 or IL-4 have no effects. Intact SRBC or lysed SRBC are equally effective as sources of Ag. Even in the presence of the mitogens LPS and dextran sulfate, there is a striking requirement for Ag for both proliferation and differentiation at low B cell density. Because of the low cell numbers used, the results strongly suggest that the effects of Ag and lymphokine are directly on the B cell. The cell surface phenotype of the CH12 lymphoma and the kinetics of their response suggest that CH12 B cells have the characteristics of activated B cells. Thus, it appears that Ag binding to surface Ig gives a direct signal to at least some B cells that is critical in the later phases of the B cell response after initial activation during which proliferation and differentiation to Ig secretion occur and that the lymphokine IL-5 costimulates with Ag to mediate this phase of the response.  相似文献   

9.
EBV infects human B lymphocytes and induces them to proliferate, to produce Ig, and to give rise to immortal cell lines. Although the mechanisms of B cell activation by EBV are largely unknown, the continuous proliferation of EBV-immortalized B cells is dependent, at least in part, upon autocrine growth factors produced by the same EBV-infected B cells. In the present studies we have examined the influence of monocytes on B cell activation by EBV and found that unlike peripheral blood T cells and B cells, monocytes enhance by as much as 30- to 50-fold virus-induced B cell proliferation and Ig production. Upon activation with LPS, monocytes secrete a growth factor activity that promotes both proliferation and Ig secretion in EBV-infected B cells and thus reproduces the effects of monocytes in these cultures. Unlike a number of other factors, rIFN-beta 2/B cell stimulatory factor 2 (BSF-2)/IL-6 stimulates the growth of human B cells activated by EBV in a manner similar to that induced by activated monocyte supernatants. In addition, an antiserum to IFN-beta that recognizes both IFN-beta 1 and IFN-beta 2 completely neutralizes the B cell growth factor activity of activated monocyte supernatants. These findings demonstrate that IFN-beta 2/BSF-2/IL-6 is a growth factor for human B cells activated by EBV and suggest that this molecule is responsible for B cell growth stimulation induced by activated monocyte supernatants. We have examined the possibility that IFN-beta 2/BSF-2/IL-6 might also be responsible for B cell growth stimulation by supernatants of EBV-immortalized B cells and thus may function as an autocrine growth factor. However, IFN-beta 2/BSF-2/IL-6 is not detectable in supernatants of EBV-immortalized B cells by immunoprecipitation. Also, an antiserum to IFN-beta that neutralizes IFN-beta 2/BSF-2/IL-6 fails to neutralize autocrine growth factor activity. This suggests that autocrine growth factors produced by EBV-immortalized B cells are distinct from IFN-beta 2/BSF-2/IL-6. Thus, the continuous proliferation of EBV-immortalized B cells is enhanced by either autocrine or paracrine growth factors. One of the mediators with paracrine growth factor activity is IFN-beta 2/BSF-2/IL-6.  相似文献   

10.
A central event in humoral responses is the Ag-mediated interaction of Th cells and B cells. This interaction leads to the activation of both cell types and results in cytokine secretion by the T cells and proliferation and secretion of Ig by the B cells. The proliferative and differentiative responses of B cells are dependent on contact-mediated signals and cytokines provided by the activated Th cells. Although the role of cytokines in B cell activation and differentiation is understood, the nature of the signals delivered by the activated Th cells and the molecules involved in this process are not known. In this study we have examined Ag-mediated "cognate" T-B cell interactions as well as B cell activation induced by contact with preactivated and fixed Th lymphocytes. Our results indicate that both the T cell surface molecules lymphocyte function associated Ag-1 and CD2 are important in the activation of T cells by Ag presented by B lymphocytes. This indicates that B cells have similar characteristics as other APC. However, once the T cells are activated, contact-mediated stimulation of resting B lymphocytes (the noncognate phase) is dependent on CD2 but not lymphocyte function associated Ag-1. Two lines of evidence indicate this; first, it is inhibited by blocking of CD2 on the T cells and, second, such stimulation is not efficiently mediated by a CD2- Th cell line. Thus, CD2 plays an obligatory role at several discrete stages of T cell-mediated activation of resting B lymphocytes.  相似文献   

11.
The mechanism of help for resting B cell growth in MHC-restricted T-B collaboration was investigated using an in vitro polyclonal model for these T cell-B cell interactions. In the presence of rabbit anti-mouse Ig, small, size-selected B cells elicit help from syngeneic Ia-restricted Th2 cell lines specific for F(ab')2 rabbit globulin. Both Ag-presenting and bystander B cells receive signals from stimulated Th cells that lead to B cell proliferation. The results suggest that the direct activation of resting Ag-presenting and bystander B cells by Th2 cells is mediated by a similar effector mechanism. Although proliferative responses by Ag-presenting B cells are of greater magnitude, help for both Ag-presenting and bystander B cell populations is characterized by the lack of a requirement for membrane Ig cross-linking, by identical kinetics, and by the necessity for direct cell contact or close proximity with Th cells. B cell proliferation is not induced by exposure to the sequence of diffusable mediators released from a synchronized Ag-specific T-B interaction. The T cell-dependent proliferation by both B cell populations can be inhibited by excess mitomycin C-treated syngeneic "cold target" B cells, demonstrating a requirement for a short-range T cell-B cell interaction. mAb inhibition experiments fail to identify a role for class II, LFA-1, or CD4 membrane molecules in the delivery of help to bystander B cells. Antibody against H2d bystander class II molecules has no effect on bystander B cell proliferation at concentrations that completely block Ag presentation by H2d B cells to an H2d-restricted Th cell line. Antibodies against the cell adhesion molecule LFA-1 or the Th cell molecule CD4 do inhibit bystander B cell proliferation, but only to the extent that they block T cell activation and the induction of help. The inductive stimulus leading to resting B cell growth results from an early, short-range interaction with Th cells. B cell proliferation is supported by T cell soluble mediators as a consequence of this interaction, which is required for at least 8 hr after T cell recognition of Ag/Ia on the surface of Ag-presenting B cells.  相似文献   

12.
To study the role of T cells in T-B cell interactions resulting in isotype production, autologous purified human splenic B and T cells were cocultured in the presence of IL-2 and Con A. Under these conditions high amounts of IgM, IgG, and IgA were secreted. B cell help was provided by autologous CD4+ T cells whereas autologous CD8+ T cells were ineffective. Moreover, CD8+ T cells suppressed Ig production when added to B cells cocultured with CD4+ T cells. Autologous CD4+ T cells could be replaced by allogeneic activated TCR gamma delta,CD4+ or TCR alpha beta,CD4+ T cell clones with nonrelevant specificities, indicating that the TCR is not involved in these T-B cell interactions. In contrast, resting CD4+ T cell clones, activated CD8+, or TCR gamma delta,CD4-,CD8- T cell clones failed to induce IL-2-dependent Ig synthesis. CD4+ T-B cell interaction required cell-cell contact. Separation of the CD4+ T and B cells by semiporous membranes or replacement of the CD4+ T cells by their culture supernatants did not result in Ig synthesis. However, intact activated TCR alpha beta or TCR gamma delta,CD4+ T cell clones could be replaced by plasma membrane preparations of these cells. Ig synthesis was blocked by mAb against class II MHC and CD4. These data indicate that in addition to CD4 and class II MHC Ag a membrane-associated determinant expressed on both TCR alpha beta or TCR gamma delta,CD4+ T cells after activation is required for productive T-B cell interactions resulting in Ig synthesis. Ig production was also blocked by mAb against IL-2 and the IL-2R molecules Tac and p75 but not by anti-IL-4 or anti-IL-5 mAb. The CD4+ T cell clones and IL-2 stimulated surface IgM-IgG+ and IgM-IgA+, but not IgM+IgG- or IgM+IgA- B cells to secrete IgG and IgA, respectively, indicating that they induced a selective expansion of IgG- and IgA-committed B cells rather than isotype switching in Ig noncommitted B cells. Induction of Ig production by CD4+ T cell clones and IL-2 was modulated by other cytokines. IL-5 and transforming growth factor-beta enhanced, or blocked, respectively, the production of all isotypes in a dose-dependent fashion. Interestingly, IL-4 specifically blocked IgA production in this culture system, indicating that IL-4 inhibits only antibody production by IgA-committed B cells.  相似文献   

13.
The B6.4 mAb we present here identifies a novel activation Ag of B cell lineage. The B6.4 mAb was generated by immunizing mice with B cell growth factor (BCGF)-responding BA3 cells, and selected by its capability to block BCGF-induced proliferation of BA3 cells. The inhibitory effect of this antibody on BCGF-dependent proliferation was further confirmed by using normal activated B cells in the presence of exogenous BCGF derived from T cells or B cells. Furthermore, it did not affect IL-2-dependent proliferation of B cells. The expression of the B6.4 Ag, as analyzed by FACS, is restricted to in vitro activated B cells, and remains undetectable on resting B or T cells, PHA-activated T cells, and monocytes. The B6.4 Ag is also expressed on some lymphoblastoid B cell lines and most of the lymphomas and CLL of B cell origin; however, it did not express on pre-B cell ALL and plasma cell leukemias. The B6.4 Ag has a Mr of 35,000 Da, as determined by SDS-PAGE of radiolabeled immunoprecipitates from activated B cells. The B6.4 Ag is detectable on B cells as early as 8 h after activation, and precedes that of the IL-2R or transferrin R. All of these results suggest that the B6.4 Ag is an early activation Ag of B cells and is functionally related to a receptor of BCGF, but not IL-2.  相似文献   

14.
A supernatant derived from the Th2 clone D10.G4.1 (D10 supernatant) stimulated high numbers of Ig-secreting cells when added to dextran-conjugated anti-delta-antibody (anti-delta-dextran)-activated B cells but stimulated only marginal Ag-specific responses when added to B cells cultured with TNP-Ficoll. When anti-IL-10 antibody was added to cultures containing D10 supernatant, IL-5, and TNP-Ficoll, there was a significant increase in the numbers of anti-TNP-antibody producing cells, suggesting that at least a part of the inhibitory activity of D10 supernatant is mediated by IL-10. Addition of rIL-10 inhibited both TNP-Ficoll- and anti-delta-dextran-mediated Ig secretion that was stimulated in the presence of IL-5 but had no suppressive effect on IL-2-stimulated responses, indicating that its inhibitory effect was selective for a specific mode of B cell activation. Addition of IL-10 did not, however, inhibit anti-delta-dextran-stimulated B cell proliferation. The IL-10-induced-inhibition of Ig secretion was not due to suppression of IFN-gamma production, because the addition of IFN-gamma did not reverse the inhibition, nor did the addition of anti-IFN-gamma mimic the IL-10-mediated inhibition. These data suggest that a composite of lymphokines secreted by Th cells may contain both inhibitory and stimulatory activities. Sorting out the conditions under which stimulation or inhibition is seen may reveal additional diversity in Ag-stimulated pathways of B cell activation.  相似文献   

15.
We have compared the responses of purified neonatal and adult B lymphocytes to stimulation by anti-Ig antibodies, which are functional analogues of Ag, and by Th cells. Neonatal B cells are markedly deficient in proliferative responses to anti-Ig antibodies + IL-4 or to anti-Ig conjugated to dextran, both of which induce strong proliferation of adult B cells in the absence of T lymphocytes. Anti-Ig antibodies actually inhibit the functional responses of neonatal B cells, even to polyclonal stimuli such as LPS. However, Th cells induce both proliferation and Ig secretion by neonatal B cells in the presence of Ag that bind to B cell Ig and are subsequently presented by the B cells. Thus, in neonatal B lymphocytes, cross-linking of membrane Ig in the absence of Th cells has a net inhibitory effect, and this inhibition is overcome by T cell help. These results also suggest that unresponsiveness or tolerance to thymus-independent Ag is induced in the B cells themselves, but tolerance to thymus-dependent proteins resides primarily in the T cell compartment.  相似文献   

16.
Helper activity of several murine CD4+ T cell subsets was examined. Effector Th, derived from naive cells after 4 days of in vitro stimulation with alloantigen, when generated in the presence of IL-4, secreted high levels of IL-4, IL-5, and IL-6, and low levels of IL-2 and IFN-gamma, and induced the secretion of all Ig isotypes particularly IgM, IgG1, IgA, and IgE from resting allogeneic B cells. Effectors generated with IL-6 secreted IL-2, IL-4, IL-5, IL-6, and IFN-gamma, and induced similar levels of total Ig, 25 to 35 micrograms/ml, but with IgM, IgG3, IgG1, and IgG2a isotypes predominating. Helper activity of these Th was significantly greater than that of effectors generated with IL-2 (10-15 micrograms/ml Ig) and of 24-h-activated naive and memory cells (2-4 micrograms/ml), both of which induced mainly IgM. Unlike other isotypes, IgE was induced only by effector Th generated with IL-4. Blocking studies showed that secretion of all isotypes in response to IL-6-primed effectors was dependent on IL-2, IL-5, and IL-6. IL-4 was required for optimal IgM, IgG1, and IgA secretion, but limited secretion of IgG2a, whereas IFN-gamma was required for optimal IgG2a secretion, and limited IgM, IgG1, and IgA. In contrast, secretion of all isotypes in response to IL-4-primed effectors was dependent on IL-5, although IL-4 and IFN-gamma were also essential for IgE and IgG2a, respectively. Addition of exogenous IL-5 to B cell cultures driven by IL-6-primed effectors did not obviate the requirement for IL-2, IL-4, and IL-6, suggesting that interaction of IL-4-primed effectors with B cells was qualitatively different from that of IL-6-primed effectors, driving B cells to a stage requiring only IL-5 for differentiation. Addition of exogenous factors to IL-2-primed effector Th, particularly IL-4 in the presence of anti-IFN-gamma, resulted in levels of Ig, including IgE, comparable to those induced with other effectors. These results show that functionally distinct Th cell subsets can be generated rapidly in vitro, under the influence of distinct cytokines, which vary dramatically in their levels of help for resting B cells. The cytokines involved in responses to distinct Th cells differ depending on the quality of interaction with the B cell, and the extent of help is strongly determined by the quantity and nature of cytokines secreted by the T cells.  相似文献   

17.
Coculture of resting human B cells with T cells stimulated with immobilized mAb to the CD3 molecular complex induces polyclonal activation and the production of Ig of all isotypes. The current experiments were carried out to determine the nature of the signals provided to B cells by the anti-CD3-activated T cells. For these experiments, fresh T cells or T cell clones were activated with immobilized mAb to CD3 and then fixed with 1% paraformaldehyde. Upon coculture, the fixed activated T cells or T cell clones induced B cell RNA synthesis and IL-2R expression, but only minimal DNA synthesis and no Ig production. Induction of B cell RNA synthesis by fixed activated T cells was not inhibited by mAb to the alpha-chain of the IL-2R, and was not enhanced by supplementing cultures with IL-2, IL-4, IL-6, or supernatants of mitogen-activated T cells. Upon the addition of IL-2, but not IL-4 or IL-6, to cultures of B cells and fixed activated T cells, sustained proliferation was noted along with the production of Ig. Control fixed T cells or T cell clones did not induce any of these responses. The presence of cycloheximide or cyclosporin A during the activation with anti-CD3 prevented T cells from developing the capacity to provide help for B cells. The use of mAb to a variety of cell surface molecules indicated that several T cell surface molecules including CD11a/CD18, CD44, CD54, and class I MHC molecules are involved in the induction of B cell responses. Among the mAb that inhibited B cell DNA synthesis and/or Ig production, only mAb to CD11a, CD18, or CD54 inhibited initial B cell activation as assessed by RNA synthesis. Even though mAB to CD11a/CD18 inhibited the capacity of fixed activated T cells to induce B cell responses, the finding that fixed activated CD18 deficit clones provided help for B cells indicated that expression of the beta 2 family of integrins by T cells was not necessary. These results indicate that activated T cells acquire the capacity to stimulate B cells polyclonally and induce cytokine responsiveness, proliferation, and Ig production by utilization of a variety of surface molecules. Moreover, these results indicate that the initial activation of the B cell is independent of the metabolic activity of the T cell and the production of cytokines.  相似文献   

18.
Murine CD4+ T cell clones have been classified into at least two subsets, Th1 and Th2, on the basis of their distinct lymphokine secretion profiles and functions. In the present study, we compared the functional responses of Th1 and Th2 clones to Ag presentation by splenic B cells and peritoneal macrophages. Th2 clones secreted IL-4 in response to Ag presented by resting B cells, but their optimal proliferation required the addition of IL-1 or a source of IL-1. The degree of IL-1 dependence varied among the four Th2 clones examined. In contrast, Th1 clones secreted IL-2 and proliferated in response to Ag presented by both B cells and macrophages, without any requirement for exogenous IL-1. Furthermore, the proliferation of Th2 clones in response to Ag presented by splenocytes or macrophages was inhibited by an IL-1R antagonist. These results indicate that IL-1 is an important costimulator for the expansion of the Th2 subset of CD4+ T cells. The different requirements for the proliferation of Th1 and Th2 cells may be responsible for the preferential expansion of one or the other subset under different conditions of immunization.  相似文献   

19.
Although cognate, MHC-restricted interaction of Th cells with Ag-presenting B cells provides effective help to a resting B cell, substantial B cell responses have also been seen with preactivated T cell clones that cannot recognize Ag on the B cell but apparently interact in a noncognate fashion (the bystander response). Here, we have investigated the ability of distinct Th cell subsets and T cells activated by different stimuli to support such bystander B cell responses. We have also determined which cytokines are involved. We generated distinct CD4+ T cell subsets specific for both alloantigen (using normal mice) and cytochrome c (using TCR transgenic mice). To compare cognate and bystander help, we analyzed the response of allogeneic (cognate) vs syngeneic (bystander) resting B cells in the former case, and the response of syngeneic B cells in the presence vs absence of Ag, in the latter case. Both approaches gave similar results. T cells stimulated with Ag for 24 h (naive and memory cells) or generated from naive cells over 4 days in the presence of exogenous IL-2 ("Th1-like" effectors) induced B cells to secrete minimal amounts of bystander Ig (20 to 700 ng/ml), less than 6% of the Ig induced under cognate conditions. In contrast, effectors generated in IL-4 or IL-6 ("Th2-like" and "Th0-like") induced significantly more bystander Ig (4 to 9 micrograms/ml), which was 18 to 30% of the amount produced during a cognate response. Restimulation of Th cell populations with anti-CD3, instead of Ag/APC, enhanced their ability to induce bystander Ig to levels 40 to 100% of those produced through cognate interaction. The addition of anti-cytokine Ab to bystander responses indicated that the cytokines utilized were similar to those mediating response after cognate interaction. Addition of exogenous cytokines did not specifically enhance the extent of the bystander response as a function of the cognate response. These results suggest that most Th cells can efficiently activate only those B cells that present relevant Ag on class II MHC, but that highly activated/differentiated Th effectors also have the ability to induce significant bystander B cell responses through noncognate interactions. We also conclude that the mode of Th cell activation and the cytokines encountered during Th differentiation play a major role in the capacity of helper cells to initiate a bystander response.  相似文献   

20.
Previously it was demonstrated that the human autoreactive CD4+ T cell clone MTC-4 is bifunctional, having the capacity to augment differentiation of autologous B cells into Ig-secreting cells in the absence of PWM and the capacity to suppress such differentiation in the presence of PWM. In the present study it was shown that these two functions of MTC-4 are mediated by distinctly different mechanisms. In the presence of autologous class II MHC Ag, MTC-4 releases one or more non-MHC-restricted soluble factors which stimulate B cell differentiation. The helper factors are different from IL-2, and act on both resting (small) and activated (large) B cells. The suppressor function of MTC-4 cells is elicited when MTC-4 cells are co-cultured with autologous non-T cells preincubated with PWM for 4 h, but not with non-T cells preincubated with PWM for 24 h; thus, activated autologous non-T cells have a transient capacity to induce MTC-4 suppressor function. Induction of MTC-4 suppressor activity is not associated with increased proliferation of MTC-4 and is mediated by low numbers of these cells. Unlike helper function, MTC-4 suppression of Ig synthesis can occur late in B cell cultures, and MTC-4 suppresses Ig production by autologous B cells, but not by allogeneic B cells. Finally, in co-cultures with activated autologous non-T cells and allogeneic B cells, MTC-4 can simultaneously produce helper factors that augment Ig synthesis by allogeneic B cells and suppress Ig synthesis by autologous B cells. In summary, exposure of MTC-4 to autologous non-T cells causes release of non-MHC-restricted factors which augment Ig production by both resting and activated autologous B cells, whereas exposure of MTC-4 to recently activated B cells causes MTC-4 to express the additional function of directly suppressing Ig production by differentiated autologous B cells. Thus autoreactive T cells may be uniquely suited to regulate Ig production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号