首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Beta-catenin not only plays a role in cadherin-dependent cell adhesion, but also interacts with T-cell factor (TCF)/lymphoid enhancer factor-1 (LEF-1) to affect gene expression. In this report, we describe the effects of exogenous LEF-1 and of treatment with leptomycin B (LMB), a specific inhibitor of CRM1-medicated nuclear export, on the nuclear localization and export of beta-catenin. Normal epithelial cells overexpressing LEF-1 accumulate nuclear beta-catenin in a LEF-1 concentration-dependent manner. Nuclear beta-catenin, once imported from the cytoplasm, is rapidly removed from the nucleus. Treatment with LMB results in dramatic retention of nuclear beta-catenin in normal epithelial cells transfected with LEF-1, and this effect is intensified by treatment of N-Acetyl-leucyl-leucyl-norleucinal together with LMB. Colon carcinoma cells containing an adenomatous polyposis coli mutation retain significant amounts of LEF-1 induced nuclear beta-catenin considerably after the time-point when beta-catenin disappears from the nuclei of LEF-1 transfected normal epithelial cells. beta-Catenin binds directly to CRM1, and overexpression of CRM1 reduces nuclear beta-catenin-mediated transactivation function.  相似文献   

2.
3.
4.
beta-Catenin promotes epithelial architecture by forming cell surface complexes with E-cadherin and also interacts with TCF/LEF-1 in the nucleus to control gene expression. By DNA transfection, we overexpressed beta-catenin and/or LEF-1 in NIH 3T3 fibroblasts, corneal fibroblasts, corneal epithelia, uveal melanoma cells, and several carcinoma cell lines. In all cases (with or without LEF-1), the abundant exogenous beta-catenin localizes to the nucleus and forms distinct nuclear aggregates that are not associated with DNA. Surprisingly, we found that with time (5-8 d after transfection) cells overexpressing beta-catenin all undergo apoptosis. LEF-1 does not need to be present. Moreover, LEF-1 overexpression in the absence of exogenous beta-catenin does not induce apoptosis, even though some endogenous beta-catenin moves with the exogenous LEF-1 into the nucleus. TOPFLASH/FOPFLASH reporter assays showed that full-length beta-catenin is able to induce LEF-1-dependent transactivation, whereas Arm beta-catenin totally abolishes the transactivating function. However, Arm beta-catenin, containing deletions of known LEF-1-transactivating domains, has the same apoptotic effects as full-length beta-catenin. Overexpressed beta-catenin also induces apoptosis in cells transfected with nuclear localization signal-deleted LEF-1 that localizes only in the cytoplasm. Thus, the apoptotic effects of overexpressed exogenous beta-catenin do not rely on its transactivating function with nuclear LEF-1. Overexpressed delta-catenin, containing 10 Arm repeats, induces only minor apoptosis, suggesting that the major apoptotic effect may be due to domains specific to beta-catenin as well as to Arm repeats. The absence of p53, Rb, cyclin D1, or E2F1 does not affect the apoptotic effect of overexpressed beta-catenin, but Bcl-x(L) reduces it. We hypothesize that in vivo apoptosis of cells overexpressing beta-catenin might be a physiological mechanism to eliminate them from the population.  相似文献   

5.
6.
7.
The once accepted idea that LEF-1 transports beta-catenin into nuclei has recently been challenged by experiments using exogenous beta-catenin. Here, we investigated the effects of beta-catenin and LEF-1 on nuclear import of beta-catenin using different combinations of exogenous and endogenous molecules over longer lengths of time than previously studied. Nuclear beta-catenin is not detectable in corneal fibroblasts and epithelia or NIH 3T3 and MDCK cells. In LEF-1 transfections, we show that the B-box of LEF-1 is required to move cytoplasmic endogenous beta-catenin into the nuclei of such cells, proving that LEF-1 does transport endogenous beta-catenin into nuclei. Moreover, transfection of uveal melanoma cells with B-box deficient LEF-1 inhibits nuclear import of beta-catenin by endogenous LEF-1. However, the movement of overexpressed exogenous beta-catenin into nuclei is unaffected by the presence or absence of LEF-1 and forms abnormal nuclear aggregates that are a prelude to subsequent apoptosis. We conclude that nuclear transport of exogenous beta-catenin independently of LEF-1 has questionable physiological significance.  相似文献   

8.
9.
10.
11.
12.
13.
14.
beta-catenin plays an essential role in cells, not only as a cadherin-associated complex, but also as a signaling molecule in the nucleus. Tyrosine phosphorylation of beta-catenin has been shown to correlate with tumorigenesis, cell migration, and developmental processes. However, its exact effects on downstream targets in the nucleus are not yet clear. In this study, we used HCT-15 colon carcinoma and NIH 3T3 fibroblasts as models to investigate the effects of a phosphotyrosine phosphatase (PTPase) inhibitor on the localization of beta-catenin, the binding affinity to LEF-1 (Lymphoid Enhancer Factor), and on LEF-1-dependent transactivation function. Treatment with a PTPase inhibitor, pervanadate, increased the tyrosine phosphorylation of beta-catenin in a time-dependent manner and led to its relocation from cell-cell interfaces to the cytoplasm. This phosphorylation/dephosphorylation of beta-catenin does not require its presence at cell-cell interfaces. However, tyrosine phosphorylation of beta-catenin does not change its binding affinity to LEF-1 nor enhance cyclin D1 transactivation, a nuclear target of beta-catenin/LEF-1. This result suggests that tyrosine phosphorylation of beta-catenin has effects on the binding to cadherins in the cytoplasm but not on its LEF-1-dependent transactivating function in the nucleus.  相似文献   

15.
16.
17.
18.
19.
20.
Activation of canonical Wnt/beta-catenin pathway in Invasive Ductal Carcinoma of Breast (IDCs) was recently reported from our laboratory. Herein, we analyzed promoter methylation status of CDH1 and Adenomatous polyposis coli (APC) genes in 50 IDCs and correlated with expression of E-cadherin (E-CD) and APC proteins and with activation of oncogenic Wnt/beta-catenin signaling pathway components, Dvl, beta-catenin and CyclinD1. Further, Wnt/beta-catenin driven epithelial mesenchymal transition (EMT) was investigated by correlating the expression of Dvl, beta-catenin and CyclinD1 with vimentin expression in these IDCs. Promoter hypermethylation was observed in 25/50 (50%) IDCs for CDH1 and in 11/50 (22%) tumors for APC, associated with loss of expression of E-CD and APC proteins; concordant hypermethylation of these genes was observed in paired patients' sera. Further, 57% of tumors harboring CDH1 methylation and 50% tumors harboring the methylated APC gene showed nuclear localization of beta-catenin, suggesting activation of the canonical Wnt/beta-catenin pathway. Our study demonstrates significant association between vimentin expression and nuclear beta-catenin (p=0.001; Odds ratio (OR)=25.6) and Dvl (p=0.023; OR=8.0), suggesting that EMT may be driven by Wnt/beta-catenin activation in IDCs. In conclusion, we demonstrate correlation of CDH1 and APC promoter methylation with loss of E-CD and APC proteins and with activation of Wnt/beta-catenin signaling pathway. Association of nuclear Dvl and beta-catenin with vimentin expression suggests the importance of Wnt/beta-catenin pathway driven EMT in IDCs. The concordance between CDH1 and APC methylation in IDCs and paired circulating DNA underscores the utility of serum DNA as a non-invasive tool for methylation analysis in IDC patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号