首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
为制备高效的葡萄酒乳酸菌发酵剂,以酒酒球菌SD-2a为试验材料,研究了5%、10%不同浓度的乙醇胁迫处理对菌体生长、细胞内MLE活性、冻干存活率及细胞膜脂肪酸组分的影响。试验结果表明乙醇胁迫处理明显降低了菌体的生长速率和生物产量。与对照相比,5%乙醇胁迫处理降低了菌体的冻干存活率,而10%乙醇处理却显著增加了菌体的冻干存活率。细胞膜脂肪酸组分的测定结果表明,前者细胞膜U/S比值为1.12,比对照降低了26.3%,而后者细胞膜U/S比值为2.29,比对照增加了50.6%。故认为酒酒球菌SD-2a为适应不同浓度的乙醇胁迫环境,在细胞膜脂肪酸水平上所采用的机制不同,且菌体的冻干存活率与其细胞膜脂肪酸组分密切相关。  相似文献   

2.
酒酒球菌(Oenococcus oeni)胁迫适应性反应机制   总被引:1,自引:0,他引:1  
赵文英  李华  王华 《微生物学报》2008,48(4):556-561
苹果酸-乳酸发酵有利于提高葡萄酒品质,为了获得高活性的直投式酒酒球菌发酵制剂,从生理和分子生物学的角度理解该菌种胁迫耐受性增强的机制是必要的.本文就酒酒球菌利用苹果酸-乳酸发酵和膜结合的H -F0F1-ATP酶以维持细胞内环境的稳定和能量供给;胁迫适应过程中细胞膜组分的调整;小热休克蛋白Lo18等胁迫蛋白及其相应的基因的表达和调控等方面进行了综述.胁迫适应性反应机制的研究对发酵剂菌株的筛选、发酵剂的制备及其他工程菌株的构建具有重要意义.  相似文献   

3.
酒酒球菌液氮超低温保存   总被引:1,自引:0,他引:1  
杜立业  王华  金刚  李翠霞  李华 《微生物学报》2011,51(9):1263-1269
【目地】为安全、长期的保藏酒酒球菌,本文研究了菌体生长时间、冷冻方法、解冻温度、菌密度以及保护剂等对酒酒球菌细胞冷冻存活率的影响,找到最优液氮超低温保存方法。【方法】采用平板计数法测定冷冻存活率。【结果】实验结果表明酒酒球菌的最佳保存方法为:首先在稳定期前期离心收集菌体;其次加入保护剂(20 g/L酵母浸提物,40V/V甘油,20 g/L蔗糖,30 g/L谷氨酸钠)稀释菌体,使菌密度为109CFU/mL;然后直接投入液氮冷冻;最后在37℃温水浴中迅速解冻。保存6个月后,其中21株酒酒球菌的冷冻存活率达到99%以上。【结论】初步研究表明酵母浸提物,甘油,蔗糖,谷氨酸钠复合保护剂对酒酒球菌的保护效果较好,液氮超低温保存可用于酒酒球菌的长期保存。  相似文献   

4.
张莉方  徐宁莉  陶瑾  胡蕾  张国强 《微生物学报》2023,63(10):4000-4015
【目的】为选育出高度耐酸性酒酒球菌(Oenococcus oeni)突变菌株,研究其胁迫耐受性能及苹果酸-乳酸发酵(malolactic fermentation,MLF)能力。【方法】以酒酒球菌SD-2a为出发菌株,通过常压室温等离子体(atmospheric and room temperature plasma,ARTP)诱变技术,筛选高耐酸性酒酒球菌突变菌株,并探究其乙醇耐受性及在模拟酒和葡萄酒条件下的MLF能力。【结果】经过ARTP诱变处理后,利用pH 3.0的胁迫传代培养和分离纯化等,获得了5株β-葡萄糖苷酶活性较好的耐酸突变菌株,且在高乙醇浓度下表现出了较好的耐乙醇性。其中突变菌株ARTP-2在模拟酒中的β-葡萄糖苷酶活性和l-苹果酸累积降解量最高,且其在葡萄酒中l-苹果酸降解速率快于出发菌株,在第18天完成MLF,发酵后的葡萄酒香气成分的含量显著高于接种SD-2a的酒样。【结论】突变菌株ARTP-2具有良好的胁迫耐受性和MLF能力,对葡萄酒的香气起到积极的作用,为进一步开发优质的MLF商业发酵剂奠定基础。  相似文献   

5.
经真空冷冻干燥得到的乳酸菌发酵剂存活率和后期的低温贮藏稳定性与诸多因素相关。本文综述了制备乳酸菌发酵剂过程中高密度发酵和真空冷冻干燥工艺的不同对乳酸菌抗冷冻性的影响,其中高密度发酵过程中的培养基组分、培养温度、发酵恒定pH、中和剂的选择、菌体收获时期和发酵结束后处理以及真空冷冻干燥过程中保护剂的添加、预冷冻处理等是影响乳酸菌抗冷冻性的重要因素。通过对这些相关因素的综述分析,为提高乳酸菌发酵剂的冻干存活率和后期的低温贮藏稳定性提供新的思路,且应用抗冷冻性强、活力高的乳酸菌发酵剂对有效提高乳制品的质量和企业的经济效益意义重大。  相似文献   

6.
目的 探讨罗伊氏粘液乳杆菌L840培养基中酵母营养物种类及比例对冷冻干燥后菌体存活率的影响。方法 采用不同酵母营养物培养罗伊氏粘液乳杆菌,对筛选出的酵母营养物进行组合及比例优化,并比较真空冷冻干燥前后菌体细胞存活率。结果 酵母营养物成分影响发酵和菌体的抗冻干能力,培养基中酵母浸粉∶酵母蛋白胨为1∶1.5时冻干菌体细胞存活率最高,可达54%。结论 选择乳酸菌培养基成分时,不仅要考虑如何在培养过程中获得高密度的活菌,还应兼顾菌体对冷冻干燥耐性的影响,生长培养基中酵母营养物不仅可以提高菌体密度,还可通过改变细胞生理状态来影响细胞在冷冻干燥过程中存活的能力。  相似文献   

7.
22株中国优良酒酒球菌代谢生物胺的检测   总被引:1,自引:0,他引:1  
葡萄酒苹果酸-乳酸菌在葡萄酒苹果酸-乳酸发酵中对氨基酸进行脱羧反应产生具有毒性作用的生物胺.利用PCR技术及HPLC检测方法对22株中国优良酒酒球菌的生物胺代谢安全性进行研究.结果表明,PCR检测结果与HPLC测定结果一致,从我国葡萄产区筛选的优良酒酒球菌均不产生组胺、酪胺和腐胺,从生物胺角度.我国筛选的22株优良酒酒球菌具有较高的生物胺代谢安全性.  相似文献   

8.
研究揭示细胞膜磷脂脂肪酸组成与酵母菌耐酒精能力的一种新颖关系及其机制。分别培养于添加 0 6mmol L棕榈酸、亚油酸或亚麻酸不同条件下的自絮凝颗粒酵母 ,其细胞膜富含各自所添加的脂肪酸。细胞膜富含棕榈酸、亚油酸或亚麻酸的三种菌体于 30℃经 2 0 %(v v)酒精冲击 6h的存活率分别为 5 2 %、1 8%和 0。通过考察三种菌体于 30℃在 1 5 %(v v)酒精冲击下的细胞膜透性发现 ,细胞膜富含棕榈酸的菌体的胞外核苷酸平衡浓度分别仅为细胞膜富含亚油酸或亚麻酸菌体的 48%和 32 %,其细胞膜透性系数 (P′)分别仅为后者的 37%和 2 0 %,且三者的胞外核苷酸浓度和P′由小到大的排列顺序均与它们的存活率由高到低的排列顺序完全一致。因此 ,细胞膜富含棕榈酸的菌体具有较强的耐酒精能力是与其在高浓度酒精冲击下可维持较低的细胞膜透性密切相关的 的。  相似文献   

9.
[目的]通过测定存活率及细胞内pH(pHi)变化,分析单核细胞增多性李斯特菌(单增李斯特菌)在体外模拟消化道中的抗性.[方法]模拟唾液、胃液和小肠液根据其主要组成成分配制,按试验设计顺次加入后获得模拟的消化道各段混合液(包括相应的pH及其可能的范围).平板计数法测定单增李斯特菌在模拟消化液中的存活率,并用荧光比例成像显微镜(fluorescence ratio imaging microscopy,FRIM)测定细菌的pHi.[结果]单增李斯特菌在唾液中存活率>90%;经pH≤3.0的胃液处理后,其在胃液和胃-肠混合液中的存活率低于0.05%;提高胃液pH至3.5,细菌存活率开始上升;在胃液pH4.0时,两株单增李斯特菌在模拟胃肠液中存活率显著提高(11.2%-85.9%).FRIM研究表明,单增李斯特菌在模拟唾液中的pHi与对照组相近.经过pH为3.5和4.0的胃液和胃-肠混合液处理后,pHi值仍维持在较高水平(>7.75).[结论]单增李斯特菌在经过pH≥3.5胃液后,能够维持菌体细胞内的pH稳态,且存活率较高,表明其细胞膜仍保持完整.  相似文献   

10.
揭示细胞膜组分与酵母菌耐酒精能力的一种新颖关系及其机制。实验显示 ,培养于添加和未添加 3种氨基酸 (异亮氨酸、甲硫氨酸和苯丙氨酸 ,添加浓度分别为 1 0、0 5和 2 0g L)条件下的自絮凝颗粒酵母于 30℃经2 0 % (V V)酒精冲击 9h的存活率分别为 5 7%和 0 ,表明添加该 3种氨基酸能显著提高菌体的耐酒精能力。细胞膜蛋白质氨基酸组成分析和细胞膜流动性测定表明 ,所添加 3种氨基酸是通过组入菌体细胞膜、改变细胞膜流动性从而提高菌体的耐酒精能力的 ,即当细胞膜蛋白质氨基酸组成中异亮氨酸、甲硫氨酸和苯丙氨酸含量明显增加时 ,菌体能有效抵抗高浓度酒精冲击引发的细胞膜流动性的升高 ,从而维持细胞膜的稳定。细胞膜蛋白质氨基酸组成会影响细胞膜的流动性 (膜蛋白中异亮氨酸、甲硫氨酸和苯丙氨酸含量明显增加时膜流动性降低 )是一种新的实验现象。  相似文献   

11.
The effects of stress shocks on the freeze-drying viability, malolactic activity and membrane fatty acid composition of the Oenococcus oeni SD-2a cells were studied. O. oeni SD-2a cells after 2 h of stress exposure exhibited better freeze-drying viability and malolactic fermentation ability. A decrease in unsaturated fatty acids/saturated fatty acids (UFA/SFA) ratio and in the C18:1 relative concentration, and an increase in cyclopropane fatty acids (CFA) content mainly due to the increase in C19cyc11 relative concentration were observed in all stress shocked cells. There was a significant negative correlation between C19cyc11 and C18:lcis11, C16:0 in all stress shocks. The freeze-drying viability exhibited a significant positive correlation with the levels of C19cyc11 in cold and acid shocks. The only significant positive correlation between the ability of O. oeni SD-2a to conduct malic acid degradation and membrane composition existed with C14:0 in ethanol shocks. In general, freeze-drying viabilities were maximum for cells with low UFA/SFA ratio and high CFA levels, and, consequently, with low membrane fluidity. Moreover, CFA formation played a major role in protecting stress shocked cells from lyophilization. However, changes observed in membrane fatty acid composition are not enough to explain the greater freeze-drying viability of cells shocked at 8% ethanol. Thus, other mechanisms could be responsible for this increase in the bacterial resistance to lyophilization.  相似文献   

12.
AIMS: The effects of protective agents, rehydration media and freezing temperature on the viabilities of Lactobacillus brevis and Oenococcus oeni H-2 when subjected to freeze-drying were investigated. METHODS AND RESULTS: Several protectants and rehydration media were tested to improve the survival after freeze-drying. The cells were also frozen at -65 and -20 degrees C to check the effect of freezing temperature on the viability. CONCLUSIONS: The best protectant and rehydration medium to obtain the highest viability after freeze-drying varied with the species of bacteria. Yeast extract (4.0%) and sodium glutamate (2.5% ) gave maximum viability of L. brevis and O. oeni (67.8% and 53.6% respectively). The highest survival of L. brevis and O. oeni were obtained when rehydrated with 10% sucrose and MGY medium respectively. When the bacterial cells were frozen quickly (-65 degrees C) than slowly (-20 degrees C), L. brevis and O. oeni both showed increased viability after freeze-drying. SIGNIFICANCE AND IMPACT OF THE STUDY: The viabilities of L. brevis and O. oeni after freeze-drying were shown to be strain specific and dependent on protective agents, rehydration media and freezing temperature.  相似文献   

13.
The effects of combined cold, acid and ethanol on the membrane physical state and on the survival of Oenococcus oeni were investigated. Membrane fluidity was monitored on intact whole O. oeni cells subjected to single and combined cold, acid and ethanol shocks by using fluorescence anisotropy with 1,6-diphenyl-1,3,5-hexatriene (DPH) as a probe. Results showed that cold shocks (14 and 8 degrees C) strongly rigidified plasma membrane but did not affect cell survival. In contrast, ethanol shocks (10-14% v/v) induced instantaneous membrane fluidisation followed by rigidification and resulted in low viability. Acid shocks (pH 4.0 and pH 3.0) exerted a rigidifying effect on membrane without affecting cell viability. Whatever the shock orders, combined cold (14 degrees C) and ethanol (14% v/v) shocks resulted in strong membrane rigidification. Interestingly, O. oeni survived combined cold and ethanol shocks more efficiently than single ethanol shock. Membrane rigidification was induced by ethanol-and-acid (10% v/v - pH 3.5) shock and correlated with total cell death. In contrast, O. oeni recovered its viability when subjected to cold (8 degrees C)-then-ethanol-and-acid shock which strongly rigidified the membrane. Our results suggested a positive short-term effect of combined cold, acid and ethanol shocks on membrane fluidity and viability of O. oeni.  相似文献   

14.
The aim of the present study was to evaluate the effects of freeze-drying in the presence of trehalose as a cryoprotectant, followed by incubation in synthetic wine, on surface damage, viability and l-malic acid consumption of the oenological strain Oenococcus oeni UNQOe 73.2. After freeze-drying, no significant differences were observed in the number of viable cells (for both acclimated and non-acclimated cultures) respect to the fresh culture. In contrast, loss of viability was observed after wine incubation for 24 h, being acclimated freeze-dried cells the best conditions for this. After the preservation process, small changes in cell morphology were observed by Atomic Force Microscopy (AFM). The Zeta potential and AFM showed that 24 h of wine incubation was enough to induce several cell surface modifications. Plate count data allowed us to establish that surface damage is an important factor for loss of viability, regardless of the acclimation treatment. Although the number of surviving O. oeni cells decreased dramatically after incubation in synthetic wine for 15 days, the consumption of l-malic acid was higher than 70%, with freeze-dried cells showing a better performance than fresh cultures. These results demonstrate that O. oeni freeze-dried cultures could be applied to direct wine inoculation, to conduct malolactic fermentation, maintaining its technological properties and reducing the time and costs of the winemaking process.  相似文献   

15.
The practical application of commercial malolactic starter cultures of Oenococcus oeni surviving direct inoculation in wine requires insight into mechanisms of ethanol toxicity and of acquired ethanol tolerance in this organism. Therefore, the site-specific location of proteins involved in ethanol adaptation, including cytoplasmic, membrane-associated, and integral membrane proteins, was investigated. Ethanol triggers alterations in protein patterns of O. oeni cells stressed with 12% ethanol for 1 h and those of cells grown in the presence of 8% ethanol. Levels of inosine-5'-monophosphate dehydrogenase and phosphogluconate dehydrogenase, which generate reduced nicotinamide nucleotides, were decreased during growth in the presence of ethanol, while glutathione reductase, which consumes NADPH, was induced, suggesting that maintenance of the redox balance plays an important role in ethanol adaptation. Phosphoenolpyruvate:mannose phosphotransferase system (PTS) components of mannose PTS, including the phosphocarrier protein HPr and EII(Man), were lacking in ethanol-adapted cells, providing strong evidence that mannose PTS is absent in ethanol-adapted cells, and this represents a metabolic advantage to O. oeni cells during malolactic fermentation. In cells grown in the presence of ethanol, a large increase in the number of membrane-associated proteins was observed. Interestingly, two of these proteins, dTDT-glucose-4,6-dehydratase and D-alanine:D-alanine ligase, are known to be involved in cell wall biosynthesis. Using a proteomic approach, we provide evidence for an active ethanol adaptation response of O. oeni at the cytoplasmic and membrane protein levels.  相似文献   

16.
The practical application of commercial malolactic starter cultures of Oenococcus oeni surviving direct inoculation in wine requires insight into the mechanisms involved in ethanol toxicity and tolerance in this organism. Exposure to ethanol resulted in an increase in the permeability of the cytoplasmic membrane, enhancing passive proton influx and concomitant loss of intracellular material (absorbing at 260 nm). Cells grown in the presence of 8% (vol/vol) ethanol revealed adaptation to ethanol stress, since these cells showed higher retention of compounds absorbing at 260 nm. Moreover, for concentrations higher than 10% (vol/vol), lower rates of passive proton influx were observed in these ethanol-adapted cells, especially at pH 3.5. The effect of ethanol on O. oeni cells was studied as the ability to efficiently retain carboxyfluorescein (cF) as an indicator of membrane integrity and enzyme activity and the uptake of propidium iodide (PI) to assess membrane damage. Flow cytometric analysis of both ethanol-adapted and nonadapted cells with a mixture of the two fluorescent dyes, cF and PI, revealed three main subpopulations of cells: cF-stained intact cells; cF- and PI-stained permeable cells, and PI-stained damaged cells. The subpopulation of O. oeni cells that maintained their membrane integrity, i.e., cells stained only with cF, was three times larger in the population grown in the presence of ethanol, reflecting the protective effect of ethanol adaptation. This information is of major importance in studies of microbial fermentations in order to assign bulk activities measured by classical methods to the very active cells that are effectively responsible for the observations.  相似文献   

17.
The resistance to stresses as starvation, the presence of ethanol, sulfite and low pH, is a fundamental prerequisite for starter cultures used to induce malolactic fermentation in wine. In order to evaluate stress resistance of cells undergone starvation, cells viability in laboratory cultures of Oenococcus oeni VP01 strain was monitored during prolonged stationary growth phase. Once entered the stationary phase, strain VP01 showed 99% reduction of cell viability within 4 days. The remaining cells population maintained viability over 70 days and, when plated on agar medium, generated small colonies. The occurrence of this phenomenon was associated to stress resistance, since 10-day-old cells resulted more resistant than 3-day-old cells to ethanol and low pH conditions. No genomic mutations were revealed by pulse-field gel electrophoresis (PFGE) analysis in aged cultures. Total protein analysis by bidimensional electrophoresis highlighted differential protein expression in cultures differentially aged. It was demonstrated that O. oeni starving cultures at the stationary phase are constituted by dynamic cell populations. These results offer interesting perspective for a better understanding of cells behavior when inoculated in wine.  相似文献   

18.
It is known that ethanol strongly interferes with the development and activity of lactic acid bacteria in wine. In this work, it was observed that membrane composition was dependent of ethanol concentration and cell physiological state. The protein electrophoretic profile was modified in the membranes of Oenococcus oeni cultured in presence of 8 and 10% ethanol. Concerning the membrane lipid composition, it was observed that O. oeni maintained a high level of phospholipid biosynthesis via the relative increased biosynthesis of phosphoethanolamine and sphingomyelin in presence of ethanol. On the other hand, ethanol induced an increase in the membrane lactobacillic acid percentage at the expense of cis-vaccenic acid. This increased synthesis of lactobacillic acid appears as the more significant change induced by ethanol in O. oeni membrane. The increase of lactobacillic acid in the membrane of O. oeni clearly appears as a factor that provides protection against the toxic effect of ethanol, balancing the increase of membrane fluidity normally attributed to ethanol. The results presented in this paper constitute evidence that lactobacillic acid may have a part in the survival and or adaptive mechanisms developed by O. oeni under culture adverse conditions, allowing these bacteria to maintain their activity in the presence of ethanol, namely performing malolactic fermentation in wine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号