首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The protein components of the cloned crystal toxin of Bacillus thuringiensis var. israelensis were separated by polyacrylamide gel electrophoresis under denaturing conditions. Using an antiserum to the solubilized B. thuringiensis var. israelensis crystal protein as a probe, immunological homology between the crystal protein components of B. thuringiensis var. israelensis and those of the recombinant B. megaterium strain VB131 was tested. The results from this study indicate that the crystal inclusion of the recombinant strain contains only the 130 kilodalton protein and not the 68 or the 28 kilodalton proteins of the crystal toxin of B. thuringiensis var. israelensis and that the 130 kilodalton protein is primarily responsible for the mosquitocidal activity of this organism.  相似文献   

3.
The Bacillus thuringiensis var. thuringiensis strain 3A produces a proteinaceous parasporal crystal toxic to larvae of a variety of lepidopteran pests including Spodoptera littoralis (Egyptian cotton leaf worm), Heliothis zeae, H. virescens and Boarmia selenaria. By cloning of individual plasmids of B. thuringiensis in Escherichia coli, we localized a gene coding for the delta-endotoxin on the B. thuringiensis plasmid of about 17 kb designated pTN4. Following partial digestion of the B. thuringiensis plasmid pTN4 and cloning into the E. coli pACYC184 plasmid three clones were isolated in which toxin production was detected. One of these hybrid plasmids pTNG43 carried a 1.7-kb insert that hybridized to the 14-kb BamHI DNA fragments of B. thuringiensis var. thuringiensis strains 3A and berliner 1715. This BamHI DNA fragment of strain berliner 1715 has been shown to contain the gene that codes for the toxic protein of the crystal (Klier et al., 1982). No homologous sequences have been found between pTNG33 and the DNA of B. thuringiensis var. entomocidus strain 24, which exhibited insecticidal activity against S. littoralis similar to that of strain 3A.  相似文献   

4.
Abstract Protoplast fusion between a Gram-negative strain Pseudomonas fluorescens having plant growth promoting activities and a Gram-positive Bacillus thuringiensis var. kurstaki HD 73 possessing insecticidal activity, was carried out to generate P. fluorescens hybrids possessing insecticidal activity. The antibiotic resistance markers of P. fluorescens (rifr, nalr) and the immunoreactivity to the antiserum raised against the crystal proteins of B. thuringiensis var. galleriae were used as selection markers for the hybrids. The hybrids exhibited lethal but differential activity in Heliothis armigera and in Spodoptera litura when compared to the parenthal B. thuringiensis strain. The anti-feedant activity which is characteristic of B. thuringiensis toxin was not observed in the hybrids. Although the presence of sequences homologous to the cloned insecticidal gene of B. thuringiensis was demonstrated, the Western blot analysis of cell extract of the hybrid (PK 105) showed that only low molecular mass crystal proteins (less than 40 kDa) could be detected under denaturing conditions. It indicates that the high molecular mass toxin peptide may be degraded by proteolysis. Besides this, a clear separation of lethal and anti-feedant activity of the B. thuringiensis toxin has been observed by this study.  相似文献   

5.
AIMS: To introduce a cry gene into microorganisms that naturally colonize the phylloplane of tomato plants to improve the persistence of the Cry proteins for controlling a South American tomato moth (Tuta absoluta, Meyrick, 1917). METHODS AND RESULTS: A cry1Ab gene isolated from a native Bacillus thuringiensis strain (LM-466), showing a relevant activity against T. absoluta larvae, was cloned into the shuttle vector pHT315 (Arantes and Lereclus 1991). The construct was introduced by electroporation into native Bacillus subtilis and Bacillus licheniformis strains, both natural inhabitants of the tomato phylloplane. Western analysis and toxicity assays against the target larvae proved that the successful expression of the gene was accomplished in host bacteria. Recombinant toxin displayed a similar LC50 value in comparison to native donor strain LM-466. Both transformed Bacillus survived for at least 45 days on the tomato leaf surface. CONCLUSIONS: Plant-associated microorganisms that naturally colonize the phylloplane could be useful as recombinant microbial delivery systems of toxin genes of B. thuringiensis. SIGNIFICANCE AND IMPACT OF THE STUDY: Modified microorganisms capable of surviving on leaf surfaces for several weeks with insecticidal activity should allow for a reduction in pesticide application.  相似文献   

6.
PCR-based identification of Bacillus thuringiensis pesticidal crystal genes   总被引:4,自引:0,他引:4  
The polymerase chain reaction (PCR) is a molecular tool widely used to characterize the insecticidal bacterium Bacillus thuringiensis. This technique can be used to amplify specific DNA fragments and thus to determine the presence or absence of a target gene. The identification of B. thuringiensis toxin genes by PCR can partially predict the insecticidal activity of a given strain. PCR has proven to be a rapid and reliable method and it has largely substituted bioassays in preliminary classification of B. thuringiensis collections. In this work, we compare the largest B. thuringiensis PCR-based screenings, and we review the natural occurrence of cry genes among native strains. We also discuss the use of PCR for the identification of novel cry genes, as well as the potential of novel technologies for the characterization of B. thuringiensis strains.  相似文献   

7.
V Sekar  B C Carlton 《Gene》1985,33(2):151-158
A transformant of Bacillus megaterium, VB131, was isolated which carries a 6.3-kb XbaI segment of the crystal toxin gene of Bacillus thuringiensis var. israelensis (BTI) cloned in a vector plasmid pBC16 to yield pVB131. The chimeric plasmid DNA from VB131 was introduced into a transformable Bacillus subtilis strain by competence transformation. Both the B. megaterium VB131 strain and the B. subtilis strain harboring the chimeric plasmid produced irregular, parasporal, phase-refractile, crystalline inclusions (Cry+) during sporulation. The sporulated cells as well as the isolated crystal inclusions of the pVB131-containing B. megaterium and B. subtilis strains were highly toxic to the larvae of Aedes aegypti. Also, the solubilized crystal protein preparation from VB131[pVB131] showed clear immuno cross-reaction with antiserum to the BTI crystal toxin. 32P-labeled pVB131 plasmid DNA showed specific hybridization with a 112-kb plasmid DNA of Cry+ strains of BTI, and no hybridization with other plasmid or chromosomal DNA of either Cry+ or Cry- variants. These results are in agreement with our previous findings (González and Carlton, 1984) that the 112-kb plasmid of BTI is associated with the production of the crystal toxin.  相似文献   

8.
A Delcluse  M L Rosso    A Ragni 《Applied microbiology》1995,61(12):4230-4235
A gene, designated cry11B, encoding a 81,293-Da crystal protein of Bacillus thuringiensis subsp. jegathesan was cloned by using a gene-specific oligonucleotide probe. The sequence of the Cry11B protein, as deduced from the sequence of the cry11B gene, contains large regions of similarity with the Cry11A toxin (previously CryIVD) from B. thuringiensis subsp. israelensis. The Cry11B protein was immunologically related to both Cry11A and Cry4A proteins. The cry11B gene was expressed in a nontoxic strain of B. thuringiensis, in which Cry11B was produced in large amounts during sporulation and accumulated as inclusions. Purified Cry11B inclusions were highly toxic for mosquito larvae of the species Aedes aegypti, Culex pipiens, and Anopheles stephensi. The activity of Cry11B toxin was higher than that of Cry11A and similar to that of the native crystals from B. thuringiensis subsp. jegathesan, which contain at least seven polypeptides.  相似文献   

9.
Toxin was extracted from spores of the mosquito pathogen Bacillus sphaericus strain 1593 using 0.05 M NaOH. The molecular weight of this toxin was 35000-54000. Toxic activity of this extract was resistant to a variety of enzymes including subtilisin, but was degraded by pronase. Antiserum produced to 1593 spore toxin neutralized spore toxin and cytoplasmic toxin activity, but did not react with Bacillus thuringiensis var. israelensis crystal toxin, nor did var. israelensis toxin antiserum react with B. sphaericus toxin. Crystal like parasporal inclusions accompanying the B. sphaericus 1593 spores were removed by NaOH extraction.  相似文献   

10.
Novel cloning vectors for Bacillus thuringiensis.   总被引:8,自引:3,他引:5       下载免费PDF全文
Seven replication origins from resident plasmids of Bacillus thuringienis subsp. kurstaki HD263 and HD73 were cloned in Escherichia coli. Three of these replication origins, originating from plasmids of 43, 44, and 60 MDa, were used to construct a set of compatible shuttle vectors that exhibit structural and segregational stability in the Cry- strain B. thuringiensis HD73-26. These shuttle vectors, pEG597, pEG853, and pEG854, were designed with rare restriction sites that permit various adaptations, including the construction of small recombinant plasmids lacking antibiotic resistance genes. The cryIA(c) and cryIIA insecticidal crystal protein genes were inserted into these vectors to demonstrate crystal protein production in B. thuringiensis. Introduction of a cloned cryIA(c) gene from strain HD263 into a B. thuringiensis subsp. aizawai strain exhibiting good insecticidal activity against Spodoptera exigua resulted in a recombinant strain with an improved spectrum of insecticidal activity. Shuttle vectors of this sort should be valuable in future genetic studies of B. thuringiensis as well as in the development of B. thuringiensis strains for use as microbial pesticides.  相似文献   

11.
AIM: The study seeks to shed light on the aminopolyol, broad-spectrum antibiotic zwittermicin A gene cluster of Bacillus thuringiensis subsp. kurstaki HD1 and to identify any new uncharacterized genes with an eventual goal to establish a better understanding of the resistance gene cluster. METHODS AND RESULTS: We screened 51 serovars of B. thuringiensis by PCR and identified 12 zmaR-positive strains. The zmaR-positive B. thuringiensis subsp. kurstaki HD1 strain displayed inhibition zones against indicator fungal strain Phytophthora meadii and bacterial strain Erwinia herbicola as well as against Rhizopus sp., Xanthomonas campestris and B. thuringiensis subsp. finitimus. The zmaR gene cluster of strain HD1 was partially cloned using a lambda library and was extensively characterized based on the information available from a study performed on a similar group of genes in Bacillus cereus. CONCLUSIONS: Three of the five genes in the zwittermicin gene cluster, including the zmaR gene, had counterparts in B. cereus, and the other two were new members of the B. thuringiensis zmaR gene cluster. SIGNIFICANCE AND IMPACT OF THE STUDY: The two new genes were extensively analysed and the data is presented. Understanding antifungal activity of B. thuringiensis may help us to design suitable Cry toxin delivery agents with antifungal activity as well as enhanced insecticidal activity.  相似文献   

12.
Novel cloning vectors for Bacillus thuringiensis   总被引:6,自引:0,他引:6  
Seven replication origins from resident plasmids of Bacillus thuringienis subsp. kurstaki HD263 and HD73 were cloned in Escherichia coli. Three of these replication origins, originating from plasmids of 43, 44, and 60 MDa, were used to construct a set of compatible shuttle vectors that exhibit structural and segregational stability in the Cry- strain B. thuringiensis HD73-26. These shuttle vectors, pEG597, pEG853, and pEG854, were designed with rare restriction sites that permit various adaptations, including the construction of small recombinant plasmids lacking antibiotic resistance genes. The cryIA(c) and cryIIA insecticidal crystal protein genes were inserted into these vectors to demonstrate crystal protein production in B. thuringiensis. Introduction of a cloned cryIA(c) gene from strain HD263 into a B. thuringiensis subsp. aizawai strain exhibiting good insecticidal activity against Spodoptera exigua resulted in a recombinant strain with an improved spectrum of insecticidal activity. Shuttle vectors of this sort should be valuable in future genetic studies of B. thuringiensis as well as in the development of B. thuringiensis strains for use as microbial pesticides.  相似文献   

13.
Transformation of Bacillus thuringiensis by electroporation   总被引:8,自引:0,他引:8  
Plasmids were transformed by electroporation into various strains of Bacillus thuringiensis with frequencies of up to 10(5) transformants/micrograms. pC 194 transformed all strains tested at a high frequency and cells could be stably transformed with pC194 and pUB110 simultaneously by electroporation with a frequency of 10(2) pC194+ pUB110 transformants/micrograms DNA. Low transformation frequencies observed with some plasmids, especially those grown initially in Escherichia coli, could be increased by passage through B. thuringiensis, B. thuringiensis var. israelensis and in acrystalliferous mutant of the same strain transformed at frequencies of 10(4)-10(5)/micrograms DNA with most of the plasmids tested. A cloned israelensis 27-kDa delta-endotoxin gene was introduced into the israelensis acrystalliferous mutant and a kurstaki acrystalliferous mutant by electroporation. Both transformants were shown to express the endotoxin gene and to be toxic to Aedes aegypti larvae.  相似文献   

14.
Genes encoding insecticidal crystal proteins were cloned from three strains of Bacillus thuringiensis subsp. kenyae and two strains of B. thuringiensis subsp. kurstaki. Characterization of the B. thuringiensis subsp. kenyae toxin genes showed that they are most closely related to cryIA(c) from B. thuringiensis subsp. kurstaki. The cloned genes were introduced into Bacillus host strains, and the spectra of insecticidal activities of each Cry protein were determined for six pest lepidopteran insects. CryIA(c) proteins from B. thuringiensis subsp. kenyae are as active as CryIA(c) proteins from B. thuringiensis subsp. kurstaki against Trichoplusia ni, Lymantria dispar, Heliothis zea, and H. virescens but are significantly less active against Plutella xylostella and, in some cases, Ostrinia nubilalis. The sequence of a cryIA(c) gene from B. thuringiensis subsp. kenyae was determined (GenBank M35524) and compared with that of cryIA(c) from B. thuringiensis subsp. kurstaki. The two genes are more than 99% identical and show seven amino acid differences among the predicted sequences of 1,177 amino acids.  相似文献   

15.
The larva of Scrobipalpuloides absoluta , a South American moth, is the most devastating insect pest of tomato production in Chile. The potential for using bacterial insecticides was studied analysing the relative toxicity of native Bacillus thuringiensis (BT) isolates belonging to the Chilean collection. The polymerase chain reaction (PCR) technique was used in order to facilitate the prescreening. Mixtures of homologous specific primers to regions within genes encoding CryI , CryIII and CryIV crystal proteins were employed to generate a PCR product profile of each BT isolate. Four isolates were selected and further characterized by means of SDS-PAGE, Western blot and bioassays on fourth-instar S. absoluta larvae. Relative toxicities were evaluated by LD50 determinations. The entomocidal activity of isolate 121e, an autoagglutinating strain, was threefold higher than toxin synthesized by B. thuringiensis var. kurstaki . This native strain was also active against Culex pipiens larvae, although much less than towards S. absoluta .  相似文献   

16.
Influence of corn steep liquor on the cell yield and toxicity of three strains of B. thuringiensis var israelensis and two strains of B. sphaericus was studied and compared with peptone-yeast extract using a laboratory fermentor. Large increase in the cell yield of all the three strains of B. thuringiensis var israelensis was observed when cornsteep liquor was used as the sole nitrogen source. Significant increase in toxicity was also observed in B. thuringiensis var israelensis strains B17 and B113. Among the two B. sphaericus strains tested, the strain 1593 showed no significant change in cell yield and toxicity, whereas the strain VCRC B42 showed increased cell yield and toxicity in this medium. The results indicate that cornsteep liquor can effectively replace both peptone and yeast extract in the media presently used for large scale multiplication of the two larvicidal bacilli.  相似文献   

17.
Integrative plasmids were constructed to enable integration of foreign DNA into the chromosome of Bacillus sphaericus 2297 by in vivo recombination. Integration of the aphA3 kanamycin resistance gene by a two-step procedure demonstrated that this strategy was applicable with antibiotic resistance selection. Hybridization experiments evidenced two copies of the operon encoding the binary toxin from B. sphaericus in the recipient strain. The Bacillus thuringiensis subsp. israelensis cry11Aal gene (referred to as cry11A), encoding a delta-endotoxin with toxicity against Culex, Aedes, and Anopheles larvae, was integrated either by a single crossover event [strain 2297 (::pHT5601), harboring the entire recombinant plasmid] or by two successive crossover events [strain 2297 (::cry11A)]. The level of the Cry11A production in B. sphaericus was high; two crystalline inclusions were produced in strain 2297 (::pHT5601). Synthesis of the Cry11A toxin conferred toxicity to the recombinant strains against Aedes aegypti larvae, for which the parental strain was not toxic. Interestingly, the level of larvicidal activity of strain 2297 (::pHT5601) against Anopheles stephensi was as high as that of B. thuringiensis subsp. israelensis and suggested synergy between the B. thuringiensis and B. sphaericus toxins. The toxicities of parental and recombinant B. sphaericus strains against Culex quinquefasciatus were similar, but the recombinant strains killed the larvae more rapidly. The production of the Cry11A toxin in B. sphaericus also partially restored toxicity for C. quinquefasciatus larvae from a population resistant to B. sphaericus 1593. In vivo recombination therefore appears to be a promising approach to the creation of new B. sphaericus strains for vector control.  相似文献   

18.
Abstract Expression of the cloned 27 kDa toxin gene from Bacillus thuringiensis strain PG14 in Bacillus subtilis facilitated the evaluation of the in vivo and in vitro toxicities of the pure toxin. This toxin is known to differ from the 27 kDa δ-endotoxin of var. israelensis by a single amino acid. Comparison of toxicity values with data obtained from similarly produced 27 kDa toxin from var. israelensis suggested that the amino acid difference has no detectable effect on the potency of the toxin under the assay conditions employed.  相似文献   

19.
Bacillus thuringiensis subsp. kurstaki total DNA was digested with BglII and cloned into the BamHI site of plasmid pUC9 in Escherichia coli. A recombinant plasmid, pHBHE, expressed a protein of 135,000 daltons that was toxic to caterpillars. A HincII-SmaI double digest of pHBHE was then ligated to BglII-cut plasmid pBD64 and introduced into Bacillus subtilis by transformation. The transformants were identified by colony hybridization and confirmed by Southern blot hybridization. A 135,000-dalton protein which bound to an antibody specific for the crystal protein of B. thuringiensis was detected from the B. subtilis clones containing the toxin gene insert in either orientation. A toxin gene insert cloned into a PvuII site distal from the two drug resistance genes of the pBD64 vector also expressed a 135,000-dalton protein. These results suggest that the toxin gene is transcribed from its own promoter. Western blotting of proteins expressed at various stages of growth revealed that the crystal protein expression in B. subtilis begins early in the vegetative phase, while in B. thuringiensis it is concomitant with the onset of sporulation. The cloned genes when transferred to a nonsporulating strain of B. subtilis also expressed a 135,000-dalton protein. These results suggest that toxin gene expression in B. subtilis is independent of sporulation. Another toxin gene encoding a 130,000- to 135,000-dalton protein was cloned in E. coli from a library of B. thuringiensis genes established in lambda 1059. This gene was then subcloned in B. subtilis. The cell extracts from both clones were toxic to caterpillars. Electron microscope studies revealed the presence of an irregular crystal inclusion in E. coli and a well-formed bipyramidal crystal in B. subtilis clones similar to the crystals found in B. thuringiensis.  相似文献   

20.
AIMS: To investigate the distribution of chitinase in Bacillus thuringiensis strains, and the enhancing effects of the chitinase-producing B. thuringiensis strains on insecticidal toxicity of active B. thuringiensis strain against Spodoptera exigua larvae. METHODS AND RESULTS: The chitinolytic activities of B.thuringiensis strains representing the 70 serotypes were investigated by the whitish opaque halo and the colorimetric method. Thirty-eight strains produced different levels of chitinase at pH 7.0, and so did 17 strains at pH 10.0. The strain T04A001 exhibited the highest production, reaching a specific activity of 355 U ml(-1) in liquid medium. SDS-PAGE and Western blotting showed that the chitinase produced by some B. thuringiensis strains had a molecular weight of about 61 kDa. The bioassay results indicated that the chitinase-producing B. thuringiensis strains could enhance the insecticidal activity of B. thuringiensis strain DL5789 against S. exigua larvae, with an enhancing ratio of 2.35-fold. CONCLUSION: This study demonstrated that chitinase was widely produced in B. thuringiensis strains and some of the strains could enhance the toxicity of active B. thuringiensis strain. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first investigation devoted exclusively to analyse the distribution of chitinase in B. thuringiensis. It infers that the chitinase produced by B. thuringiensis might play a role in the activity of the biopesticide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号