首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
White CN  Rivin CJ 《Plant physiology》2000,122(4):1089-1098
Abscisic acid (ABA) is required for seed maturation in maize (Zea mays L.) and other plants. Gibberellins (GAs) are also present in developing maize embryos, and mutual antagonism of GAs and ABA appears to govern the choice between precocious germination or quiescence and maturation. Exogenous ABA can also induce quiescence and maturation in immature maize embryos in culture. To examine the role of GAs versus ABA in regulating maize embryo maturation, the effects of modulating GA levels were compared with those of ABA in embryos cultured at successive stages of development. The effects of GA synthesis inhibition or exogenous GA application differed markedly in embryos at different stages of development, indicating changes in both endogenous GA levels and in the capacity for GA synthesis as embryogenesis and maturation progress. In immature embryos, the inhibition of GA synthesis mimicked the effects of exogenous ABA, as shown by the suppression of germination, the acquisition of anthocyanin pigments, and the accumulation of a variety of maturation-phase mRNAs. We suggest that GA antagonizes ABA signaling in developing maize embryos, and that the changing hormone balance provides temporal control over the maturation phase.  相似文献   

2.
Proanthocyanidins (PAs) are the end products of the flavonoid biosynthetic pathway in many seeds, but their biological function is rarely unknown during seed germination. In the present study, we observed that PAs pretreatment accelerated cucumber seeds germination with maximum efficiency at 0.15% by measuring germination percentage and radical length. Using inhibitors of abscisic acid (ABA), gibberellins (GA) and alternative oxidase (AOX) and H2O2 scavenger pretreatment and gene expression analysis, we found that the accelerated effect of 0.15% PAs on seed germination was due to the decreased ABA biogenesis and enhanced GA production. ROS are induced by PAs pretreatment. Then, the enhanced ROS contributed to GA and ethylene accumulation and ABA decrease in seeds. Moreover, the improvement of GA was involved in the further induction of antioxidant enzymes activities. Therefore, our findings uncover a novel role of PAs in seed germination and clarify the relationships between ROS, ABA, GA and ethylene during seed germination.  相似文献   

3.
4.
Seed dormancy controls the start of a plant's life cycle by preventing germination of a viable seed in an unfavorable season. Freshly harvested seeds usually show a high level of dormancy, which is gradually released during dry storage (after-ripening). Abscisic acid (ABA) has been identified as an essential factor for the induction of dormancy, whereas gibberellins (GAs) are required for germination. The molecular mechanisms controlling seed dormancy are not well understood. DELAY OF GERMINATION1 (DOG1) was recently identified as a major regulator of dormancy in Arabidopsis thaliana. Here, we show that the DOG1 protein accumulates during seed maturation and remains stable throughout seed storage and imbibition. The levels of DOG1 protein in freshly harvested seeds highly correlate with dormancy. The DOG1 protein becomes modified during after-ripening, and its levels in stored seeds do not correlate with germination potential. Although ABA levels in dog1 mutants are reduced and GA levels enhanced, we show that DOG1 does not regulate dormancy primarily via changes in hormone levels. We propose that DOG1 protein abundance in freshly harvested seeds acts as a timer for seed dormancy release, which functions largely independent from ABA.  相似文献   

5.
赤霉素与脱落酸对番茄种子萌发中细胞周期的调控   总被引:11,自引:0,他引:11  
利用细胞流检仪检测番茄(Lycopersicon esculentum Mill.) GA-缺陷型、ABA-缺陷型和相应的正常品种(野生型)成熟种子胚根尖细胞倍性水平时发现:GA-缺陷型和野生型种子绝大多数细胞DNA 水平为2C,而ABA-缺陷型种子则含有较多的4C细胞。在标准发芽条件下,ABA-缺陷型和野生型种子浸种1 d 后胚根尖细胞DNA 开始复制,随后胚根突破种皮而发芽。然而GA-缺陷型种子除非加入外源GA,否则既不发生细胞DNA 复制,也不发芽。这说明内源GA 是启动番茄种子胚根尖细胞DNA 复制的关键因素,同时也说明番茄根尖细胞DNA 复制是种子发芽的必要条件。实验证明:ABA 不抑制细胞DNA 合成,但阻止G2 细胞进入到M 期。外源ABA处理野生型种子与渗控处理结果相似,可以大幅度提高胚根尖4C/2C细胞的比例,但抑制种子的最终发芽  相似文献   

6.
The antagonism between abscisic acid (ABA) and gibberellin (GA) plays a key role in controlling seed germination, but the mechanism of antagonism during this process is not known. The possible links among ABA, reactive oxygen species (ROS), ascorbic acid (ASC), and GA during rice seed germination were investigated. Unlike in non-seed tissues where ROS production is increased by ABA, ABA reduced ROS production in imbibed rice seeds, especially in the embryo region. Such reduced ROS also led to an inhibition of ASC production. GA accumulation was also suppressed by a reduced ROS and ASC level, which was indicated by the inhibited expression of GA biosynthesis genes, amylase genes, and enzyme activity. Application of exogenous ASC can partially rescue seed germination from ABA treatment. Production of ASC, which acts as a substrate in GA biosynthesis, was significantly inhibited by lycorine which thus suppressed the accumulation of GA. Consequently, expression of GA biosynthesis genes was suppressed by the low levels of ROS and ASC in ABA-treated seeds. It can be concluded that ABA regulates seed germination in multiple dimensions. ROS and ASC are involved in its inhibition of GA biosynthesis.  相似文献   

7.
种子发育与萌发过程中的程序性细胞死亡   总被引:10,自引:1,他引:10  
禾谷类种子胚乳发育过程中的程序性细胞死亡(PCD)主要发生在种子成熟期的后期,并伴随着生物合成的停止和自然脱水;乙烯和活性氧促进胚乳发育中的PCD,而ABA起负调节作用。种子萌发过程中糊粉层降解的PCD被GA、Ca^2 和活性氧促进,被ABA和抗氧化剂抑制。种子人工老化和劣变种子萌发过程中可能存在PCD事件,其研究对延长种子的贮藏寿命和提高播种品质具有重要的意义。  相似文献   

8.
杂交稻F1齐穗后21 d(灌浆期)施用ABA 1000mg/L或MH 4000 mg/L,可以抑制穗芽的发生,降低种子活力.ABA处理F1发芽种子使GA1含量下降,淀粉酶活性表达滞后,活性下降,有效发芽期延长;MH处理没有引起F1发芽种子GA1含量与淀粉酶活性下降,但使未发芽种子中GA1与淀粉酶活性明显下降,并丧失发芽能力.因此,ABA对杂交稻F1穗芽的抑制作用可视为"后熟效应",而MH对穗芽的抑制作用可视为"遏制作用".  相似文献   

9.
珍稀濒危植物珙桐种子休眠萌发过程中内源激素的变化   总被引:7,自引:0,他引:7  
珙桐是我国特有珍稀濒危植物,休眠期长且具二次休眠现象。将处于休眠萌发过程中的珙桐种子依据胚根长度划分为4个阶段,利用高效液相色谱(HPLC)测定各阶段种子及其内果皮中ABA(脱落酸)、GA(赤霉素)、KT(细胞分裂素)、IAA(3-吲哚乙酸)4种内源激素含量,分析其比值动态变化,并与幼苗阶段进行比较。结果显示:未破壳种子的内果皮中内源激素含量以ABA最高,其次是GA、IAA、KT,随着种子破壳后四种激素含量显著降低。除ABA外,种子中GA、IAA和KT含量随着胚根的伸长逐渐升高,但仍低于幼苗阶段。此外,随着胚根伸长,种子中GA/ABA、IAA/ABA、KT/ABA比值逐渐增大,其中以GA/ABA的变化最显著。因此,珙桐种子的休眠和萌发可能主要受ABA和GA的平衡和拮抗来调控。  相似文献   

10.
The antagonism between abscisic acid (ABA) and gibberellin (GA) plays a key role in controlling seed germination,1,2 but the mechanism of antagonism during this process is not known. In the associated study,3 we investigated the relationship among ABA, reactive oxygen species (ROS), ascorbic acid (ASC) and GA during rice seed germination. ROS production is reduced by ABA, which hence results in decreasing ASC accumulation during imbibition. GA accumulation was also suppressed by a reduced ROS and ASC level, whereas application of exogenous ASC can partially rescue seed germination from ABA treatment. Further results show that production of ASC, which acts as a substrate in GA biosynthesis, was significantly inhibited by lycorine which thus suppressed the accumulation of GA. Consequently, expression of GA biosynthesis genes was suppressed by the low levels of ROS and ASC in ABA-treated seeds. These studies reveal a new role for ASC in mediating the antagonism between ABA and GA during seed germination in rice.  相似文献   

11.
种子胎萌机制研究进展   总被引:1,自引:0,他引:1  
种子胎萌是内在的遗传基础和外部环境共同作用的结果,受许多基因的调控和植物激素的影响。近些年来,随着分子生物学的快速发展,种子胎萌研究已经深入到分子水平。分子生物学技术的运用,特别是基因的克隆与表达、植物激素的生物合成与信号转导和分子遗传学等手段已成为研究种子胎萌的新工具和新方向。现从种皮色泽基因R、矮杆基因Rht3以及Viviparous(Vp)基因家族等方面就种子胎萌相关基因与胎萌关系进行了综述;并对植物激素脱落酸(ABA)和赤霉素(GA)的生物合成或信号转导在种子胎萌的调控中的作用等方面进行综述。  相似文献   

12.
13.
The hormonal mechanisms involved in palm seed germination are not fully understood. To better understand how germination is regulated in Arecaceae, we used macaw palm (Acrocomia aculeata (Jacq.) Lodd. Ex Mart.) seed as a model. Endogenous hormone concentrations, tocopherol and tocotrienol and lipid peroxidation during germination were studied separately in the embryo and endosperm. Evaluations were performed in dry (D), imbibed (I), germinated (G) and non‐germinated (NG) seeds treated (+GA3) or not treated (control) with gibberellins (GA). With GA3 treatment, seeds germinated faster and to a higher percentage than control seeds. The +GA3 treatment increased total bioactive GA in the embryo during germination relative to the control. Abscisic acid (ABA) concentrations decreased gradually from D to G in both tissues. Embryos of G seeds had a lower ABA content than NG seeds in both treatments. The GA/ABA ratio in the embryo was significantly higher in G than NG seeds. The +GA3 treatment did not significantly affect the GA/ABA ratio in either treatment. Cytokinin content increased from dry to germinated seeds. Jasmonic acid (JA) increased and 1‐aminocyclopropane‐1‐carboylic acid (ACC) decreased after imbibition. In addition, α‐tocopherol and α‐tocotrienol decreased, while lipid peroxidation increased in the embryo during germination. We conclude that germination in macaw palm seed involves reductions in ABA content and, consequently, increased GA/ABA in the embryo. Furthermore, the imbibition process generates oxidative stress (as observed by changes in vitamin E and MDA).  相似文献   

14.
Germination of lettuce (Lactuca sativa L. cv. 'Grand Rapids') seeds was inhibited at high temperatures (thermoinhibition). Thermoinhibition at 28 degrees C was prevented by the application of fluridone, an inhibitor of abscisic acid (ABA) biosynthesis. At 33 degrees C, the sensitivity of the seeds to ABA increased, and fluridone on its own was no longer effective. However, a combined application of fluridone and gibberellic acid (GA3) was able to restore the germination. Exogenous GA3 lowered endogenous ABA content in the seeds, enhancing catabolism of ABA and export of the catabolites from the intact seeds. The fluridone application also decreased the ABA content. Consequently, the combined application of fluridone and GA3 decreased the ABA content to a sufficiently low level to allow germination at 33 degrees C. There was no significant temperature-dependent change in endogenous GA1 contents. It is concluded that ABA is an important factor in the regulation of thermoinhibition of lettuce seed germination, and that GA affects the temperature responsiveness of the seeds through ABA metabolism.  相似文献   

15.
Flow cytometric determination of ploidy levels in embryos of GA-deficient, ABA-deficient mutant and isogenic wild type tomato (Lycopersicon esculentum Mill. cv. Moneymaker) seeds revealed that, large amount of 2C DNA signals existed both in wild type and GA-deficient mutant seeds, showing that most cells had arrested in the cell cycle at presynthesis Gl, whereas a relative amount of 4C proportion which is a sign of seed germination was found in ABA-deficient mutant seeds, indicating that endogenous ABA play a role in regulating the switch from development to germination in seeds. DNA replication was stimulated 1 d after the seed was imbibed in water and a visible germination occurred subsequently either in wild type GA-deficient mutant seeds. But it was not the case for ABA-deficient mutant seeds unless an exogenous GA was supplemented. This demonstrated that DNA replication in embryo root tips cells was subjected to be a compulsory factor for seed germination, whereas endogenous GA triggered DNA synthesis. It was evident that exogenous ABA could inhibit seed germination not by suppressing DNA synthesis but by bloking the route leading to mitosis since a great amount of 4C proportion was found in the germinating wild type and GA-deficient mutant seeds in the ABA solution when visible ger mination did not occur. Finally a simple mode of hormonal regulation on cell cycle in high plants was hypothesized.  相似文献   

16.
In a wide range of plant species, seed germination is regulated antagonistically by two plant hormones, abscisic acid (ABA) and gibberellin (GA). In the present study, we have revealed that ABA metabolism (both biosynthesis and inactivation) was phytochrome-regulated in an opposite fashion to GA metabolism during photoreversible seed germination in Arabidopsis. Endogenous ABA levels were decreased by irradiation with a red (R) light pulse in dark-imbibed seeds pre-treated with a far-red (FR) light pulse, and the reduction in ABA levels in response to R light was inhibited in a phytochrome B (PHYB)-deficient mutant. Expression of an ABA biosynthesis gene, AtNCED6, and the inactivation gene, CYP707A2, was regulated in a photoreversible manner, suggesting a key role for the genes in PHYB-mediated regulation of ABA metabolism. Abscisic acid-deficient mutants such as nced6-1, aba2-2 and aao3-4 exhibited an enhanced ability to germinate relative to wild type when imbibed in the dark after irradiation with an FR light pulse. In addition, the ability to synthesize GA was improved in the aba2-2 mutant compared with wild type during dark-imbibition after an FR light pulse. Activation of GA biosynthesis in the aba2-2 mutant was also observed during seed development. These data indicate that ABA is involved in the suppression of GA biosynthesis in both imbibed and developing seeds. Spatial expression patterns of the AtABA2 and AAO3 genes, responsible for last two steps of ABA biosynthesis, were distinct from that of the GA biosynthesis gene, AtGA3ox2, in both imbibed and developing seeds, suggesting that biosynthesis of ABA and GA in seeds occurs in different cell types.  相似文献   

17.
Suppression of seed germination at supraoptimal high temperature (thermoinhibiton) during summer is crucial for Arabidopsis (Arabidopsis thaliana) to establish vegetative and reproductive growth in appropriate seasons. Abscisic acid (ABA) and gibberellins (GAs) are well known to be involved in germination control, but it remains unknown how these hormone actions (metabolism and responsiveness) are altered at high temperature. Here, we show that ABA levels in imbibed seeds are elevated at high temperature and that this increase is correlated with up-regulation of the zeaxanthin epoxidase gene ABA1/ZEP and three 9-cis-epoxycarotenoid dioxygenase genes, NCED2, NCED5, and NCED9. Reverse-genetic studies show that NCED9 plays a major and NCED5 and NCED2 play relatively minor roles in high temperature-induced ABA synthesis and germination inhibition. We also show that bioactive GAs stay at low levels at high temperature, presumably through suppression of GA 20-oxidase genes, GA20ox1, GA20ox2, and GA20ox3, and GA 3-oxidase genes, GA3ox1 and GA3ox2. Thermoinhibition-tolerant germination of loss-of-function mutants of GA negative regulators, SPINDLY (SPY) and RGL2, suggests that repression of GA signaling is required for thermoinibition. Interestingly, ABA-deficient aba2-2 mutant seeds show significant expression of GA synthesis genes and repression of SPY expression even at high temperature. In addition, the thermoinhibition-resistant germination phenotype of aba2-1 seeds is suppressed by a GA biosynthesis inhibitor, paclobutrazol. We conclude that high temperature stimulates ABA synthesis and represses GA synthesis and signaling through the action of ABA in Arabidopsis seeds.  相似文献   

18.
The role of abscisic acid (ABA) in the dormancy induction of tomato (Lycopersicon esculentum) seeds was studied by comparison of the germination behavior of the ABA-deficient sitiens mutant with that of the isogenic wild-type genotype. Freshly harvested mutant seeds, in contrast to wild-type seeds, always readily germinate and even exhibit viviparous germination in overripe fruits. Crosses between mutant and wild-type and self-pollination of heterozygous plants show that in particular the ABA fraction of embryo and endosperm is decisive for the induction of dormancy. After-ripened wild-type seeds fully germinate in water but are more sensitive toward osmotic inhibition than mutant seeds. Germination of both wild-type and mutant seeds is equally sensitive toward inhibition by exogenous ABA. ABA content of mature wild-type seeds is about 10-fold the level found in mutant seeds. Nevertheless, it is argued that the differences in dormancy between the seeds of both genotypes are not a result of actual ABA levels in the mature seeds or fruits but a result of differences in ABA levels during seed development. It is hypothesized that the high levels of ABA that occur during seed development in wild-type seeds induce an inhibition of cell elongation of the radicle that can still be observed after long periods of dry storage.  相似文献   

19.
It is generally believed that seed dormancy release is terminated by germination and that this process is controlled by phytohormones. Most attention was paid to gibberellins (GAs) because treatment with GAs is most frequently applied for seed dormancy breaking. The review characterizes the hormonal regulation of seed dormancy and its release, as exemplified by arabidopsis seeds possessing non-deep physiological dormancy. Dormancy release occurs under the influence of low temperature and/or illumination with red light. Two main trends are typical of this process: (1) a decrease in ABA content and blocking of signal transduction from ABA, and (2) GA synthesis and activation of GA signaling pathway. Dormancy release ends with the GA-induced syntheses of some proteins, enzymes in particular, required for the start of germination. Quiescent seeds are capable of realizing the germination program without hormonal induction, due to nothing but seed hydration. In imbibing seeds, the triggering role of water lies in the successive activation of basic metabolic systems after attaining the water content thresholds characteristic of these systems and in preparing cells of embryo axial organs for germination. Thus, seed dormancy release is controlled by phytohormones, whereas subsequent germination manifesting itself as the initiation of cell elongation in embryo axes is controlled by water inflow.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号