首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The polyenoic fatty acids with carbon chain lengths from 26 to 38 (very-long-chain fatty acids, VLCFA) previously detected in abnormal amounts in Zellweger syndrome brain have been shown to be n-6 derivatives and therefore probably derived by chain elongation of shorter-chain n-6 fatty acids such as linoleic acid and arachidonic acid. Polyenoic VLCFA are also present in Zellweger syndrome liver, but this tissue differs significantly from brain in that the saturated and mono-unsaturated derivatives are the major VLCFA. Zellweger syndrome brain polyenoic VLCFA are present in the neutral lipids predominantly in cholesterol esters, with smaller amounts in the non-esterified fatty acid and triacylglycerol fractions. These fatty acids are barely detectable in any of the major phospholipids, but are present in significant amounts in an unidentified minor phospholipid. The polyenoic VLCFA composition of this lipid differs markedly from that observed for all other lipids, as it contains high proportions of pentaenoic and hexaenoic fatty acids with 34, 36 and 38 carbon atoms. A polar lipid with the chromatographic properties in normal brain contains similar fatty acids. It is postulated that the polyenoic VLCFA may play an important role in normal brain and accumulate in Zellweger syndrome brain because of a deficiency in the peroxisomal beta-oxidation pathway, although a possible peroxisomal role in the control of carbon-chain elongation cannot be discounted.  相似文献   

2.
The n-6 tetra- and pentaenoic fatty acids with carbon chain lengths greater than 32 found in normal brain are located predominantly in a separable species of phosphatidylcholine. A similar phospholipid is found in increased amounts in the brain of peroxisome-deficient (Zellweger's syndrome) patients, but the fatty acid composition differs in that penta- and hexaenoic derivatives predominate. Our data strongly suggest that the polyenoic very long chain fatty acids are confined to the sn-1 position of the glycerol moiety, while the sn-2 position is enriched in saturated, monounsaturated and polyunsaturated fatty acids with less than 24 carbon atoms. It is postulated that these unusual molecular species of phosphatidylcholine may play some, as yet undefined, role in brain physiology.  相似文献   

3.
Rat brain was recently found to contain polyenoic very-long-chain fatty acids (VLCFA) belonging to the n-3 and n-6 series with four, five and six double bonds and even-carbon chain lengths from 24 to 38 [Robinson, Johnson & Poulos (1990) Biochem. J. 265, 763-767]. In the present paper, the metabolism in vivo of hexacosatetraenoic acid (C26:4,n-6) was studied in neonatal rat brain. Rats were injected intracerebrally with [1-14C]C26:4,n-6 and the labelled metabolites were examined after 4 h. Radioactivity was detected mainly in non-esterified fatty acids, with smaller amounts in other neutral lipids and phospholipids. Radiolabelled fatty acid products included C28-36 tetraenoic and C26-28 pentaenoic VLCFA formed by elongation and desaturation of the substrate, and C14-24 saturated, C16-24 monoenoic, C18-24 dienoic, C18-22 trienoic and C20-24 tetraenoic fatty acids formed from released [1-14C]acetate either by synthesis de novo or by elongation of endogenous fatty acids. The data suggest that polyenoic VLCFA are synthesized in brain from shorter-chain precursor fatty acids and undergo beta-oxidation.  相似文献   

4.
Fatty acids with carbon chain lengths greater than 22 (VLCFA) have been detected in boar, ram, bull and human spermatozoa. Saturated and mono-unsaturated fatty acids were present in all spermatozoa but, except for human spermatozoa, polyenoic fatty acids were quantitatively the most important components. Marked differences in polyenoic fatty acid composition were observed. Whereas human spermatozoa contain predominantly di-, tri- and tetraenoic fatty acids with up to 32 carbon atoms, boar, ram and bull spermatozoa also contain pentaenoic and/or hexaenoic acids with up to 34 carbon atoms. Human and boar spermatozoa differ markedly from those of the ram and bull in that only n-6 series acids are present.  相似文献   

5.
Polyenoic very-long-chain fatty acids (VLCFA) have been shown to be localized in unusual molecular species of sphingomyelin in the testes and spermatozoa of the ram, bull, rat, and boar and in the spermatozoa of man. The composition of polyenoic VLCFA-sphingomyelin was comparable in the testes and spermatozoa of each mammalian species; however, the sphingolipid was more concentrated in spermatozoa. The composition of testicular and spermatozoan polyenoic VLCFA-sphingomyelin differed considerably between animal types. Human spermatozoa mainly contained n-6 polyenoic VLCFA with two to four double bonds and even-carbon chain lengths up to 32. In ram and bull testes and spermatozoa, n-3 and n-6, tetra-, penta-, and hexaenoic VLCFA with even-carbon chain lengths up to 34 predominated. In rat and boar testes and spermatozoa, the polyenoic VLCFA were mainly n-6 derivatives with three to five double bonds and even- and odd-carbon chain lengths up to 34. The testes and spermatozoa of the latter two animal species contained 2-hydroxylated, in addition to non-hydroxylated, polyenoic VLCFA in sphingomyelin. This is the first time that 2-hydroxylated polyenoic VLCFA have been recognized in biological systems. Non-hydroxylated polyenoic VLCFA were initially observed in the sphingomyelin of rat testes 25 days after birth, followed by 2-hydroxylated derivatives at 30 days. The total amount of polyenoic VLCFA associated with rat testicular sphingomyelin increased dramatically from 25 to 40 days of postnatal life and then remained constant to 60 days (sexual maturity). The ratio of 2-hydroxylated to non-hydroxylated polyenoic VLCFA increased during this period. Polyenoic VLCFA-sphingomyelin seems to occur exclusively in the testes and spermatozoa of mammals, and it is postulated that this lipid plays a role in reproduction.  相似文献   

6.
Dipolyunsaturated phosphatidylcholines from bovine retina contain a whole series of unusual fatty acids. Methyl esters from these acids are very strongly retained on polar and nonpolar gas-liquid chromatography stationary phases. On thin layers of silica-AgNO3, they separate as tetra-, penta-, and hexaenoic fatty acid methyl esters. After hydrogenation, the three polyunsaturated fractions give the same series of saturated methyl esters, having 20 (or 22)-36 carbon atoms. High pressure liquid chromatography, as well as gas-liquid chromatography, indicates that the new components of the three fractions are even-carbon homologs of well known polyenoic fatty acids of the n-6 and n-3 families, since they behave as series of 20-36-carbon tetraenoic (n-6), pentaenoic (n-3 and n-6), and hexaenoic (n-3) fatty acids. Their occurrence in phospholipid molecules also having docosahexaenoate (22:6) explains the separation of major dipolyunsaturated phosphatidylcholines from retina into dodecaenoic, undecaenoic, and decaenoic fractions after argentation thin layer chromatography. Using high pressure liquid chromatography, the latter are resolved into individual species having 10-12 double bonds and 42-58 carbon atoms. The unusual PCs are thus endowed not only with the highest degree of unsaturation, but with the longest hydrocarbon chains yet reported for vertebrate glycerophospholipids. It is shown that phosphatidylcholines containing the novel fatty acids are highly concentrated in photoreceptor membranes and that they occur in the retina of vertebrates so distant in evolution as fish, birds, and various mammals.  相似文献   

7.
Abstract: A variety of fatty acids including the cis -polyunsaturated very-long-chain fatty acids (VLCFA) (>22 carbon atoms) common in retina, spermatozoa, and brain were examined for their ability to activate protein kinase C (PKC) purified from rat brain. Arachidonic [20:4(n-6)], eicosapentaenoic [20:5(n-3)], and docosahexaenoic [22:6(n- 3)] acids as well as the VLCFA dotriacontatetraenoic [32:4(n-6)] and tetratriacontahexaenoic [34:6(n-3)] were equally capable of activating PKC in vitro with maximal activity being between 25 and 50 μ M. The phorbol ester 12- O -tetradecanoylphorbol 13-acetate further enhanced the in vitro activation of PKC when added to the protein kinase assay system with the fatty acids. The fully saturated arachidic acid (20:0) was inactive in both assay systems. The potential significance of the in vitro activation of PKC by the VLCFA is discussed.  相似文献   

8.
Molecular species of phosphatidylcholine containing unsaturated (i.e., monoenoic and polyenoic) 32- to 40-carbon (very long chain) fatty acids (VLCFA-PC) are present in normal human brain, the fatty acid composition changing significantly with development. There is a marked increase in the concentration and a change in the polyenoic VLCFA composition of these molecular species in brains of patients with inherited defects in peroxisomal biogenesis [Zellweger's syndrome, neonatal adrenoleukodystrophy (ALD), and infantile Refsum's disease]. In contrast, there is a marked increase in monoenoic VLCFA-PC in X-linked ALD whereas molecular species containing polyenoic VLCFA are minor components.  相似文献   

9.
This paper reports the positional distribution of fatty acids in triacylglycerols (TAG) of Artemia franciscana nauplii enriched with each of palmitic (16:0), oleic (18:1n-9), linoleic (18:2n-6), linolenic (18:3n-3), eicosapentaenoic (20:5n-3), and docosahexaenoic (22:6n-3) acid ethyl esters. TAG extracted from the enriched and unenriched nauplii were subjected to regiospecific analysis to determine the fatty acid compositions of the sn-1(3) and sn-2 positions of TAG. In the unenriched nauplii, 16:0, 18:1n-9, and 18:2n-6 were preferentially located in the sn-1(3) position followed by the sn-2 position [i.e. sn-1(3)>sn-2], whereas 18:3n-3 was concentrated in the sn-2 position [i.e. sn-2>sn-1(3)]. Contents of 20:5n-3 and 22:6n-3 were low. After the nauplii were enriched with each of the ethyl esters for 18 h, fatty acid fed to the nauplii showed higher content in the sn-1(3) position than in the sn-2 position [i.e. sn-1(3)>sn-2]. Distribution pattern of 18:3n-3 changed from sn-2>sn-1(3) to sn-1(3)>sn-2 during the enrichment with 18:3n-3 ethyl ester. Increases in all of the fatty acids in TAG were attributed to that in the sn-1(3) position much more than that in the sn-2 position. Artemia nauplii appear to be characterized by preferential incorporation of exogenous fatty acids into the sn-1(3) position of TAG, even though endogenous fatty acids are esterified in the opposite position.  相似文献   

10.
Mohamad Hajarine  Michel Lagarde   《Biochimie》1988,70(12):1749-1758
Radiolabeled polyenoic acids were incorporated into human platelet lipids using albumin as vector. Platelets were then triggered with 0.1 or 1 U/ml thrombin, and 0.5 or 2 x 10(-6) M calcium ionophore A23187. Lipid extracts were analyzed for neutral lipids, free fatty acids, monohydroxylated acids, prostanoids and glycocerophospholipid subclasses. During platelet activation induced by thrombin or by ionophore, arachidonic and eicosapentaenoic acids were liberated from phospholipids in large amounts and were subsequently oxygenated via platelet oxygenases. Substantial amounts of lipoxygenase products and thromboxanes were produced from these acids. Liberation and oxygenation of linoleic, alpha-linolenic, and docosahexaenoic acids were much less pronounced. Polyenoic acid liberation from phospholipid subclasses also behaved quite differently. Apart from alpha-linolenic and adrenic acids, which were poorly liberated, all the others were freed from phosphatidylinositol. In addition, arachidonic, eicosapentaenoic, and 5, 8, 11-eicosatrienoic acids were liberated from phosphatidylcholine at high concentrations of agonists and partially reincorporated into phosphatidylethanolamine. Finally, linoleic acid was deacylated from phosphatidylinositol and phosphatidylserine and almost entirely reacylated into phosphatidylcholine, whereas docosahexaenoic acid was deacylated from phosphatidylcholine and phosphatidylinositol reacylated into phosphatidylethanolamine, respectively. It is concluded that these polyenoic acids, all for which modulate platelet functions, exhibit very different metabolisms. They may act via their oxygenated derivatives and/or at the membrane phospholipid level.  相似文献   

11.
Whole brains from 20-22-day-old rats were separated into the 15,000 g supernatant, myelin, nerve ending and mitochondrial fractions. Gas chromatography of the trimethylsilyl derivatives of 1,2-diglycerides obtained by hydrolysis with phospholipase C of the phosphatidylcholine from each fraction showed marked differences of carbon number distribution (i.e. the sum of the carbon atoms in the two fatty acids of the diglyceride) among the different membranous fractions. Further characterization of each diglyceride was obtained by preparative gas chromatography of the diglyceride-trimethylsilyl ethers and determination of the acyl moieties after collection, methanolysis and gas chromatography. The results indicate that at least three distinct populations of phosphatidylcholine exist in the brain. Nerve endings and the 15,000 g supernatant fraction exhibit a very similar diglyceride pattern with dipalmitoylglycerophosphorylcholine representing over 30 per cent of the species present. Myelin has a unique phosphatidylcholine composition with much less polyenoic species in the 36 and 38 carbon number peaks. Mitochondria contain phosphatidylcholines with relatively more long-chain polyunsaturated fatty acids. TLC of the phosphatidylcholines yielded partial separation into two spots, which differed in distribution of fatty acids. The faster migrating spot contained most of the polyenoic acids, whereas the slower migrating spot contained most of the palmitic, stearic and oleic acids.  相似文献   

12.
Male weanling rats were fed diets containing 20% (w/w) fat differing in fatty acid composition for 24 days. Synaptic plasma membranes were isolated from the brain and the fatty acid composition of phosphatidylethanolamine and phosphatidylcholine was determined. In vitro assays of phosphatidylethanolamine methyl-transferase activity were performed on fresh membrane samples to assess effect of dietary fat on the rate of phosphatidylethanolamine methylation for phosphatidylcholine synthesis via the phosphatidylethanolamine methyltransferase pathway. Dietary level of n-6 and ratio of n-6 to n-3 fatty acids influenced membrane phospholipid fatty acid composition and activity of the lipid-dependent phosphatidylethanolamine methyltransferase pathway. Rats fed a diet rich in n-6 fatty acids produced a high ratio of n-6/n-3 fatty acids in synaptosomal membrane phosphatidylethanolamine, and elevated rates of methylation of phosphatidylethanolamine to phosphatidylcholine by phosphatidylethanolamine methyltransferases, suggesting that the pathway exhibits substrate selectivity for individual species of phosphatidylethanolamine containing long-chain homologues of dietary n-6 and n-3 fatty acids (20:4(n-6), 22:4(n-6), 22:5(n-6) and 22:6(n-3). It may be concluded that diet alters the membrane content of n-6, n-3 and monounsaturated fatty acids, and that change in phosphatidylethanolamine species available for methylation to phosphatidylcholine alters the rate of product synthesis in vivo by the phosphatidylethanolamine methyltransferase pathway.  相似文献   

13.
M I Avelda?o 《Biochemistry》1988,27(4):1229-1239
About one-fourth the phosphatidylcholines (PCs) from bovine disk photoreceptor membranes contain very long chain (24-36 carbons) polyunsaturated (4, 5, and 6 double bonds) fatty acids of the n-3 and n-6 series (VLCPUFA). Such fatty acids, exclusively occurring in dipolyunsaturated species, are esterified to the sn-1 position of their glycerol backbone, docosahexaenoate being the major fatty acid at sn-2. Chromatographically, such PCs display a weakly polar character relative to other species, ascribable to their exceedingly large number of carbons. After hexane extraction of lyophilized disks, PC is the major component of the fraction of lipids that remains associated with rhodopsin, followed by phosphatidylserine, while a large proportion of the phosphatidylethanolamine is removed. The fatty acid composition of the hexane-removable and protein-bound lipid fractions markedly differs, the latter being enriched in lipid species containing long-chain and very long chain polyenes. This is observed for all lipid classes except free fatty acids. VLCPUFA-containing PCs are the most highly concentrated species in the rhodopsin-associated lipid fraction. The very long chain polyenes these PCs have at sn-1 may account for their resistance to being separated from the protein. It is hypothesized that their unusually long polyenoic fatty acids could be well suited to partially surround alpha-helical segments of rhodopsin.  相似文献   

14.
Effects of supplementation of saturated fatty acids (16:0 and 18:0) on metabolism of the cytotoxic n-6 fatty acids in cultured human monocyte-like cells (U937) have been examined. U937 cells were incubated in 5% delipidated fetal bovine serum containing 16:0 and 18:0. Supplementation of either 16:0 or 18:0 has no significant effect on the uptake of 18:2n-6 and 18:3n-6. However, addition of 16:0 to the medium increased whereas 18:0 suppressed the cytotoxic effects of 18:2n-6 and 18:3n-6. In addition, 16:0 supplementation reduced the incorporation of n-6 fatty acids in cellular phospholipid fraction, and enhanced the metabolism of n-6 fatty acids, particularly the conversion of 20:3n-6 to 20: 4n-6 in U937 cells. Results with microsomes prepared from U937 cells also showed that 16:0 supplementation increased the 5 desaturase activity. This may be related in part to an increase in the availability of 20:3n-6, since results obtained in a separate study have shown that 16:0 competed with 20:3n-6 for incorporaton into the phospholipid molecule at sn-2 position. Increasing the availability and formation of long chain n-6 fatty acids, which are cytotoxic, might also be responsible for increasing cytotoxicity of 16:0 supplementation.  相似文献   

15.
A complete series of even-carbon chain polyenoic fatty acids having 20-36 carbons occur in dipolyunsaturated molecular species of phosphatidylcholine from bovine retina. Using oxidative ozonolysis, it is shown that very long chain tetraenes belong to the n-6 series, hexaenes to the n-3 series, and major pentaenes to the n-3 series of fatty acids (very long chain n-6 pentaenes also occur). Molecular ions are obtained by electron impact mass spectrometry of methyl ester derivatives which conclusively identify the major components of this novel group of fatty acids. Mass spectral patterns are similar for the major very long chain tetraenes, for the pentaenes, and for the hexaenes, but different for each group of unsaturation. Very long chain (C24 to C36) polyenes account for about half the weight (40 mol %) of the acyl chains of major dodecaenoic, undecaenoic, and decaenoic molecular species of bovine retina phosphatidylcholine, the other half being made up by docosahexaenoate (22:6 n-3).  相似文献   

16.
The incorporation and metabolism of [1-14C]18:3(n-3), [1-14C]20:5(n-3), [1-14C]18:2(n-6), and [1-14C]20:4(n-6) were studied in primary cultures of trout brain astrocytes. There were no significant differences between the amounts of individual fatty acids incorporated into total lipid at 22 degrees C, with greater than 90% of all the fatty acids being incorporated into polar lipid classes. The distributions of 18:2(n-6), 18:3(n-3), and 20:5(n-3) in individual phospholipid classes at 22 degrees C were very similar, with 57-63 and 18-24% being incorporated into phosphatidylcholine and phosphatidylethanolamine, respectively. Approximately equal amounts of 20:4(n-6), approximately 30% of the total, were incorporated into each of phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol. The metabolism of the (n-3) fatty acids to longer-chain and more unsaturated species was significantly greater than that of (n-6) acids, but delta 4-desaturase activity was very low. A culture temperature of 10 degrees C increased the incorporation of all the fatty acids into total lipid and that of C20 fatty acids into polar lipid. At 10 degrees C, the incorporation of C20 fatty acids into phosphatidylethanolamine and phosphatidylinositol was increased, and the incorporation into phosphatidylcholine and phosphatidylserine was decreased. The distribution of C18 fatty acids was unchanged at the lower temperature, as was the desaturation and elongation of all the polyunsaturated fatty acids incorporated.  相似文献   

17.
  • 1.1. Lipid and phospholipid compositions of endemic freshwater molluscs belonging to the class Gastropoda, Baicalia oviformus and Benedictia baicalensis, were studied.
  • 2.2. The fatty acids composition of total lipids, neutral, glyco- and phospholipid fraction was investigated by capillary gas chromatography-mass spectrometry.
  • 3.3. Ninety-five fatty acids were identified: 23 saturated (both iso- and anteiso-), 28 monoenoic, 14 dienoic and 30 polyenoic.
  • 4.4. High percentage of the two main acids, 18:4 and 18:4(n-3) in phospholipid and glycolipid fractions were identified.
  • 5.5. A number of unusual polyunsaturated fatty acids, such as 19:4, 18:5(n-3), 24:4(n-6), 24:5(n-6), 24:6(n-3), and furanoid acids, were found.
  相似文献   

18.
In this review, changes in brain lipid composition and metabolism due to aging are outlined. The most striking changes in cerebral cortex and cerebellum lipid composition involve an increase in acidic phospholipid synthesis. The most important changes with respect to fatty acyl composition involve a decreased content in polyunsaturated fatty acids (20:4n-6, 22:4n-6, 22:6n-3) and an increased content in monounsaturated fatty acids (18:1n-9 and 20:1n-9), mainly in ethanolamine and serineglycerophospholipids. Changes in the activity of the enzymes modifying the phospholipid headgroup occur during aging. Serine incorporation into phosphatidylserine through base-exchange reactions and phosphatidylcholine synthesis through phosphatidylethanolamine methylation increases in the aged brain. Phosphatidate phosphohydrolase and phospholipase D activities are also altered in the aged brain thus producing changes in the lipid second messengers diacylglycerol and phosphatidic acid.  相似文献   

19.
It is shown that a tetrapeptide fragment of defensin does not alter the phospholipid composition in the membranes of CHO-K1 cells but regulates the fatty acid composition of phosphatidylcholine, phosphatidylethanolamine (PEA), phosphatidylserine (PS), and phosphatidylinositol (PI). Incubation of the cells in the presence of this tetrapeptide resulted in modification of unsaturated fatty acid composition in the studied phospholipids. The content of monoenoic (mainly C18 : 1ω9) and/or dienoic (C18 : 2ω6) fatty acids increased, while the level of polyenoic fatty acids decreased. It was found that in the polyenoic fatty acid group of the PEA, PS and PI molecules, the ω3-/ω6-acid ratio decreased mainly due to the lower content of long-chain ω3-acids with 20 and/or 22 carbonic atoms. The possible role of this peptide in inhibition of the activity of Δ6- and Δ5-desaturases involved in the synthesis of long-chain polyenoic fatty acids, the quantitative alteration of which in phospholipids influences physicochemical parameters in cell membranes, is discussed.  相似文献   

20.
Analysis of lipids in salivary glands of the lone star tick, Amblyomma americanum, demonstrated that arachidonic acid (20:4, n-6) comprises 8% of all fatty acids identified by gas chromatography. The occurrence of arachidonic acid and other C20 polyunsaturated fatty acids in tick salivary glands was confirmed by gas chromatography-mass spectrometry. Arachidonate is located entirely in the phospholipid fraction and is associated exclusively with phosphatidylcholine (PC) and phosphatidylethanolamine (PE). Salivary glands stored and frozen for several months had a similar lipid composition as freshly dissected salivary glands, with the exception of a small amount of free arachidonic acid and an increase in lysophosphatidylcholine. Incubation of salivary gland homogenates with snake venom phospholipase A2 showed that most saturated fatty acids are esterified in the sn-1 position of PC and PE, with the unsaturated fatty acids in the sn-2 position. Approximately 75% of arachidonic acid is in the sn-2 position of PC and PE, adding support to the hypothesis that arachidonic acid is released into the cytoplasm after activation of a phospholipase A2 for subsequent metabolism to prostaglandins and/or other eicosanoids. © 1993 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号