首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The homologous proteins Oxa1, YidC, and Alb3 mediate the insertion of membrane proteins in mitochondria, bacteria, and chloroplast thylakoids, respectively. Depletion of YidC in Escherichia coli affects the integration of every membrane protein studied, and Alb3 has been shown previously to be required for the insertion of a signal recognition particle (SRP)-dependent protein, Lhcb1, in thylakoids. In this study we have analyzed the "global" role of Alb3 in the insertion of thylakoid membrane proteins. We show that insertion of two chlorophyll-binding proteins, Lhcb4.1 and Lhcb5, is almost totally blocked by preincubation of thylakoids with anti-Alb3 antibodies, indicating a requirement for Alb3 in the insertion pathway. Insertion of the related PsbS protein, on the other hand, is unaffected by Alb3 antibodies, and insertion of a group of SRP-independent, signal peptide-bearing proteins, PsbX, PsbW, and PsbY, is likewise completely unaffected. Proteinase K is furthermore able to completely degrade Alb3, but this treatment does not affect the insertion of these proteins. Among the thylakoid proteins studied here, Alb3 requirement correlates strictly with a requirement for stromal factors and nucleoside triphosphates. However, the majority of proteins tested do not require Alb3 or any other known form of translocation apparatus.  相似文献   

2.

Background

In cyanobacteria the photosystems are localised to, and maintained in, specialist membranes called the thylakoids. The mechanism driving the biogenesis of the thylakoid membranes is still an open question, with only two potential biogenesis factors, Vipp1 and Alb3 currently identified.

Methodology/Principal Findings

We generated a slr1768 knockout using the pGEM T-easy vector and REDIRECT. By comparing growth and pigment content (chlorophyll a fluoresence) of the Δslr1768 mutant with the wild-type, we found that Δslr1768 has a conditional phenotype; specifically under high light conditions (130 µmol m−2 s−1) thylakoid biogenesis is disrupted leading to cell death on a scale of days. The thylakoids show considerable disruption, with loss of both structure and density, while chlorophyll a density decreases with the loss of thylakoids, although photosynthetic efficiency is unaffected. Under low light (30 µmol m−2 s−1) the phenotype is significantly reduced, with a growth rate similar to the wild-type and only a low frequency of cells with evident thylakoid disruption.

Conclusions/Significance

This is the first example of a gene that affects the maintenance of the thylakoid membranes specifically under high light, and which displays a phenotype dependent on light intensity. Our results demonstrate that Slr1768 has a leading role in acclimatisation, linking light damage with maintenance of the thylakoids.  相似文献   

3.
The integral membrane proteins Alb3, OxaI, and YidC belong to an evolutionary conserved protein family mediating protein insertion into the thylakoid membrane of chloroplasts, the inner membrane of mitochondria, and bacteria, respectively. Whereas OxaI and YidC are involved in the insertion of a wide range of membrane proteins, the function of Alb3 seems to be limited to the insertion of a subset of the light-harvesting chlorophyll-binding proteins. In this study, we identified a second chloroplast homologue of the Alb3/OxaI/YidC family, named Alb4. Alb4 is almost identical to the Alb3/OxaI/YidC domain of the previously described 110-kDa inner envelope protein Artemis. We show that Alb4 is expressed as a separate 55-kDa protein and that Artemis was identified mistakenly. Alb4 is located in the thylakoid membrane of Arabidopsis thaliana chloroplasts. Analysis of an Arabidopsis mutant (Salk_136199) and RNA interference lines with a reduced level of Alb4 revealed chloroplasts with an altered ultrastructure. Mutant plastids are larger and more spherical in appearance, and the grana stacks within the mutant lines are less appressed than in the wild-type chloroplasts. These data indicate that Alb4 is required for proper chloroplast biogenesis.  相似文献   

4.
The photosystem I subunit PsaK spans the thylakoid membrane twice, with the N and C termini both located in the lumen. The insertion mechanism of a thylakoid membrane protein adopting this type of topology has not been studied before, and we have used in vitro assays to determine the requirements for PsaK insertion into thylakoids. PsaK inserts with high efficiency and we show that one transmembrane span (the C-terminal region) can insert independently of the other, indicating that a "hairpin"-type mechanism is not essential. Insertion of PsaK does not require stromal extract, indicating that signal recognition particle (SRP) is not involved. Removal of nucleoside triphosphates inhibits insertion only slightly, both in the presence and absence of stroma, suggesting a mild stimulatory effect of a factor in the translation system and again ruling out an involvement of SRP or its partner protein, FtsY. We, furthermore, find no evidence for the involvement of known membrane-bound translocation apparatus; proteolysis of thylakoids destroys the Sec and Tat translocons but does not block PsaK insertion, and antibodies against the Oxa1/YidC homolog, Alb3, block the SRP-dependent insertion of Lhcb1 but again have no effect on PsaK insertion. Because YidC is required for the efficient insertion of every membrane protein tested in Escherichia coli (whether SRP-dependent or -independent), PsaK is the first protein identified as being independent of YidC/Alb3-type factors in either thylakoids or bacteria. The data raise the possibility of a wholly spontaneous insertion pathway.  相似文献   

5.

Background  

YidC/Oxa/Alb3 family includes a group of conserved translocases that are essential for protein insertion into inner membranes of bacteria and mitochondria, and thylakoid membranes of chloroplasts. Because mitochondria and chloroplasts are of bacterial origin, Oxa and Alb3, like many other mitochondrial/chloroplastic proteins, are hypothetically derived from the pre-existing protein (YidC) of bacterial endosymbionts. Here, we test this hypothesis and investigate the evolutionary history of the whole YidC/Oxa/Alb3 family in the three domains of life.  相似文献   

6.
Proteins of the YidC/Oxa1p/ALB3 family play an important role in inserting proteins into membranes of mitochondria, bacteria, and chloroplasts. In Chlamydomonas reinhardtii, one member of this family, Albino3.1 (Alb3.1), was previously shown to be mainly involved in the assembly of the light-harvesting complex. Here, we show that a second member, Alb3.2, is located in the thylakoid membrane, where it is associated with large molecular weight complexes. Coimmunoprecipitation experiments indicate that Alb3.2 interacts with Alb3.1 and the reaction center polypeptides of photosystem I and II as well as with VIPP1, which is involved in thylakoid formation. Moreover, depletion of Alb3.2 by RNA interference to 25 to 40% of wild-type levels leads to a reduction in photosystems I and II, indicating that the level of Alb3.2 is limiting for the assembly and/or maintenance of these complexes in the thylakoid membrane. Although the levels of several photosynthetic proteins are reduced under these conditions, other proteins are overproduced, such as VIPP1 and the chloroplast chaperone pair Hsp70/Cdj2. These changes are accompanied by a large increase in vacuolar size and, after a prolonged period, by cell death. We conclude that Alb3.2 is required directly or indirectly, through its impact on thylakoid protein biogenesis, for cell survival.  相似文献   

7.
Synechocystis sp PCC 6803 Slr1471p, an Oxa1p/Alb3/YidC homolog, is an essential protein for cell viability for which functions in thylakoid membrane biogenesis and cell division have been proposed. Using a fusion of green fluorescent protein to the C terminus of Slr1471p, we found that the mutant slr1471-gfp is photochemically inhibited when light intensities increase to 80 micromol x m(-2) x s(-1). We show that photoinhibition correlates with an increased redox potential of the reaction center quinone Q(A)(-) and a decreased redox potential of Q(B)(-). Analysis reveals that membrane integration of the D1 precursor protein is affected, leading to the accumulation of pD1 in the membrane phase. We show that Slr1471p interacts directly with the D1 protein and discuss why the accumulation of pD1 in two reaction center assembly intermediates is dependent on Slr1471p.  相似文献   

8.
YidC/Oxa/Alb3蛋白家族是进化上保守的蛋白质转运酶,分别负责将一些与能量合成有关的膜蛋白转运到细菌内膜、线粒体内膜和叶绿体类囊体膜。它们具有保守的跨膜结构域,广泛存在于三界生物中。本文主要综述近年来对YidC/Oxa/Alb3家族成员的分布、结构、功能及进化的研究进展。  相似文献   

9.
Alb3 homologs Oxa1 and YidC have been shown to be required for the integration of newly synthesized proteins into membranes. Here, we show that although Alb3.1p is not required for integration of the plastid-encoded photosystem II core subunit D1 into the thylakoid membrane of Chlamydomonas reinhardtii, the insertion of D1 into functional photosystem II complexes is retarded in the Alb3.1 deletion mutant ac29. Alb3.1p is associated with D1 upon its insertion into the membrane, indicating that Alb3.1p is essential for the efficient assembly of photosystem II. Furthermore, levels of nucleus-encoded light-harvesting proteins are vastly reduced in ac29; however, the remaining antenna systems are still connected to photosystem II reaction centers. Thus, Alb3.1p has a dual function and is required for the accumulation of both nucleus- and plastid-encoded protein subunits in photosynthetic complexes of C. reinhardtii.  相似文献   

10.
ABSTRACT: BACKGROUND: The thylakoid system in plant chloroplasts is organized into two distinct domains: granaarranged in stacks of appressed membranes and non-appressed membranes consisting ofstroma thylakoids and margins of granal stacks. It is argued that the reason for thedevelopment of appressed membranes in plants is that their photosynthetic apparatus need tocope with and survive ever-changing environmental conditions. It is not known however,why different plant species have different arrangements of grana within their chloroplasts. Itis important to elucidate whether a different arrangement and distribution of appressed andnon-appressed thylakoids in chloroplasts are linked with different qualitative and/orquantitative organization of chlorophyll-protein (CP) complexes in the thylakoid membranesand whether this arrangement influences the photosynthetic efficiency. RESULTS: Our results from TEM and in situ CLSM strongly indicate the existence of differentarrangements of pea and bean thylakoid membranes. In pea, larger appressed thylakoids areregularly arranged within chloroplasts as uniformly distributed red fluorescent bodies, whileirregular appressed thylakoid membranes within bean chloroplasts correspond to smaller andless distinguished fluorescent areas in CLSM images. 3D models of pea chloroplasts show adistinct spatial separation of stacked thylakoids from stromal spaces whereas spatial divisionof stroma and thylakoid areas in bean chloroplasts are more complex. Structural differencesinfluenced the PSII photochemistry, however without significant changes in photosyntheticefficiency. Qualitative and quantitative analysis of chlorophyll-protein complexes as well asspectroscopic investigations indicated a similar proportion between PSI and PSII corecomplexes in pea and bean thylakoids, but higher abundance of LHCII antenna in pea ones.Furthermore, distinct differences in size and arrangements of LHCII-PSII and LHCI-PSIsupercomplexes between species are suggested. CONCLUSIONS: Based on proteomic and spectroscopic investigations we postulate that the differences in thechloroplast structure between the analyzed species are a consequence of quantitativeproportions between the individual CP complexes and its arrangement inside membranes.Such a structure of membranes induced the formation of large stacked domains in pea, orsmaller heterogeneous regions in bean thylakoids. Presented 3D models of chloroplasts showed that stacked areas are noticeably irregular with variable thickness, merging with eachother and not always parallel to each other.  相似文献   

11.
Thylakoid membranes have a unique complement of proteins, most of which are nuclear encoded synthesized in the cytosol, imported into the stroma and translocated into thylakoid membranes by specific thylakoid translocases. Known thylakoid translocases contain core multi-spanning, membrane-integrated subunits that are also nuclear-encoded and imported into chloroplasts before being integrated into thylakoid membranes. Thylakoid translocases play a central role in determining the composition of thylakoids, yet the manner by which the core translocase subunits are integrated into the membrane is not known. We used biochemical and genetic approaches to investigate the integration of the core subunit of the chloroplast Tat translocase, cpTatC, into thylakoid membranes. In vitro import assays show that cpTatC correctly localizes to thylakoids if imported into intact chloroplasts, but that it does not integrate into isolated thylakoids. In vitro transit peptide processing and chimeric precursor import experiments suggest that cpTatC possesses a stroma-targeting transit peptide. Import time-course and chase assays confirmed that cpTatC targets to thylakoids via a stromal intermediate, suggesting that it might integrate through one of the known thylakoid translocation pathways. However, chemical inhibitors to the cpSecA-cpSecY and cpTat pathways did not impede cpTatC localization to thylakoids when used in import assays. Analysis of membranes isolated from Arabidopsis thaliana mutants lacking cpSecY or Alb3 showed that neither is necessary for cpTatC membrane integration or assembly into the cpTat receptor complex. These data suggest the existence of another translocase, possibly one dedicated to the integration of chloroplast translocases.  相似文献   

12.
Structural variation in the stroma‐grana (SG) arrangement of the thylakoid membranes, such as changes in the thickness of the grana stacks and in the ratio between grana and inter‐grana thylakoid, is often observed. Broadly, such alterations are considered acclimation to changes in growth and the environment. However, the relation of thylakoid morphology to plant growth and photosynthesis remains obscure. Here, we report changes in the thylakoid during leaf development under a fixed light condition. Histological studies on the chloroplasts of fresh green Arabidopsis leaves have shown that characteristically shaped thylakoid membranes lacking the inter‐grana region, referred to hereafter as isolated‐grana (IG), occurred adjacent to highly ordered, large grana layers. This morphology was restored to conventional SG thylakoid membranes with the removal of bolting stems from reproductive plants. Statistical analysis showed a negative correlation between the incidences of IG‐type chloroplasts in mesophyll cells and the rates of leaf growth. Fluorescence parameters calculated from pulse‐amplitude modulated fluorometry measurements and CO2 assimilation data showed that the IG thylakoids had a photosynthetic ability that was equivalent to that of the SG thylakoids under moderate light. However, clear differences were observed in the chlorophyll a/b ratio. The IG thylakoids were apparently an acclimated phenotype to the internal condition of source leaves. The idea is supported by the fact that the life span of the IG thylakoids increased significantly in the later developing leaves. In conclusion, the heterogeneous state of thylakoid membranes is likely important in maintaining photosynthesis during the reproductive phase of growth.  相似文献   

13.
Chloroplast proteins of the Alb3/YidC/Oxa1p family are necessary for assembly of photosynthetic complexes in the thylakoid membranes. Alb3p in Arabidopsis thaliana is essential for posttranslational LHCII-integration into thylakoid membranes and participates in cotranslational assembly of D1. However, the pleiotropic defects of an Alb3p mutant, albino3, suggest additional functions for Alb3p. To obtain an impression of such potential further Alb3p activities from phenotypic manifestations, properties of mutants disturbed in thylakoid membrane protein transport or carotenoid biosynthesis were compared with the albino3 mutant. Specific defects observed in albino3 were similar to those in a carotenoid synthesis mutant. While this correlation did not provide tangible evidence for Alb3p being involved in the integration of carotenoids in photosynthetic complexes, it suggests a possible avenue for future investigations.  相似文献   

14.
The YidC/Oxa1/Alb3 family of membrane proteins controls the insertion and assembly of membrane proteins in bacteria, mitochondria, and chloroplasts. Here we describe the molecular mechanisms underlying the interaction of Alb3 with the chloroplast signal recognition particle (cpSRP). The Alb3 C-terminal domain (A3CT) is intrinsically disordered and recruits cpSRP to the thylakoid membrane by a coupled binding and folding mechanism. Two conserved, positively charged motifs reminiscent of chromodomain interaction motifs in histone tails are identified in A3CT that are essential for the Alb3-cpSRP43 interaction. They are absent in the C-terminal domain of Alb4, which therefore does not interact with cpSRP43. Chromodomain 2 in cpSRP43 appears as a central binding platform that can interact simultaneously with A3CT and cpSRP54. The observed negative cooperativity of the two binding events provides the first insights into cargo release at the thylakoid membrane. Taken together, our data show how Alb3 participates in cpSRP-dependent membrane targeting, and our data provide a molecular explanation why Alb4 cannot compensate for the loss of Alb3. Oxa1 and YidC utilize their positively charged, C-terminal domains for ribosome interaction in co-translational targeting. Alb3 is adapted for the chloroplast-specific Alb3-cpSRP43 interaction in post-translational targeting by extending the spectrum of chromodomain interactions.  相似文献   

15.
The 33- and 23-kDa proteins of the photosynthetic oxygen-evolving complex are synthesized in the cytosol as larger precursors and transported into the thylakoid lumen via stromal intermediate forms. We have investigated the energetics of protein transport across the thylakoid membrane using import assays that utilize either intact chloroplasts or isolated thylakoids. We have found that the light-driven import of the 23-kDa protein into isolated thylakoids is almost completely inhibited by electron transport inhibitors or by the ionophore nigericin but not by valinomycin. These compounds have similar effects in chloroplast import assays: precursors of both the 33- and 23-kDa proteins are imported and processed to intermediate forms in the stroma, but transport into the thylakoid lumen is blocked when electron transport is inhibited or nigericin is present. These results indicate that the transport of these proteins across the thylakoid membrane requires a protonmotive force and that the dominant component in this respect is the proton gradient and not the electrical potential.  相似文献   

16.
Thylakoids are the photosynthetic membranes in chloroplasts and cyanobacteria. The aqueous phase inside the thylakoid known as the thylakoid lumen plays an essential role in the photosynthetic electron transport. The presence and significance of thiol‐disulfide exchange in this compartment have been recognized but remain poorly understood. All proteins found free in the thylakoid lumen and some proteins associated to the thylakoid membrane require an N‐terminal targeting signal, which is removed in the lumen by a membrane‐bound serine protease called thylakoidal processing peptidase (TPP). TPP is homologous to Escherichia coli type I signal peptidase (SPI) called LepB. Genetic data indicate that plastidic SPI 1 (Plsp1) is the main TPP in Arabidopsis thaliana (Arabidopsis) although biochemical evidence had been lacking. Here we demonstrate catalytic activity of bacterially produced Arabidopsis Plsp1. Recombinant Plsp1 showed processing activity against various TPP substrates at a level comparable to that of LepB. Plsp1 and LepB were also similar in the pH optima, sensitivity to arylomycin variants and a preference for the residue at ?3 to the cleavage site within a substrate. Plsp1 orthologs found in angiosperms contain two unique Cys residues located in the lumen. Results of processing assays suggested that these residues were redox active and formation of a disulfide bond between them was necessary for the activity of recombinant Arabidopsis Plsp1. Furthermore, Plsp1 in Arabidopsis and pea thylakoids migrated faster under non‐reducing conditions than under reducing conditions on SDS‐PAGE. These results underpin the notion that Plsp1 is a redox‐dependent signal peptidase in the thylakoid lumen.  相似文献   

17.
The YidC/Alb3/Oxa1 family functions in the insertion and folding of proteins in the bacterial cytoplasmic membrane, the chloroplast thylakoid membrane, and the mitochondrial inner membrane. All members share a conserved region composed of five transmembrane regions. These proteins mediate membrane insertion of an assorted group of proteins, ranging from respiratory subunits in the mitochondria and light-harvesting chlorophyll-binding proteins in chloroplasts to ATP synthase subunits in bacteria. This review discusses the YidC/Alb3/Oxa1 protein family as well as their function in membrane insertion and two new structures of the bacterial YidC, which suggest a mechanism for membrane insertion by this family of insertases.  相似文献   

18.
A new component of the bacterial translocation machinery, YidC, has been identified that specializes in the integration of membrane proteins. YidC is homologous to the mitochondrial Oxa1p and the chloroplast Alb3, which functions in a novel pathway for the insertion of membrane proteins from the mitochondrial matrix and chloroplast stroma, respectively. We find that Alb3 can functionally complement the Escherichia coli YidC depletion strain and promote the membrane insertion of the M13 procoat and leader peptidase that were previously shown to depend on the bacterial YidC for membrane translocation. In addition, the chloroplast Alb3 that is expressed in bacteria is essential for the insertion of chloroplast cpSecE protein into the bacterial inner membrane. Surprisingly, Alb3 is not required for the insertion of cpSecE into the thylakoid membrane. These results underscore the importance of Oxa1p homologs for membrane protein insertion in bacteria and demonstrate that the requirement for Oxa1p homologs is different in the bacterial and thylakoid membrane systems.  相似文献   

19.
Many of the thylakoid membrane proteins of plant and algal chloroplasts are synthesized in the cytosol as soluble, higher molecular weight precursors. These precursors are post-translationally imported into chloroplasts, incorporated into the thylakoids, and proteolytically processed to mature size. In the present study, the process by which precursors are incorporated into thylakoids was reconstituted in chloroplast lysates using the precursor to the light-harvesting chlorophyll a/b protein (preLHCP) as a model. PreLHCP inserted into thylakoid membranes, but not envelope membranes, if ATP was present in the reaction mixture. Correct integration into the bilayer was verified by previously documented criteria. Integration could also be reconstituted with purified thylakoid membranes if reaction mixtures were supplemented with a soluble extract of chloroplasts. Several other thylakoid precursor proteins in addition to preLHCP, but no stromal precursor proteins, were incorporated into thylakoids under the described assay conditions. These results suggest that the observed in vitro activity represents in vivo events during the biogenesis of thylakoid proteins.  相似文献   

20.
1. Particle microelectrophoresis mobility studies have been conducted with chloroplast thylakoid membranes and with isolated intact chloroplasts. 2. The pH dependence of the electrophoretic mobility indicated that at pH values above 4.3 both membrane systems carry a net negative charge. 3. Chemical treatment of thylakoids has shown that neither the sugar residues of the galactolipids in the membrane nor the basic groups of the membrane proteins having pK values between 6 and 10 are exposed at the surface. 4. However, treatment with 1-ethyl-3(3-dimethylaminopropyl)carbodiimide, together with glycine methyl ester, neutralized the negative charges on the thylakoid membrane surface indicating the involvement of carboxyl groups which, because of their pH sensitivity, are likely to be the carboxyl groups of aspartic and glutamic acid residues. 5. The nature of the protein giving rise to the negative surface charges on the thylakoids is not known but is shown not to involve the coupling factor or the light harvesting chlorophyll a/chlorophyll b pigment . protein complex. 6. No significant effect of light was observed on the electrophoretic mobility of either thylakoids or intact chloroplasts. 7. The striking difference in the ability of divalent and monovalent cations to screen the surface charges was demonstrated and explained in terms of the Gouy-Chapman theory. 8. Calculations of the zeta-potentials for thylakoid membranes gave values for the charge density at the plane of shear to be in the region of one electronic charge per 1500--2000 A2. 9. The significance of the results is discussed in terms of cation distribution in chloroplasts and the effect of cations on photosynthetic phenomena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号