首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study of anaerobic sediments below cyanobacterial mats of a low-salinity meltwater pond called Orange Pond on the McMurdo Ice Shelf at temperatures simulating those in the summer season (<5°C) revealed that both sulfate reduction and methane production were important terminal anaerobic processes. Addition of [2-14C]acetate to sediment samples resulted in the passage of label mainly to CO2. Acetate addition (0 to 27 mM) had little effect on methanogenesis (a 1.1-fold increase), and while the rate of acetate dissimilation was greater than the rate of methane production (6.4 nmol cm−3 h−1 compared to 2.5 to 6 nmol cm−3 h−1), the portion of methane production attributed to acetate cleavage was <2%. Substantial increases in the methane production rate were observed with H2 (2.4-fold), and H2 uptake was totally accounted for by methane production under physiological conditions. Formate also stimulated methane production (twofold), presumably through H2 release mediated through hydrogen lyase. Addition of sulfate up to 50-fold the natural levels in the sediment (interstitial concentration, ~0.3 mM) did not substantially inhibit methanogenesis, but the process was inhibited by 50-fold chloride (36 mM). No net rate of methane oxidation was observed when sediments were incubated anaerobically, and denitrification rates were substantially lower than rates for sulfate reduction and methanogenesis. The results indicate that carbon flow from acetate is coupled mainly to sulfate reduction and that methane is largely generated from H2 and CO2 where chloride, but not sulfate, has a modulating role. Rates of methanogenesis at in situ temperatures were four- to fivefold less than maximal rates found at 20°C.  相似文献   

2.
Hydrogen and methane production from desugared molasses by a two‐stage thermophilic anaerobic process was investigated in a series of two up‐flow anaerobic sludge blanket (UASB) reactors. The first reactor that was dominated with hydrogen‐producing bacteria of Thermoanaerobacterium thermosaccharolyticum and Thermoanaerobacterium aciditolerans could generate a high hydrogen production rate of 5600 mL H2/day/L, corresponding to a yield of 132 mL H2/g volatile solid (VS). The effluent from the hydrogen reactor was further converted to methane in the second reactor with the optimal production rate of 3380 mL CH4/day/L, corresponding to a yield of 239 mL CH4/g VS. Aceticlastic Methanosarcina mazei was the dominant methanogen in the methanogenesis stage. This work demonstrates that biohydrogen production can be very efficiently coupled with a subsequent step of methane production using desugared molasses. Furthermore, the mixed gas with a volumetric content of 16.5% H2, 38.7% CO2, and 44.8% CH4, containing approximately 15% energy by hydrogen is viable to be bio‐hythane.  相似文献   

3.
Ammonia accumulation is a major inhibitory substance causing anaerobic digestion upset and failure in CH4 production. At high ammonia levels, CH4 production through syntrophic acetate oxidization (SAO) pathways is more tolerant to ammonia toxicity than the acetoclastic methanogenesis pathway, but the low CH4 production rate through SAO constitutes the main reason for the low efficiency of energy recovery in anaerobic digesters treating ammonia‐rich substrates. In this study, we showed that acetate fermentation to CH4 and CO2 occurred through SAO pathway in the anaerobic reactors containing a high ammonia concentration (5.0 g l?1 NH4+–N), and the magnetite nanoparticles supplementation increased the CH4 production rates from acetate by 36–58%, compared with the anaerobic reactors without magnetite under the same ammonia level. The mechanism of facilitated methanogenesis was proposed to be the establishment of direct interspecies electron transfer (DIET) for SAO, in which magnetite facilitated DIET between syntrophic acetate oxidizing bacteria and methanogens. High‐throughput 16S rRNA gene sequencing analysis revealed that the bacterial Geobacteraceae and the archaeal Methanosarcinaceae and Methanobacteriaceae might be involved in magnetite‐mediated DIET for SAO and CH4 production. This study demonstrated that magnetite supplementation might provide an effective approach to accelerate CH4 production rates in the anaerobic reactors treating wastewater containing high ammonia.  相似文献   

4.
Following a summer drought, intact cores of peat soil from two cool temperate peatlands (a rain-fed bog and a groundwater-fed swamp) were exposed experimentally to three different water table levels. The goal was to examine recovery of anaerobic methanogenesis and to evaluate peat soil decomposition to methane (CH4), carbon dioxide (CO2), and dissolved organic carbon (DOC) upon rewetting. Methane emission from soils to the atmosphere was greatest (mean = 80 μmol m?2 s?1) when the entire peat core was rewetted quickly; emission was negligible at low water level and when peat cores were rewetted gradually. Rates of CO2 emission (mean = 1.0 μmol m?2 s?1) were relatively insensitive to water level. Concentrations of CH4 in soil air spaces suggest that onset of methanogenesis induces, but later represses, aerobic oxidation of CH4 above the water table. Concentrations of CO2 suggest production at the soil surface of swamp peat versus at greater depths in bog peat. Portions of peat soil incubated in vitro without oxygen (O2) exhibited a lag before the onset of methanogenesis, and the lag time was less in peat from the cores rewetted quickly. The inhibition of methanogenesis by the selective inhibitor 2-bromoethanesulfonic acid (BES) decreased CO2 production by 20 to 30% but resulted in an increase in concentrations of DOC by 2 to 5 times. The results show that methanogens in peat soils tolerate moderate drought, and recovery varies among different peat types. In peat soils, the inhibition of methanogenesis might enhance DOC availability.  相似文献   

5.
Among five hydrogenation catalysts, palladium on charcoal was the most reactive one when suspended in anaerobic culture medium, and Lindlar catalyst (Pd on CaCO3) was the most reactive one when suspended in the gas phase of culture tubes. Palladium on charcoal in the culture medium (40 to 200 mg 10 ml−1) completely inhibited growth of Neocallimastix frontalis and partly inhibited Ruminococcus albus. Lindlar catalyst (40 to 200 mg per tube) suspended in a glass pouch above the culture medium did not affect the rate of cellulose degradation or the ratio of fermentation products by these organisms. Acetylene added to tubes containing Lindlar catalyst in pouches, and either of the two organisms in monoculture or coculture with Methanospirillum hungatei, was reduced to ethylene and then ethane, followed by hydrogen production. Similar results were obtained with 1-pentene. Neither acetylene nor 1-pentene affected cellulose degradation but both inhibited methanogenesis. In the presence of Lindlar catalyst and propylene or 1-butene, fermenter-methanogen cocultures continued to produce methane at the same rate as controls and no olefin reduction occurred. Upon addition of bromoethanesulfonic acid, methanogenesis stopped and olefin reduction took place followed by hydrogen evolution. In a gas mixture consisting of propylene, 1-butene, and 1-pentene, the olefins were reduced at rates which decreased with increasing molecular size. These results demonstrate the technical feasibility of combining in one reactor the volatile fatty acid production by anaerobic digestion with chemical catalyst-mediated reductions, using the valuable by-product hydrogen.  相似文献   

6.
Microbial Methanogenesis and Acetate Metabolism in a Meromictic Lake   总被引:10,自引:8,他引:2       下载免费PDF全文
Methanogenesis and the anaerobic metabolism of acetate were examined in the sediment and water column of Knaack Lake, a small biogenic meromictic lake located in central Wisconsin. The lake was sharply stratified during the summer and was anaerobic below a depth of 3 m. Large concentrations (4,000 μmol/liter) of dissolved methane were detected in the bottom waters. A methane concentration maximum occurred at 4 m above the sediment. The production of 14CH4 from 14C-labeled HCOOH, HCO3, and CH3OH and [2-14C]acetate demonstrated microbial methanogenesis in the water column of the lake. The maximum rate of methanogenesis calculated from reduction of H14CO3 by endogenous electron donors in the surface sediment (depth, 22 m) was 7.6 nmol/h per 10 ml and in the water column (depth, 21 m) was 0.6 nmol/h per 10 ml. The methyl group of acetate was simultaneously metabolized to CH4 and CO2 in the anaerobic portions of the lake. Acetate oxidation was greatest in surface waters and decreased with water depth. Acetate was metabolized primarily to methane in the sediments and water immediately above the sediment. Sulfide inhibition studies and temperature activity profiles demonstrated that acetate metabolism was performed by several microbial populations. Sulfide additions (less than 5 μg/ml) to water from 21.5 m stimulated methanogenesis from acetate, but inhibited CO2 production. Sulfate addition (1 mM) had no significant effect on acetate metabolism in water from 21.5 m, whereas nitrate additions (10 to 14,000 μg/liter) completely inhibited methanogenesis and stimulated CO2 formation.  相似文献   

7.
The algal-bacterial mat of a high-sulfate hot spring (Bath Lake) provided an environment in which to compare terminal processes involved in anaerobic decomposition. Sulfate reduction was found to dominate methane production, as indicated by comparison of initial electron flow through the two processes, rapid conversion of [2-14C]acetate to 14CO2 and not to 14CH4, and the lack of rapid reduction of NaH14CO3 to 14CH4. Sulfate reduction was the dominant process at all depth intervals, but a marked decrease of sulfate reduction and sulfate-reducing bacteria was observed with depth. Concurrent methanogenesis was indicated by the presence of viable methanogenic bacteria and very low but detectable rates of methane production. A marked increased in methane production was observed after sulfate depletion despite high concentrations of sulfide (>1.25 mM), indicating that methanogenesis was not inhibited by sulfide in the natural environment. Although a sulfate minimum and sulfide maximum occurred in the region of maximal sulfate reduction, the absence of sulfate depletion in interstitial water suggests that methanogenesis is always severely limited in Bath Lake sediments. Low initial methanogenesis was not due to anaerobic methane oxidation.  相似文献   

8.
Composition of the mixed culture was varied in combined dark-light fermentation of wheat powder starch in order to improve hydrogen gas formation rate and yield. Heat-treated anaerobic sludge and pure culture of Clostridium beijerinckii (DSMZ 791 T ) were combined with two different light fermentation bacteria of Rhodobacter sphaeroides (RS-NRRL and RS-RV) in order to select a more suitable mixture resulting in high hydrogen yield and formation rate. A combination of the anaerobic sludge and RS-NRRL yielded the highest cumulative hydrogen (CHF = 140 ml), the highest yield (0.36 mol H2 mol−1 glucose) and specific hydrogen formation rate (2.5 ml H2 g−1 biomass h−1). During dark fermentation (70 h) hydrogen was produced simultaneously by the dark and light fermentation bacteria using glucose from hydrolyzed starch. However, only light fermentation bacteria produced hydrogen from VFA’s derived from dark fermentation after a long adaptation period.  相似文献   

9.
A three-step biohydrogen production process characterized by efficient anaerobic induction of the formate hydrogen lyase (FHL) of aerobically grown Escherichia coli was established. Using E. coli strain SR13 (fhlA ++, ΔhycA) at a cell density of 8.2 g/l medium in this process, a specific hydrogen productivity (28.0 ± 5.0 mmol h−1 g−1 dry cell) of one order of magnitude lower than we previously reported was realized after 8 h of anaerobic incubation. The reduced productivity was attributed partly to the inhibitory effects of accumulated metabolites on FHL induction. To avoid this inhibition, strain SR14 (SR13 ΔldhA ΔfrdBC) was constructed and used to the effect that specific hydrogen productivity increased 1.3-fold to 37.4 ± 6.9 mmol h−1 g−1. Furthermore, a maximum hydrogen production rate of 144.2 mmol h−1 g−1 was realized when a metabolite excretion system that achieved a dilution rate of 2.0 h−1 was implemented. These results demonstrate that by avoiding anaerobic cultivation altogether, more economical harvesting of hydrogen-producing cells for use in our biohydrogen process was made possible.  相似文献   

10.
In situ biogas upgrading was conducted by introducing H2 directly to the anaerobic reactor. As H2 addition is associated with consumption of the CO2 in the biogas reactor, pH increased to higher than 8.0 when manure alone was used as substrate. By co-digestion of manure with acidic whey, the pH in the anaerobic reactor with the addition of hydrogen could be maintained below 8.0, which did not have inhibition to the anaerobic process. The H2 distribution systems (diffusers with different pore sizes) and liquid mixing intensities were demonstrated to affect the gas-liquid mass transfer of H2 and the biogas composition. The best biogas composition (75:6.6:18.4) was obtained at stirring speed 150 rpm and using ceramic diffuser, while the biogas in the control reactor consisted of CH4 and CO2 at a ratio of 55:45. The consumed hydrogen was almost completely converted to CH4, and there was no significant accumulation of VFA in the effluent. The study showed that addition of hydrogen had positive effect on the methanogenesis, but had no obvious effect on the acetogenesis. Both hydrogenotrophic methanogenic activity and the concentration of coenzyme F420 involved in methanogenesis were increased. The archaeal community was also altered with the addition of hydrogen, and a Methanothermobacter thermautotrophicus related band appeared in a denaturing gradient gel electrophoresis gel from the sample of the reactor with hydrogen addition. Though the addition of hydrogen increased the dissolved hydrogen concentration, the degradation of propionate was still thermodynamically feasible at the reactor conditions.  相似文献   

11.
12.
Summary Membrane inlet mass spectrometry was used to directly measure the concentrations of CH4 and H2 in a mesophilic (37°C) completely mixed, laboratory scale, anaerobic digester, continuously fed at a retention time of 7 days with a glucose (50 mM) mineral salts medium. When the digester was overloaded by an increase in the influent substrate concentration, equivalent to 15.5 kg (COD) m-3 (digester) day-1 the concentrations of H2 and short chain fatty acids increased with a concomitant decline in the pH: following an initial stimulation methanogenesis was inhibited. Regulation of the H2 signal from the mass spectrometer in a closed feedback loop by controlled addition of carbon source under a potential overload condition, enabled the H2 concentration to the controlled around 1M and a high steady state rate of methanogenesis of 42 M min-1 to be maintained; this is equivalent to 1.4 volumes of CH4 per culture volume per day. The hydrogen-dependent control system was also used to prevent inhibition of methanogenesis when the digester was subject to volumetric overloading potentially equivalent to a retention time of 1 day.  相似文献   

13.
Biogas produced by anaerobic digestion, is mainly used in a gas motor for heat and electricity production. However, after removal of CO2, biogas can be upgraded to natural gas quality, giving more utilization possibilities, such as utilization as autogas, or distant utilization by using the existing natural gas grid. The current study presents a new biological method for biogas upgrading in a separate biogas reactor, containing enriched hydrogenotrophic methanogens and fed with biogas and hydrogen. Both mesophilic‐ and thermophilic anaerobic cultures were enriched to convert CO2 to CH4 by addition of H2. Enrichment at thermophilic temperature (55°C) resulted in CO2 and H2 bioconversion rate of 320 mL CH4/(gVSS h), which was more than 60% higher than that under mesophilic temperature (37°C). Different dominant species were found at mesophilic‐ and thermophilic‐enriched cultures, as revealed by PCR–DGGE. Nonetheless, they all belonged to the order Methanobacteriales, which can mediate hydrogenotrophic methanogenesis. Biogas upgrading was then tested in a thermophilic anaerobic reactor under various operation conditions. By continuous addition of hydrogen in the biogas reactor, high degree of biogas upgrading was achieved. The produced biogas had a CH4 content, around 95% at steady‐state, at gas (mixture of biogas and hydrogen) injection rate of 6 L/(L day). The increase of gas injection rate to 12 L/(L day) resulted in the decrease of CH4 content to around 90%. Further study showed that by decreasing the gas–liquid mass transfer by increasing the stirring speed of the mixture the CH4 content was increased to around 95%. Finally, the CH4 content around 90% was achieved in this study with the gas injection rate as high as 24 L/(L day). Biotechnol. Bioeng. 2012; 109: 2729–2736. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
Anaerobic bioreactors that can support simultaneous microbial processes of denitrification and methanogenesis are of interest to nutrient nitrogen removal. However, an important concern is the potential toxicity of nitrate (NO3 ) and nitrite (NO2 ) to methanogenesis. The methanogenic toxicity of the NOx compounds to anaerobic granular biofilms and municipal anaerobic digested sludge with two types of substrates, acetate and hydrogen, was studied. The inhibition was the severest when the NOx compounds were still present in the media (exposure period). During this period, 95% or greater inhibition of methanogenesis was evident at the lowest concentrations of added NO2 tested (7.6–10.2 mg NO2 -N l−1) or 8.3–121 mg NO3 -N l−1 of added NO3 , depending on substrate and inoculum source. The inhibition imparted by NO3 was not due directly to NO3 itself, but instead due to reduced intermediates (e.g., NO2 ) formed during the denitrification process. The toxicity of NOx was found to be reversible after the exposure period. The recovery of activity was nearly complete at low added NOx concentrations; whereas the recovery was only partial at high added NOx concentrations. The recovery is attributed to the metabolism of the NOx compounds. The assay substrate had a large impact on the rate of NO2 metabolism. Hydrogen reduced NO2 slowly such that NO2 accumulated more and as a result, the toxicity was greater compared to acetate as a substrate. The final methane yield was inversely proportional to the amount of NOx compounds added indicating that they were the preferred electron acceptors compared to methanogenesis.  相似文献   

15.
Methanosarcina barkeri and Desulfobacter postgatei are ubiquitous anaerobic bacteria which grow on acetate or acetate plus sulfate, respectively, as sole energy sources. Their apparent K s values for acetate were determined and found to be approximately 0.2 mM for the sulfate-reducing bacterium and 3 mM for the methanogenic bacterium. In mixed cell suspensions of the two bacteria (adjusted to equal V max) the rate of acetate consumption by D. postgatei approached 15-fold the rate of M. barkeri at low acetate concentrations. The apparent inhibition of methanogenesis was of the same order as expected from the different K s value for acetate. Difference in substrate affinities can thus account for the inhibition of methanogenesis from acetate in sulfate-rich environments, where the acetate concentration is well below 1 mM.  相似文献   

16.
Trophic links between fermentation and methanogenesis of soil derived from a methane‐emitting, moderately acidic temperate fen (pH 4.5) were investigated. Initial CO2:CH4 production ratios in anoxic microcosms indicated that methanogenesis was concomitant to other terminal anaerobic processes. Methane production in anoxic microcosms at in situ pH was stimulated by supplemental H2–CO2, formate or methanol; supplemental acetate did not stimulate methanogenesis. Supplemental H2–CO2, formate or methanol also stimulated the formation of acetate, indicating that the fen harbours moderately acid‐tolerant acetogens. Supplemental monosaccharides (glucose, N‐acetylglucosamine and xylose) stimulated the production of CO2, H2, acetate and other fermentation products when methanogenesis was inhibited with 2‐bromoethane sulfonate 20 mM. Glucose stimulated methanogenesis in the absence of BES. Upper soil depths yielded higher anaerobic activities and also higher numbers of cells. Detected archaeal 16S rRNA genes were indicative of H2–CO2‐ and formate‐consuming methanogens (Methanomicrobiaceae), obligate acetoclastic methanogens (Methanosaetaceae) and crenarchaeotes (groups I.1a, I.1c and I.3). Molecular analyses of partial sequences of 16S rRNA genes revealed the presence of Acidobacteria, Nitrospirales, Clamydiales, Clostridiales, Alpha‐, Gamma‐, Deltaproteobacteria and Cyanobacteria. These collective results suggest that this moderately acidic fen harbours phylogenetically diverse, moderately acid tolerant fermenters (both facultative aerobes and obligate anaerobes) that are trophically linked to methanogenesis.  相似文献   

17.
The effects of temperature on rates and pathways of CH4 production and on the abundance and structure of the archaeal community were investigated in acidic peat from a mire in northern Scandinavia (68°N). We monitored the production of CH4 and CO2 over time and measured the turnover of Fe(II), ethanol, and organic acids. All experiments were performed with and without specific inhibitors (2-bromoethanesulfonate [BES] for methanogenesis and CH3F for acetoclastic methanogenesis). The optimum temperature for methanogenesis was 25°C (2.3 μmol CH4 · g [dry weight]−1 · day−1), but the activity was relatively high even at 4°C (0.25 μmol CH4 · g [dry weight]−1 · day−1). The theoretical lower limit for methanogenesis was calculated to be at −5°C. The optimum temperature for growth as revealed by real-time PCR was 25°C for both archaea and bacteria. The population structure of archaea was studied by terminal restriction fragment length polymorphism analysis and remained constant over a wide temperature range. Hydrogenotrophic methanogenesis accounted for about 80% of the total methanogenesis. Most 16S rRNA gene sequences that were affiliated with methanogens and all McrA sequences clustered with the exclusively hydrogenotrophic order Methanobacteriales, correlating with the prevalence of hydrogenotrophic methanogenesis. Fe reduction occurred parallel to methanogenesis and was inhibited by BES, suggesting that methanogens were involved in Fe reduction. Based upon the observed balance of substrates and thermodynamic calculations, we concluded that the ethanol pool was oxidized to acetate by the following two processes: syntrophic oxidation with methanogenesis (i) as an H2 sink and (ii) as a reductant for Fe(III). Acetate accumulated, but a considerable fraction was converted to butyrate, making volatile fatty acids important end products of anaerobic metabolism.  相似文献   

18.
The effects of 2-bromoethanesulfonate, an inhibitor of methanogenesis, on metabolism in sludge from a thermophilic (58°C) anaerobic digestor were studied. It was found from short-term experiments that 1 μmol of 2-bromoethanesulfonate per ml completely inhibited methanogenesis from 14CH3COO, whereas 50 μmol/ml was required for complete inhibition of 14CO2 reduction. When 1 μmol of 2-bromoethanesulfonate per ml was added to actively metabolizing sludge which was then incubated for 24 h. it caused a 60% reduction in methanogenesis and a corresponding increase in acetate accumulation; at 50 μmol/ml it caused complete inhibition of methanogenesis and accumulation of acetate. H2, and ethanol.  相似文献   

19.
The use of an anaerobic digester slurry of cattle waste for the reclamation of acid mine water was examined. When the digester slurry was mixed with acid mine water, anaerobic digestion, including sulfate reduction and methanogenesis, was enhanced. In the mixture of acid mine water and the digester slurry, sulfate reduction proceeded without diminishing methanogenesis. The digester slurry and its supernatant (SDF-sup) showed a significant capacity to act as a strong alkaline reagent, and the pH of the acid mine water was markedly elevated by the addition of the digester slurry of SDF-sup even at the low ratio of 1% (v/v). Precipitation of heavy metals in the acid mine water occurred as the pH was elevated by the addition of SDF-sup. When the digester slurry was added at the ratio of 5% (v/v) to acid mine water which had been pretreated with SDF-sup, the rate of sulfate reduction increased with increasing the concentration of sulfate in the mixture up to about 1,400 mg·l−1. In acid mine water pretreated with SDF-sup and supplemented with the digester slurry at the ratio of 5% (v/v), the maximum amount of sulfate reduced within 20 d of incubation was about 1,000 mg·l−1, and the maximum rate of sulfate reduction was about 120 mg SO42−·l−1·d−1.  相似文献   

20.
Summary The continuously operated suspended growth anaerobic contact system was utilized to estimate the effect of sulfate reduction on the thermophilic (55°C) methane fermentation process. Results indicated that reduction in methanogenesis in the presence of sulfate was due to two separate, but related, processes;i.e. competitive and sulfide inhibition. Although prevention of competitive inhibition would be difficult under normal fermenter operation, sulfide inhibition could be minimized by environmental selection of sulfide tolerant microbial populations through biomass recycle and pH control. Stable fermenter operation was achieved at soluble sulfide concentrations as high as 330 mg/l soluble sulfide. Using batch fermenters, a maximum thermophilic sulfate reduction rate of 3.7 mg SO4 2––S/g volatile solids (VS)-day was estimated. The importance of reporting sulfate reduction rates on a biomass basis is demonstrated by a simple population adjustment kinetic model.This research study was conducted at the Department of Agricultural Engineering, Cornell University, Riley Robb Hall, Ithaca, NY 14853, U.S.A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号