首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent advances in the understanding of plant signaling pathways have opened the way for using elicitor‐induced plant resistance as a tactic for protecting plants against arthropod pests. Four common elicitors of induced responses in tomato, Lycopersicon esculentum Mill. (Solanaceae), were evaluated with regard to phytotoxicity, induction of plant defensive proteins, and effects on population growth and fecundity of a common pest, the green peach aphid, Myzus persicae (Sulzer) (Homoptera: Aphididae). Ethephon and methyl jasmonate (MJ) treatments caused varying degrees of phytotoxicity. Ethephon caused pronounced changes in plant growth form and severe, dose‐dependent negative impacts on plant growth and flowering. Effects with MJ were milder, but still caused temporary inhibition of development, leading to smaller plants and delayed flowering. The commercial elicitors benzothiadiazole (BTH) and harpin did not cause detectable phytotoxicity. The highest doses of ethephon and MJ significantly increased leaf peroxidase (POD) levels but only MJ treatments significantly increased polyphenol oxidase (PPO) levels. BTH and harpin had no detectable effects on POD and PPO. Populations of green peach aphids grew significantly more slowly on plants treated with BTH or MJ than on control plants or plants treated with harpin or ethephon. Slowed aphid population growth on BTH‐treated plants was due to significant reductions in aphid fecundity, although this was independent of changes in time to onset of reproduction or time to death. Aphid fecundity was also reduced on MJ‐treated plants relative to controls, but this difference was not statistically significant, suggesting that other mechanisms are involved in slowing aphid population growth on MJ‐treated plants. Growth of aphid populations on plants treated with a MJ–BTH mixture was reduced almost as much as with treatments of MJ alone, suggesting that antagonism between JA‐dependant and SA‐dependent plant signaling pathways is only mild with regard to induced defenses against aphids.  相似文献   

2.
Plants can recognize the insect elicitors and activate its defense mechanisms. European Corn Borer (ECB; Ostrinia nubilalis) saliva, produced from the labial salivary glands and released through the spinneret, is responsible for inducing direct defenses in host plants. Glucose oxidase (GOX) present in the ECB saliva induced direct defenses in tomato. By contrast, GOX activity in ECB saliva was insufficient to trigger defenses in maize, suggesting that host-specific salivary elicitors are responsible for inducing direct defenses in host plants. Our current study further examined whether ECB saliva can trigger indirect defenses in tomato. Relative expression levels of TERPENE SYNTHASE5 (TPS5) and HYDROPEROXIDE LYASE (HPL), marker for indirect defenses in host plants, were monitored. Quantitative real-time PCR analysis revealed that ECB saliva can induce the expression of TPS5 and HPL, suggesting that salivary signals can induce indirect defenses in addition to the direct defenses. Further experiments are required to identify different ECB elicitors that are responsible for inducing direct and indirect defenses in host plants.  相似文献   

3.
In various plants, defence responses can be induced throughoutthe shoot by localized damage or insect attack. Activation ofsuch systemic defence responses must involve a rapid long-distancesignal of wounding. There is firm evidence that, in the caseof localized heat wounds, systemic signalling occurs by hydraulicdispersal of chemical elicitors. However, more natural wounds(such as those imposed by leaf-biting insects) may trigger onlysmall hydraulic events, and it is not clear whether hydraulicdispersal could account for wound signalling in these cases. It is shown here that partial defoliation offers a method foramplifying wound-induced hydraulic events in tomato. Using thisamplification, it is demonstrated that brief feeding by individualleaf-eating insects triggers substantial hydraulic events. Themass flows associated with these events are shown to be sufficientto drive hydraulic dispersal of elicitors through the tomatoplant. It is concluded that hydraulic dispersal could be ofmajor importance for wound signalling in plants in the naturalenvironment. Key words: Lycopersicon esculentum, Spodoptera lit-toralis, wound signalling, systemic defence responses, hydraulic signals  相似文献   

4.
Plants under attack by pathogens and pests can mount a range of inducible defences, encompassing both chemical and structural changes. Although few reports exist, it appears that plants responding to pathogen or herbivore attack, or chemical defence elicitors, may produce progeny that are better able to defend themselves against attack, compared with progeny from unthreatened or untreated plants. To date, all research on transgenerational effects of biotic stress has been conducted on dicotyledenous plants. We examined the possibility that resistance induced by application of chemical defence elicitors to the monocot plant barley, could be passed on to the progeny. Plants were treated with acibenzolar-S-methyl (ASM) or saccharin, and grain harvested at maturity. Germination was unaffected in seed collected from plants treated with saccharin, while germination was reduced significantly in seed collected from ASM-treated plants. The subsequent growth of the seedlings was not significantly different in any of the treatments. However, plants from parents treated with both ASM or saccharin exhibited significantly enhanced resistance to infection by Rhynchosporium commune, despite not being treated with elicitor themselves. These data hint at the possibility of producing disease-resistant plants by exposing parent plants to chemical elicitors.  相似文献   

5.
Peroxidases (POXs) are actively synthesised under stress conditions and induced by biotic/abiotic elicitors. Their age-regulated expression in plants has been a matter of investigation during recent times. The present study focuses on studying the expression of POX at different stages of growth and variation in its inducibility by aqueous extract of Azadirachta indica (neem) fruits. Tomato plants at 6, 8, 10 and 12 weeks were chosen for the study. The third nodal leaf of each plant was treated with neem fruit extract alone or in combination with Pseudomonas syringae pv. tomato. Sampling was performed at an interval of 24 h up to five days and after two weeks of treatment, from both the treated and distal untreated nodes of the plants. POX activity and its isoforms were analysed. The results demonstrated that POX expression and its inducibility by the biotic inducer (neem fruit extract) varies with age of the plant.  相似文献   

6.
7.
The levels of chitinase activity induced with elicitors in tomato cells have been detected. It was shown that enzymatic activity depended on degree of polymerization and concentration of biotic elicitors.  相似文献   

8.
The effects of chemical and microbial elicitors such as β-aminobutyric acid (BABA), Salicylic acid (SA), and Pseudomonas fluorecens CHAO on hydrogen peroxide generation and activity of the enzymes related to its metabolism, i.e., superoxide dismutase (SOD), guaiacol peroxidase (GPOX), and catalase (CAT) were investigated in tomato roots infected with root-knot nematode (Meloidogyne javanica). Results of this study show that treating the tomato seedlings with the above elicitors significantly reduces the nematode infection level. Among the tested elicitors, BABA has reduced the nematode galls, number of egg masses per plant and number of eggs per individual egg mass more than the others. Additionally, the amount of H2O2, a product of oxidative stress, SOD and GPOX specific activities were significantly increased in the elicitor treated plants in comparison to control. Our observation shows that BABA also increases the H2O2 accumulation and the SOD and GPOX activities more as compared with the other tested elicitors. Such increases have occurred in two phases and maximum levels of them were observed at 5 days after treatment. In contrast with the increase in SOD and GPOX activities, the CAT activity doesnot show any significant increase in treated plants as compared with the control and other tested elicitors. It can be concluded that BABA, SA, and Pseudomonas fluorescens CHAO induce oxidative stress in tomato roots through generation of reactive oxygen species (ROS) and the enzymes related to their metabolism.  相似文献   

9.
Tomato ( Lycopersicon esculentum Mill.) plants of the non-ripening mutant nor (3rd backcross to the normal cultivar Rutgers) were grown under water stress induced in two different ways: a) reduction of water supply and b) increase in transpiration rate by adding kinetin to the nutrient solution. Both drought treatments induced fruits of the non-ripening mutant nor to ripen, that is, the parameters characteristic of ripening – red pigment, taste, pectolytic activity, softening, and the evolution rates of CO2 and ethylene – all increased, although not to the normal level. Such an increase does not normally take place in the nor mutant under control conditions. It is suggested that fruits of the nor mutant can be induced to ripen by any kind of water stress. The induction mechanism is still to be explored.  相似文献   

10.
Sensing of osmotic pressure changes in tomato cells   总被引:8,自引:0,他引:8  
Felix G  Regenass M  Boller T 《Plant physiology》2000,124(3):1169-1180
Cells of tomato (Lycopersicon esculentum) growing in suspension gradually depleted their culture medium and caused a steady decrease in its osmolality. When confronted with a sudden change in medium osmolality (a hypo-osmotic or hyperosmotic shock), respectively, these cells responded with volume changes and stress symptoms such as rapid extracellular alkalinization, efflux of K(+)-ions, and induction of 1-aminocyclopropane-1-carboxylate synthase acid, the key enzyme of ethylene biosynthesis. This array of stress symptoms is well known from cultured plant cells treated with microbial elicitors. Compared with elicitor treatment, induction of responses by hyperosmotic shock was slow and occurred only after increases of approximately 200,000 Pa in osmotic pressure. In contrast, hypo-osmotic shock induced responses without measurable lag and faster than elicitor treatments. Measurable medium alkalinization was induced when medium osmolality was reduced by as little as approximately 10 mosmol, a change corresponding to only approximately 0.2 bar in osmotic pressure. Like treatment with elicitors, hypo-osmotic shock induced specific changes in protein phosphorylations as demonstrated by in vivo labeling with [(33)P]orthophosphate. Exposure of cells to consecutive up- and down-shifts in medium osmolality showed that sensing of osmotic changes occurred within seconds, whereas adaptation to new osmotic conditions proceeded over hours. In conclusion, suspension-cultured plant cells display rapid, easily measurable macroscopic responses to osmotic shock and provide an interesting model system to study osmoregulation, a key process in plant growth and development.  相似文献   

11.
Tomato (Lycopersicon esculentum Mill. cv. Moneymaker) plants have been wounded to induce the accumulation of proteinase-inhibitor proteins (PI proteins) at the local site of injury and systemically in unwounded tissues. To determine the range of genes affected in the wound-response, polysomal mRNA has been isolated from the damaged leaves and from systemically responding leaves over a time-course of 2, 4, 10 and 24 h after wounding. Changes in the pattern of 35S-translation products indicate that the events that occur at the local wound-site are different from those that occur systemically, both with respect to the number of genes that are regulated and the timing of their regulation. In order to compare the effects of wounding and an endogenous systemic signal generated at the wound-site with those of elicitor (proteinase-inhibitor-inducing factor, PIIF) treatment of excised plants, polysomal mRNA has also been isolated from leaves of plants over a time-course of 2, 4, 10 and 24 h after PIIF-treatment. Changes in the pattern of 35S-translation products indicates that the events induced by PIIF resemble those induced by mechanical injury, rather than those induced by the endogenous systemic signal.Abbreviations IFF isoelectric focussing - PI proteins proteinase inhibitor proteins - PIIF proteinase-inhibitor-inducing factor - ssRubisco small subunit of ribulose-1,5-bisphosphate carboxylase  相似文献   

12.
Depolarization of tomato leaf cells by oligogalacturonide elicitors   总被引:5,自引:0,他引:5  
The electrical potential difference (Em) across the plasma membrane of tomato leaf mesophyll cells consists of a cyanide-sensitive component, presumably produced by an H+-ATPase, and a cyanide-insensitive component. Variation of Em between different batches of tissue is mainly caused by variation in the cyanide-sensitive component. Oligogalacturonide elicitors that induce the synthesis of proteinase inhibitors in tomato seedlings depolarize the Em of tomato leaf mesophyll cells. This depolarization closely resembles that caused by cyanide: they are of similar magnitude and vary in a similar manner with variation in the initial Em of different batches of tissue. Treatments with cyanide and with the elicitors have similar effects on the small depolarization caused by KCl at 10 mol m?3. The results suggest that the elicitors depolarize Em by inhibiting the plasma membrane H+-ATPase, but that the detailed mechanism of inhibition by the elicitors is different from that caused by cyanide.  相似文献   

13.
We have characterized, using several types of bioassays, the resistance induced in young tomato plants by feeding of the corn earworm, Helicoverpa zea. Beet armyworm larvae, Spodoptera exigua, and leafminers, Liriomyza trifolii, were used to assay the induced resistance. In whole-plant experiments, damage localized to a single leaflet of fourleaf tomato plants induced a systemic increase in resistance such that beet armyworm larvae confined to previously damaged (induced) plants grew at a rate about half that of larvae raised on control plants and consumed less leaf tissue from induced plants than from control plants. In experiments using excised leaves, beet armyworm larvae suffered increased mortality when reared on leaves from induced plants. The strength of this induced resistance varied spatially relative to the damaged position; moreover, the spatial distribution of induced resistance changed over a three-week period following damage. Other experiments demonstrated that the mechanisms of induced resistance in tomato foliage involves both a decrease in larval preference for and a decrease in the nutritional value of induced foliage. Induction also retarded the oviposition and/or early development of leafminers. Thus, induced resistance has relatively severe effects on the biology of subsequent herbivores. These data should allow us to begin to elucidate cause-effect relationships between induced resistance and induced chemistry in tomato plants.  相似文献   

14.
Phospholipase A (PLA) activity, as measured by the accumulation of (14)C-lysophosphatidylcholine in leaves of tomato plants, increased rapidly and systemically in response to wounding. The increase in PLA activity in the systemic unwounded leaves was biphasic in wild-type tomato plants, peaking at 15 min and again at 60 min, but the second peak of activity was absent in transgenic prosystemin antisense plants. Supplying young excised tomato plants with the polypeptide hormone systemin also caused (14)C-lysophosphatidylcholine to increase to levels similar to those induced by wounding, but the increase in activity persisted for >2 hr. Antagonists of systemin blocked both the release of (14)C-lysophosphatidylcholine and the accumulation of defense proteins in response to systemin. (14)C-lysophosphatidylcholine levels did not increase in response to jasmonic acid. Chemical acylation of the lysophosphatidylcholine produced by wounding, systemin, and oligosaccharide elicitors followed by enzymatic hydrolysis with lipases of known specificities demostrated that the lysophosphatidylcholine is generated by a PLA with specificity for the sn-2 position.  相似文献   

15.
Diffusible IAA and dominance phenomena in fruits of apple and tomato   总被引:3,自引:0,他引:3  
The relationships between indole-3-acetic acid (IAA) diffusing out of the fruit and competition among fruits, and between fruits and shoot tips were investigated using apple ( Malus domestica Borkh. cv. Jonagold) and tomato ( Lycopersicon esculentum Mill.) plants. Dominant fruits always had more diffusible IAA than subordinated, inhibited fruits. Alterations in dominance – by fruit- or shoot tip removal – led to significant changes in diffusible IAA by the remaining fruits. This change could be detected one day after dominance modification.
It is suggested that diffusible IAA is involved in the correlative signal regulating dominance relationship between fruits, and between fruits and shoots in apple and tomato.  相似文献   

16.
In glasshouse tests, sap from plants infected with 15 different isolates of tomato spotted wilt tospovirus (TSWV) from three Australian states was inoculated to nine genotypes of tomato carrying TSWV resistance gene Sw-5 or one of its alleles. A further two resistant tomato genotypes were inoculated with four isolates each. The normal response in resistant genotypes was development of necrotic local lesions in inoculated leaves without systemic invasion, but 22/752 plants also developed systemic reactions in addition to local hypersensitive ones. Using cultures from two of these systemically infected plants and following four cycles of subculture in TSWV resistant tomato plants, two isolates were obtained that gave susceptible type systemic reactions but no necrotic spots in inoculated leaves of resistant tomatoes. When these two isolates, DaWA-1d and ToTAS-1d, were maintained by repeated subculture for 10 successive cycles in Nicotiana glutinosa or a susceptible tomato genotype, they still induced susceptible type systemic reactions when inoculated to resistant tomato plants. They were therefore stable resistance breaking isolates as regards overcoming gene Sw-5. When resistance-breaking isolate DaWA-1ld multiplied together with original isolate DaWA-l in susceptible tomato, it was fully competitive with the original isolate. However, when DaWA-ld and ToTAS-ld were inoculated to TSWV resistant Lycopersicon peruvianum lines PI 128660R and PI 128660S and to TSWV resistant Capsicum chinense lines PI 152225, PI 159236 and AVRDC CO0943, they failed to overcome the resistance, producing only necrotic local lesions without systemic infection. Thus, although the ease of selection, stability and competitive ability of resistance breaking isolates of TSWV is cause for concern, L. peruvianum and C. chinense lines are available which are effective against them. The effectiveness of the resistance to TSWV in nine tomato genotypes was examined in a field experiment. Spread was substantial in the susceptible control genotype infecting 42% of plants. Resistance was ineffective in cv. Bronze Rebel, 26% of plants developing infection. In contrast, it held up well in the other eight resistant genotypes with only 1–3 or no plants of each becoming infected. Accumulated numbers of Thrips tabaci, Frankliniella occidentalis and F. schultzei were closely correlated with TSWV spread.  相似文献   

17.
Cerebrosides A and C, compounds categorized as glycosphingolipids, were isolated in our previous study from the rice blast fungus (Magnaporthe grisea) as novel elicitors which induce the synthesis of rice phytoalexins. In this paper, these cerebroside elicitors showed phytoalexin-inducing activity when applied to plants by spray treatment and also induced the expression of pathogenesis-related (PR) proteins in rice leaves. This elicitor activity of the cerebrosides showed the structural specificity as that for the induction of phytoalexins. Ceramides prepared from the cerebrosides by removal of glucose also showed the elicitor activity even in lower level compared to the cerebrosides. In field experiments, the cerebroside elicitors effectively protected rice plants against the rice blast fungus, an economically devastating agent of disease of rice in Japan. The cerebrosides elicitors protected rice plants from other disease as well and were found to occur in a wide range of different phytopathogens, indicating that cerebrosides function as general elicitors in a wide variety of rice-pathogen interactions.  相似文献   

18.
Salt-tolerant Pokkali rice plants accumulate higher polyamines (PAs) such as spermidine (Spd) and spermine (Spm) in response to salinity stress, while the sensitive cultivar M -1–48 is unable to maintain high titres of these PAs under similar conditions. The effects of the triamine Spd and the tetramine Spm on physiological and biochemical changes in 12-day-old rice seedlings were investigated during salinity stress to determine whether they could protect the sensitive plants from stress effects. At physiological concentrations Spd and Spm significantly prevented the leakage of electrolytes and amino acids from roots and shoots induced by salinity stress. To different degrees they also prevented chlorophyll loss, inhibition of photochemical reactions of photosynthesis as well as downregulation of chloroplast-encoded genes like psbA , psbB , psbE and rbcL , indicating a positive correlation between salt tolerance and accumulation of higher PAs in rice. The inhibitory effect of salinity stress and its reversal by exogenous PAs were more pronounced in the salt-sensitive M -1–48 plants than in the tolerant Pokkali plants.  相似文献   

19.
We have recently detected phosphatidylinositol-4-phosphate (PI4P) in the extracellular medium of tomato cell suspensions. Extracellular PI4P was shown to trigger the activation of defence responses induced by the fungal elicitor xylanase. In this study, by applying a differential centrifugation technique, we found that extracellular PI4P is associated with fractions composed of diverse phospholipids and proteins, which were pelleted from the extracellular medium of tomato cell suspensions grown under basal conditions. Using mass spectrometry, we identified the proteins present in these pelleted fractions. Most of these proteins have previously been characterised as having a role in defence responses. Next, we evaluated whether PI4P could also be detected in an entire plant system. For this, apoplastic fluids of tomato plants grown under basal conditions were analysed using a lipid overlay assay. Interestingly, PI4P could be detected in intercellular fluids obtained from tomato leaflets and xylem sap of tomato plants. By employing electrospray ionisation tandem mass spectrometry (ESI-MS/MS), other phospholipids were also found in intercellular fluids of tomato plants. These had a markedly different profile from the phospholipid pattern identified in entire leaflets. Based on these results, the potential role of extracellular phospholipids in plant intercellular communication is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号