首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
伊乐藻生物碱的GC-MS分析及其对铜绿微囊藻的化感作用   总被引:7,自引:1,他引:6  
藻类暴发性生长是水体富营养化带来的环境问题之一,利用植物化感作用抑制藻类生长作为一种新型的生物抑藻技术在近年来开始受到研究者的重视,并取得了一定的研究成果。文章采用GC-MS联用技术鉴定出伊乐藻中的9种生物碱成分,还研究了其总生物碱对铜绿微囊藻的化感作用。结果发现添加总生物碱的处理组中铜绿微囊藻生物量均受到了抑制,在总生物碱的浓度为62.0mg/L时,3d后铜绿微囊藻的抑制率为44.0%,表明伊乐藻总生物碱对铜绿微囊藻的生物量增长具有明显的抑制作用。该结论为通过沉水植物恢复富营养化水体提供了重要依据。    相似文献   

2.
The acclimation to osmotic and/or salt stress conditions induces an integrated response at different cellular levels. One acclimation strategy relies on the massive accumulation of low molecular mass compounds, so‐called compatible solutes, to balance osmotic gradients and to directly protect critical macromolecules. Heterosides are compounds composed of a sugar and a polyol moiety that represent one chemical class of compatible solutes with interesting features. Well‐investigated examples are glucosylglycerol, which is found in many cyanobacteria, and galactosylglycerols (floridoside and isofloridoside), which are accumulated by eukaryotic algae under salt stress conditions. Here, we review knowledge on physiology, biochemistry and genetics of heteroside accumulation in pro‐ and eukaryotic photoautotrophic organisms.  相似文献   

3.
Cyanobacteria are considered to be a rich source of novel metabolites of a great importance from a biotechnological and industrial point of view. Some cyanobacterial secondary metabolites (CSMs), exhibit toxic effects on living organisms. A diverse range of these cyanotoxins may have ecological roles as allelochemicals, and could be employed for the commercial development of compounds with applications such as algaecides, herbicides and insecticides. Recently, cyanobacteria have become an attractive source of innovative classes of pharmacologically active compounds showing interesting and exciting biological activities ranging from antibiotics, immunosuppressant, and anticancer, antiviral, antiinflammatory to proteinase-inhibiting agents. A different but not less interesting property of these microorganisms is their capacity of overcoming the toxicity of ultraviolet radiation (UVR) by means of UV-absorbing/screening compounds, such as mycosporine-like amino acids (MAAs) and scytonemin. These last two compounds are true ‘multipurpose’ secondary metabolites and considered to be natural photoprotectants. In this sense, they may be biotechnologically exploited by the cosmetic industry. Overall CSMs are striking targets in biotechnology and biomedical research, because of their potential applications in agriculture, industry, and especially in pharmaceuticals.  相似文献   

4.
Elodea nuttallii and Elodea canadensis have both been introduced from North America to Europe. They are now common in many water bodies where they often form dominating stands. It was suggested that negative relationships between Elodea and phytoplankton or epiphytic covers exist, probably due to the release of growth inhibiting allelochemicals. This would be an effective strategy to avoid light limitation caused by algae and cyanobacteria. We investigated the allelopathic potential of both E. nuttallii and E. canadensis against different photoautotrophs, focussing on epiphytic algae and cyanobacteria isolated from different submersed macrophytes and culture strains. Methanolic extracts of both species inhibited the growth of most of these organisms. Only a culture strain of Scenedesmus brevispina was stimulated. Further separation of extracts yielded several active fractions, indicating that hydrophilic and slightly lipophilic compounds were responsible for growth reduction. At least some of the activity seems to be related to phenolic substances, but flavonoids in these species are inactive. Since growth declined also in a moderately lipophilic fraction of culture filtrate of E. nuttallii, we assume that active compounds were exuded in the water. Allelopathy might thus be relevant in situ and suppress cyanobacteria and algae. We furthermore found differences in the susceptibility of target organisms, which could (1) at least partly be a result of adaptation to the respective host plants and (2) indicate that allelopathic interference might reduce the abundance of some species, especially cyanobacteria, in epiphytic biofilms.  相似文献   

5.
Algal allelopathy   总被引:5,自引:0,他引:5  
The comprehensive review on allelopathy (Rice, 1979, 1984) has been largely responsible for the evolution of allelopathy as an independent branch of chemical/ physiological ecology. The allelopathic research during the last four decades drew attention to different facets of the interactions among the constituents of habitat, calling for an understanding of the role of allelopathy under different habitat conditions. In view of this, we have reviewed the existing information on allelopathic interactions in aquatic habitats with special reference to algal allelopathy. This review has been mainly confined, therefore, to different aspects of algal allelopathy such as allelopathic interactions in algae, algal toxins, bioassays, and implications of algal allelopathy. In spite of the large number of reviews on allelopathy (see section III), no independent review appears on algal allelopathy. Although there were reports of toxins from cyanobacteria and other algae, no appreciable attempt was made to implicate algal toxins in allelopathy under field conditions. Knowledge of chemistry and biology of allelochemical can help in their potential use in controlling plant diseases and weeds. Therefore, it is urgent to study algal toxins for their involvement in ecological phenomena such as succession, for their uses as herbicides, weedicides, and pesticides, for their uses in solving some of the problems of algal ecology, and for their involvement in applied aspects.  相似文献   

6.
海洋植物及其共附生微生物是海洋生物的重要组成部分,能够产生许多结构新颖、活性独特的次级代谢产物,承担多种生理生态功能。北部湾海洋植物物种资源丰富,据统计,海洋植物有3门43种。该文综述了从2002年起北部湾海洋植物及其共附生微生物次级代谢产物的研究进展,从11种红树植物和7种共附生微生物中获得59个新化合物和35个已知活性化合物,从3种海草植物中获得3个新化合物和7个已知活性化合物,从6种海藻植物和1种共附生微生物中获得25个新化合物和8个已知活性化合物,主要涉及结构类型有萜类、生物碱、黄酮类、甾醇,多数具有良好的抗菌、抗氧化、抗肿瘤、抗炎、增强机体免疫力等功效。在此基础上,进一步提出了北部湾海洋植物研究方向及后续的研究建议。该综述为深入研究和开发利用北部湾海洋植物及其共附生微生物提供了参考。  相似文献   

7.
Secondary compounds can contribute to the success of non‐native plant species if they reduce damage by native herbivores or inhibit the growth of native plant competitors. However, there is opposing evidence on whether the secondary compounds of non‐native plant species are stronger than those of natives. This may be explained by other factors, besides plant origin, that affect the potential of plant secondary compounds. We tested how plant origin, phylogeny, growth strategy and stoichiometry affected the allelopathic potential of 34 aquatic plants. The allelopathic potential was quantified using bioassays with the cyanobacterium Dolichospermum flos‐aquae. The allelopathic potential showed a strong phylogenetic signal, but was similar for native and non‐native species. Growth strategy was important, and emergent plants had twice the allelopathic potential as compared to submerged plants. Furthermore, the allelopathic potential was positively correlated to the foliar carbon‐to‐phosphorus (C:P) and total phenolic content. We conclude that eudicot plant species with an emergent growth strategy and high plant C:P ratio exhibit a high allelopathic potential. Unless non‐native plant species match this profile, they generally have a similar allelopathic potential as natives.  相似文献   

8.
Despite their high nutritional value and a lack of physical defenses, most marine sponges appear to be minimally affected by predators, competitors, and fouling organisms, possibly due to sponge chemical defenses. In the last 15 years, several triterpene glycosides have been isolated from sponges, but their ecological or physiological roles are largely unknown. We tested triterpene glycosides from Erylus formosus and Ectyoplasia ferox, Caribbean sponges belonging to two different orders, in field and laboratory assays for effects on fish feeding, attachment by potential biofilm-forming bacteria, fouling by invertebrates and algae, and overgrowth by neighboring sponges. Formoside and other triterpene glycosides from Erylus formosus deterred predation, microbial attachment, and fouling by invertebrates and algae. Triterpene glycosides from Ectyoplasia ferox were found to be antipredatory and allelopathic. Thus, triterpene glycosides in these sponges appear to have multiple ecological functions. Tests with different triterpene glycosides at several concentrations indicated that small differences in molecular structure affect ecological activity. In order to establish whether triterpene glycosides could be involved in water-borne versus surface-mediated interactions, the presence of triterpene glycosides in the seawater surrounding live sponges was measured using two in situ sampling methods followed by HPLC and NMR spectral analysis. Water-borne triterpene glycosides were below detection limits for both species. However, top sponge layers and swabs of the surfaces of both sponges contained sufficiently high concentrations of triterpene glycosides to deter bacterial settlement and fouling of Erylus formosus surfaces and overgrowth of Ectyoplasia ferox by neighboring sponges. Enemies of these sponges appear to be deterred by surface contact of triterpene glycosides rather than by water-borne interactions. The dual strategy of employing one group of compounds for multiple purposes and minimizing the loss of compounds into seawater suggests that these organisms utilize chemical defenses with efficiency.  相似文献   

9.
10.
蓝藻化感抑制作用研究进展   总被引:1,自引:0,他引:1  
夏珊珊  常学秀  吴锋  刘军燕 《生态学报》2008,28(8):3927-3936
在蓝藻水华的众多危害中,对其他生物的化感抑制效应是一个重要的方面,相关研究也越来越受到生态学及环境科学领域研究者的广泛关注.系统阐述了蓝藻化感抑制作用的现象、机理及条件,总结和归纳了具有化感抑制效应的蓝藻种类、化感物质及其作用对象,讨论了蓝藻化感抑制作用的生理生态机制、影响因素、研究方法及应用前景.在此基础上提出了该领域尚未解决的问题及今后的研究方向.  相似文献   

11.
Production of toxic secondary metabolites by cyanobacteria, collectively referred to as cyanotoxins, has been well described for eutrophied water bodies around the world. However, cohesive cyanobacterial mats also comprise a significant amount of biomass in subtropical oligotrophic wetlands. As these habitats generally do not support much secondary production, cyanotoxins, coupled with other physiological attributes of cyanobacteria, may be contributing to the minimized consumer biomass. Periphyton from the Florida Everglades has a diverse and abundant cyanobacterial assemblage whose species produce toxic metabolites; therefore, by screening periphyton representative of the greater Everglades ecosystem, six different cyanotoxins and one toxin (domoic acid) produced by diatoms were identified, ranging in content from 3 × 10?9 to 1.3 × 10?6 (g · g?1), with saxitoxin, microcystin, and anatoxin‐a being the most common. While content of toxins were generally low, when coupled with the tremendous periphyton biomass (3–3,000 g · m?2), a significant amount of cyanotoxins may be present. While the direct effects of the toxins identified here on the local grazing community need to be determined, the screening process utilized proved effective in showing the broad potential of periphyton to produce a variety of toxins.  相似文献   

12.
Nonribosomal peptide synthesis and toxigenicity of cyanobacteria.   总被引:23,自引:0,他引:23       下载免费PDF全文
Nonribosomal peptide synthesis is achieved in prokaryotes and lower eukaryotes by the thiotemplate function of large, modular enzyme complexes known collectively as peptide synthetases. These and other multifunctional enzyme complexes, such as polyketide synthases, are of interest due to their use in unnatural-product or combinatorial biosynthesis (R. McDaniel, S. Ebert-Khosla, D. A. Hopwood, and C. Khosla, Science 262:1546-1557, 1993; T. Stachelhaus, A. Schneider, and M. A. Marahiel, Science 269:69-72, 1995). Most nonribosomal peptides from microorganisms are classified as secondary metabolites; that is, they rarely have a role in primary metabolism, growth, or reproduction but have evolved to somehow benefit the producing organisms. Cyanobacteria produce a myriad array of secondary metabolites, including alkaloids, polyketides, and nonribosomal peptides, some of which are potent toxins. This paper addresses the molecular genetic basis of nonribosomal peptide synthesis in diverse species of cyanobacteria. Amplification of peptide synthetase genes was achieved by use of degenerate primers directed to conserved functional motifs of these modular enzyme complexes. Specific detection of the gene cluster encoding the biosynthetic pathway of the cyanobacterial toxin microcystin was shown for both cultured and uncultured samples. Blot hybridizations, DNA amplifications, sequencing, and evolutionary analysis revealed a broad distribution of peptide synthetase gene orthologues in cyanobacteria. The results demonstrate a molecular approach to assessing preexpression microbial functional diversity in uncultured cyanobacteria. The nonribosomal peptide biosynthetic pathways detected may lead to the discovery and engineering of novel antibiotics, immunosuppressants, or antiviral agents.  相似文献   

13.
Ervin  Gary N.  Wetzel  Robert G. 《Plant and Soil》2003,256(1):13-28
Allelochemical interactions among aquatic macrophytes and between macrophytes and attached microbial assemblages (epiphyton) influence a number of ecological processes. The ecological importance of these interactions, however, is poorly understood; we hypothesize that paucity has resulted, in part, from (1) a narrow focus on exploration for herbicidal plant products from aquatic macrophytes, (2) the difficulties in distinguishing resource competition from allelopathic interference, and (3) a predominance of approaching aquatic allelopathy from a terrestrial perspective. Based upon recent thorough investigations of allelopathy among aquatic vascular plants, chemical compounds that influence competitive interactions among littoral organisms are amphiphilic compounds that tend to remain near the producing organism (e.g., polyphenolic compounds and volatile fatty acids). Production of these compounds may be influenced by relative availability of nutrients (particularly phosphorus and nitrogen), inorganic carbon, and light. Macrophyte strategies of clonal reproduction, in an effort to persist in these highly productive and competitive habitats, have contributed to reduced reliance upon sexual reproduction that is correlated with allelopathic autotoxicity among several dominant wetland plant species. Although few studies document the importance of allelochemical interactions in the wetland and littoral zones of aquatic ecosystems, abundant evidence supports the potential for significant effects on competition and community structure; effects of altered nutrient ratios and availability on plant chemical composition; and resultant effects on trophic interactions, particularly suppression of herbivory, competitive attached algae and cyanobacteria, and heterotrophic utilization of organic matter by bacteria and fungi.  相似文献   

14.
Allelopathy in aquatic environments may provide a competitive advantage to angiosperms, algae, or cyanobacteria in their interaction with other primary producers. Allelopathy can influence the competition between different photoautotrophs for resources and change the succession of species, for example, in phytoplankton communities. Field evidence and laboratory studies indicate that allelopathy occurs in all aquatic habitats (marine and freshwater), and that all primary producing organisms (cyanobacteria, micro- and macroalgae as well as angiosperms) are capable of producing and releasing allelopathically active compounds. Although allelopathy also includes positive (stimulating) interactions, the majority of studies describe the inhibitory activity of allelopathically active compounds. Different mechanisms operate depending on whether allelopathy takes place in the open water (pelagic zone) or is substrate associated (benthic habitats). Allelopathical interactions are especially common in fully aquatic species, such as submersed macrophytes or benthic algae and cyanobacteria. The prevention of shading by epiphytic and planktonic primary producers and the competition for space may be the ultimate cause for allelopathical interactions. Aquatic allelochemicals often target multiple physiological processes. The inhibition of photosynthesis of competing primary producers seems to be a frequent mode of action. Multiple biotic and abiotic factors determine the strength of allelopathic interactions. Bacteria associated with the donor or target organism can metabolize excreted allelochemicals. Frequently, the impact of surplus or limiting nutrients has been shown to affect the overall production of allelochemicals and their effect on target species. Similarities and differences of allelopathic interactions in marine and freshwater habitats as well as between the different types of producing organisms are discussed. Referee: Dr. Friedrich Jüttner, Universität Zürich-Limnologische Station, Institut für Pflanzen biologie, Universität Zürich, Seestrasse 187, Ch-8802 Klichberg ZH, Switzerland  相似文献   

15.
Bhadury P  Wright PC 《Planta》2004,219(4):561-578
Marine algae are one of the largest producers of biomass in the marine environment. They produce a wide variety of chemically active metabolites in their surroundings, potentially as an aid to protect themselves against other settling organisms. These active metabolites, also known as biogenic compounds, produced by several species of marine macro- and micro-algae, have antibacterial, antialgal, antimacrofouling and antifungal properties, which are effective in the prevention of biofouling, and have other likely uses, e.g. in therapeutics. The isolated substances with potent antifouling activity belong to groups of fatty acids, lipopeptides, amides, alkaloids, terpenoids, lactones, pyrroles and steroids. These biogenic compounds have the potential to be produced commercially using metabolic engineering techniques. Therefore, isolation of biogenic compounds and determination of their structure could provide leads for future development of, for example, environmentally friendly antifouling paints. This paper mainly discusses the successes of such research, and the future applications in the context of understanding the systems biology of micro-algae and cyanobacteria.Abbreviations AHL Acylated homoserine lactone - TBT Tributyl tin  相似文献   

16.
1. This review focuses on direct and indirect interactions between dissolved humic substances (HS) and freshwater organisms and presents novel opinions and hypotheses on their ecological significance. Despite their abundance in freshwaters, the role of HS is still inadequately understood. These substances have been considered too large to be taken up by freshwater organisms. On the contrary, here we present evidence that dissolved HS are indeed taken up and interact directly and/or indirectly with freshwater organisms. 2. We show that dissolved HS exert a mild chemical stress upon aquatic organisms in many ways; they induce molecular chaperones (stress shock proteins), induce and modulate biotransformation enzymes and modulate (mainly inhibiting) the photosynthetic release of oxygen by freshwater plants. Furthermore, they produce an oxidative stress, which may lead to membrane oxidation. HS modulate the multixenobiotic resistance activity and probably other membrane‐bound pumps. This property may lead to the increased bioaccumulation of xenobiotic chemicals. Furthermore, they can modulate the numbers of offspring in a nematode and feminise fish and amphibians. The ecological consequences of this potential remain obscure at present. HS also have the potential to act as chemical attractants (as shown with a nematode). 3. In some macrophytes and algae we show that HS interfere with photosynthesis and growth. For instance, the presence of HS suppresses cyanobacteria more than eukaryotic algae. By applying a quantitative structure activity relationship approach, we show that quinones in the HS interfere with photosynthetic electron transport. We show that even Phragmites leachate can act as a kind of phytotoxin. HS also have the potential to suppress fungal growth, as shown with the water mould Saprolegnia parasitica and force the fungus to respond by spore production. 4. In very soft, humic freshwaters, such as the Rio Negro, Brazil, HS stimulate the uptake of essential ions, such as Na and Ca, at extremely low pH (3.5–4.0) and prevent the ionoregulatory disturbance induced by acid waters, thereby enabling fish to survive in these environments. 5. We discuss whether or not HS are directly utilised by aquatic microorganisms or via exoenzymes, which may be washed in from the terrestrial catchment. There is accumulating evidence that the quality of the HS controls microbial growth. In total, net‐heterotrophy may result from HS‐mediated suppression of primary production by the quinone structures and/or from HS‐mediated support of microbial growth. As there is also evidence that HS have the potential to support photoautotrophic growth and suppress microbial growth, the opposite community effect could result. Consequently, dissolved organic carbon (DOC) has to be chemically characterised, rather than simply measuring bulk DOC concentration. 6. In sum, dissolved HS interact with freshwater organisms in a variety of ways in unenriched humic lakes. In addition to the well known effects of HS on light regime, for example, and the direct and indirect supply with carbon (energy), other interactions may be much more subtle. For instance, HS may induce internal biochemical stress defence systems and have the potential to cause acclimatisation and even adaptation. We are just at the beginning of understanding these interactions between dissolved HS and freshwater organisms.  相似文献   

17.
Allelopathy is considered to be one of the factors underlying the global expansion of the toxic cyanobacterium Cylindrospermopsis raciborskii. Although the production and release of allelopathic compounds by cyanobacteria is acknowledged to be influenced by environmental parameters, the response of C. raciborskii remains generally unrecognized. Here, the growth and allelopathic potential of C. raciborskii strain LEGE 99043 towards the ubiquitous microalga Ankistrodesmus falcatus were analyzed under different biotic and abiotic conditions. Filtrates from C. raciborskii cultures growing at different cell densities displayed broad inhibitory activity. Moreover, higher temperature, higher light intensity as well phosphate limitation further enhanced this activity. The distinct and comprehensive patterns of inhibition verified during the growth phase, and under the tested parameters, suggest the action of several, still unidentified allelopathic compounds. It is expectable that the observed increase in allelopathic activity can result in distinct ecological advantages to C. raciborskii.  相似文献   

18.
扇贝毒素pectenotoxins(PTXs)研究进展   总被引:2,自引:0,他引:2  
刘仁沿  梁玉波 《生态学报》2010,30(19):5355-5370
扇贝毒素(pectenotoxins,PTXs)是一类聚醚大环内酯结构的脂溶性海洋生物毒素,是由海洋甲藻中的鳍藻属Dinophysisspp.的几个种产生的,1984年首次从日本的养殖扇贝Patinopecten yessoensis中发现鉴定,具有很高的小鼠腹腔注射致死毒性。近年发现的地理区域不断扩大,我国尚属空白。就这一毒素的结构、来源生物、毒性、携带生物、地理分布、降解代谢及风险评估等研究现状作一系统综述,并分析展望了今后我国藻毒素研究的重点方向。  相似文献   

19.
The degradation of an organophosphorus pesticide, fenamiphos, by different species of five green algae and five cyanobacteria was studied. All the species tested were able to transform fenamiphos to its primary oxidation product, fenamiphos sulfoxide (FSO), while the majority of these cultures were able to hydrolyze FSO to fenamiphos sulfoxide phenol (FSOP). Fenamiphos sulfone phenol, FSOP, and FSO were detected in the culture extracts of these algae and cyanobacteria. This is the first report on the biodegradation of a toxic pesticide, fenamiphos, by cyanobacteria. The ability of these algae and cyanobacteria to detoxify fenamiphos can be gainfully used in bioremediation of this pesticide and its toxic metabolites.  相似文献   

20.
《Harmful algae》2009,8(1):94-102
The ability of certain harmful algal species to produce and release chemicals that inhibit the growth of co-occurring phytoplankton species, here considered as allelopathy, is closely associated with competition for limiting nutrient resources. Many phytoplankton cells are known to release elevated amounts of organic compounds under nutrient limitation. Eutrophication alters the nitrogen-to-phosphorus balance and, when nutrient availability is unbalanced, nutrient limitation may result. Algal species that can compete successfully for available growth-limiting nutrient(s) have the potential to become dominant and form blooms. The stress conditions imposed by the shifted nutrient supply ratios can, in some algae, stimulate production of allelochemicals that inhibit potential competitors. Thus, under cultural eutrophication, altered nutrient (N, P) ratios and limiting nutrient supplies can stimulate increased production of allelochemicals, including toxins, by some algal species and accentuate the adverse effects of these substances on other algae. Future investigation on the characterization of the chemical compounds involved in the allelopathic process are needed to advance the study of the mode of action of phytoplankton allelochemicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号