首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using quail-chick parabiosis and the QH1 monoclonal antibody, specific for the endothelial and hematopoietic cells of the quail species, as a marker, we identified circulating endothelial cells in the embryo. In normal conditions, these cells could integrate endothelia in many tissues but their number remained low. When artificial angiogenic responses were created, i.e., in grafting experiments on the chorioallantoic membrane or wound healing, the circulating endothelial cells were rapidly mobilized to reach the embryonic regions submitted to these processes and their number dramatically increased. Interestingly, 1) on one hand, these circulating endothelial cells were present early in ontogeny, before the third embryonic day in the quail embryo; 2) on the other hand, their mobilization was not dependent on the presence of the bone marrow since it was effective before the differentiation of this tissue.  相似文献   

2.
Eosinophils play a crucial role in allergic reactions and asthma. They are also involved in responses against parasites, in autoimmune and neoplastic diseases, and in fibroses. There is increasing evidence that angiogenesis plays an important role in these processes. Since eosinophils are known to produce angiogenic mediators, we have hypothesized a direct contribution of these cells to angiogenesis. The effect of human peripheral blood eosinophil sonicates on rat aortic endothelial cell proliferation (in vitro), rat aorta sprouting (ex vivo) and angiogenesis in the chick embryo chorioallantoic membrane (in vivo) have been investigated. To determine whether eosinophil-derived vascular endothelial growth factor influences the eosinophil pro-angiogenic activity, eosinophil sonicates were incubated with anti-vascular endothelial growth factor antibodies and then added to the chorioallantoic membrane. Vascular endothelial growth factor mRNA expression and vascular endothelial growth factor receptor density on the endothelial cells were also evaluated. Eosinophils were found to enhance endothelial cell proliferation and to induce a strong angiogenic response both in the aorta rings and in the chorioallantoic membrane assays. Pre-incubation of eosinophil sonicates with anti-vascular endothelial growth factor antibodies partially reduced the angiogenic response of these cells in the chorioallantoic membrane. Eosinophils also increased vascular endothelial growth factor mRNA production on endothelial cells. Eosinophils are able to induce angiogenesis and this effect is partially mediated by their pre-formed vascular endothelial growth factor. This strongly suggests an important role of eosinophils in angiogenesis-associated diseases such as asthma.  相似文献   

3.
Notch4 is a member of the Notch family of transmembrane receptors that is expressed primarily on endothelial cells. Activation of Notch in various cell systems has been shown to regulate cell fate decisions. The sprouting of endothelial cells from microvessels, or angiogenesis, involves the modulation of the endothelial cell phenotype. Based on the function of other Notch family members and the expression pattern of Notch4, we postulated that Notch4 activation would modulate angiogenesis. Using an in vitro endothelial-sprouting assay, we show that expression of constitutively active Notch4 in human dermal microvascular endothelial cells (HMEC-1) inhibits endothelial sprouting. We also show that activated Notch4 inhibits vascular endothelial growth factor (VEGF)-induced angiogenesis in the chick chorioallantoic membrane in vivo. Activated Notch4 does not inhibit HMEC-1 proliferation or migration through fibrinogen. However, migration through collagen is inhibited. Our data show that Notch4 cells exhibit increased beta1-integrin-mediated adhesion to collagen. HMEC-1 expressing activated Notch4 do not have increased surface expression of beta 1-integrins. Rather, we demonstrate that Notch4-expressing cells display beta1-integrin in an active, high-affinity conformation. Furthermore, using function-activating beta 1-integrin antibodies, we demonstrate that activation of beta1-integrins is sufficient to inhibit VEGF-induced endothelial sprouting in vitro and angiogenesis in vivo. Our findings suggest that constitutive Notch4 activation in endothelial cells inhibits angiogenesis in part by promoting beta 1-integrin-mediated adhesion to the underlying matrix.  相似文献   

4.
SPARC is a secreted glycoprotein that has been shown to disrupt focal adhesions and to regulate the proliferation of endothelial cells in vitro. Moreover, peptides resulting from the proteolysis of SPARC exhibit angiogenic activity. Here we describe the temporal synthesis, turnover, and angiogenic potential of SPARC in the chicken chorioallantoic membrane. Confocal immunofluorescence microscopy revealed specific expression of SPARC protein in endothelial cells, and significantly higher levels of SPARC were observed in smaller newly formed blood vessels in comparison to larger, developmentally older vessels. SPARC mRNA was detected at the earliest stages of chorioallantoic membrane morphogenesis and reached maximal levels at day 13 of embryonic development. Interestingly, steady-state levels of SPARC mRNA did not correlate directly with protein accumulation; moreover, the protein appeared to undergo limited degradation during days 10-15. Incubation of [125I]-SPARC with chorioallantoic membranes of different developmental ages confirmed that extracellular proteolysis occurred during days 9-15, but not at later stages (e.g., days 17-21). Comparison of peptides produced by incubation with chorioallantoic membranes with those generated by plasmin showed an identical pattern of proteolysis. Plasmin activity was present throughout development, and in situ zymography identified sites of plasminogen activator activity that corresponded to areas exhibiting high levels of SPARC expression. Synthetic peptides from a plasmin-sensitive region of SPARC, between amino acids 113-130, stimulated angiogenesis in the chorioallantoic membrane in a dose-dependent manner; in contrast, intact SPARC was inactive in similar assays. We have shown that SPARC is expressed in endothelial cells of newly formed blood vessels in a manner that is both temporally and spatially restricted. Between days 9 and 15 of chorioallantoic membrane development, the protein undergoes proteolytic cleavage that is mediated, in part, by plasmin. SPARC peptides released specifically by plasmin induce angiogenesis in vivo. We therefore propose that SPARC acts as an intrinsic regulator of angiogenesis in vivo.  相似文献   

5.
The carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), a member of the immunoglobulin superfamily, is expressed in microvessels of proliferating tissues such as endometrium, in tissues after wounding, and in solid human tumors. In microvascular human endothelial cells, purified native and recombinant CEACAM1 stimulates proliferation, chemotaxis, and tube formation. In the chorioallantoic membrane of the chicken, CEACAM1 induces angiogenesis. The angiogenic effects of CEACAM1 are additive to those of the vascular endothelial growth factor (VEGF). The expression of CEACAM1 is up-regulated by VEGF, and VEGF-induced in vitro tube formation is blocked completely by a monoclonal CEACAM1 antibody. These findings indicate that CEACAM1 is an angiogenic factor and an effector of VEGF.  相似文献   

6.
Embryonic mouse kidneys induce angiogenesis when transplanted on the quail chorioallantoic membrane (Ekblom, P., H. Sariola, M. Karkinen, and L. Saxén, 1982, Cell Differ., 11:35-39). In these experiments all blood vessels were derived from the quail host, suggesting that kidney endothelium is derived from outside blood vessels. We have now analyzed whether kidney angiogenesis is regulated by kidney-derived soluble factors that stimulate the growth of new blood vessels. In the rabbit cornea, 11-d embryonic kidneys induced angiogenesis, whereas uninduced 11-d kidney mesenchymes did not. To characterize and purify this activity from an embryonic organ, we dissected between 600 and 1,000 14-17-d-old embryonic mouse kidneys for each purification experiment. Growth factor activity for capillary endothelial cells was found to bind to heparin-Sepharose and eluted at 0.9-1.1 M sodium chloride. Gel filtration revealed a molecular weight of 16,000-20,000 of this factor. A major 18,000-mol-wt band was seen after gel electrophoresis and silver staining of partially purified growth factor material. The chromatographed factor is mitogenic for endothelial cells but not for smooth muscle cells and stimulates angiogenesis in vivo in the rabbit cornea. Adult kidneys contained two heparin-binding endothelial cell growth factors. The differentiation-dependent production of an angiogenesis factor by the embryonic kidney suggests an important role of angiogenesis in organogenesis.  相似文献   

7.
Endothelial cells respond to hypoxic changes with resultant accumulation of several metabolites and switch over to angiogenic phenotype. Although certain intermediates of glycolytic and oxidative metabolic pathways have been known to affect angiogenesis, the effect of citrate, which accumulates in certain tumors, on angiogenesis is not known. Therefore, the effect of citrate on angiogenesis was studied using different model systems. Increased vascularization in chorioallantoic membrane assay, increased endothelial sprouting in rat aortic rings, and increased expression of CD31, E-selectin in endothelial cells suggested a possible proangiogenic effect of citrate. Upregulation of angiogenic factors such as vascular endothelial growth factor and fibroblast growth factor suggested that the effect of citrate involves modulation of expression of angiogenic growth factors. LY 294002, an inhibitor of PI3K–Akt pathway, and wortmannin, an inhibitor of Akt pathway, reversed the effect of citrate in human umbilical vein endothelial cells. Citrate induced significant upregulation and activation of Akt in endothelial cells. Rapamycin, an inhibitor of mTOR, also reversed the effect of citrate in human umbilical vein endothelial cells and sprouting of aortic rings suggesting that the angiogenic effect of citrate involves activation of PI3K–Akt–mTOR pathway.  相似文献   

8.
To gain insight into how a naturally occurring scaffold composed of extracellular matrix (ECM) proteins provides directional guidance for capillary sprouting, we examined angiogenesis in whole-mount specimens of rat mesentery. Angiogenesis was studied in response to normal maturation, the injection of a mast cell degranulating substance (compound 48/80), and mild wounding. Confocal microscopy of specimens immunolabeled for elastin revealed a network of crosslinked elastic fibers with a density of 140.8 +/- 37 mm of fiber/mm(2) tissue. Fiber diameters ranged from 180 to 1400 nm, with a mean value of 710 +/- 330 nm. Capillary sprouts contained CD31- and OX-43-positive endothelial cells as well as desmin-positive pericytes. During normal maturation, leading endothelial cells and pericytes were in contact and aligned with an elastic fiber in approximately 80-90% of all sprouts. In wounding and compound 48/80-treated specimens, in which angiogenesis was markedly increased, leading endothelial cells remained in contact and aligned with elastic fibers in approximately 60-80% of all sprouts. These observations indicate that elastic fibers are used for endothelial and pericyte migration during capillary sprouting in rat mesentery. The composition of this elastic fiber matrix may provide important clues for the development of tissue-engineered scaffolds that support and directionally guide angiogenesis.  相似文献   

9.
The effects of Friend erythroleukemia cells on angiogenesis were studied in chick embryo chorioallantoic membrane assay and in human umbilical vein endothelial cells. In chorioallantoic membrane assay, the conditioned medium of Friend cells stimulated in vivo angiogenesis to an extent comparable to that observed with Prostaglandin El, used as positive control. Prostaglandin El added to conditioned medium of Friend cells did not further increase angiogenesis. Conditioned medium of Friend erythroleukemia cells also stimulated proliferation of human umbilical vein endothelial cells to an extent comparable to that observed with fetal bovine serum, used as positive control. Conditioned medium and fetal bovine serum together did not affect human umbilical vein endothelial cells proliferation, as compared to that observed when tested separately. These results seem to indicate that Friend erythroleukemia cells produce and secrete factors stimulating angiogenesis. These findings extend and confirm the hypothesis that successful angiogenesis is necessary for development of leukemias.  相似文献   

10.
Endothelial cells are known to bind to laminin, and two peptides derived from the laminin A (CTFALRGDNP) and B1 (CDPGYIGSR) chains block the capillary-like tube formation on a laminin-rich basement membrane matrix, Matrigel. In the present study, we have used various in vitro and in vivo assays to investigate the angiogenic-biologic effects of a third active site in the laminin A chain, CSRARKQAASIKVAVSADR (designated PA22-2) on endothelial cells. The SIKVAV-containing peptide was as active as the YIGSR-containing peptide for endothelial cell attachment but was less active than either the RGD-containing peptide or intact laminin. Endothelial cells seeded on this peptide appeared fibroblastic with many extended processes, unlike the normal cobblestone morphology observed on tissue culture plastic. In addition, in contrast to normal tube formation on Matrigel, short irregular structures formed, some of which penetrated the matrix and sprouting was more apparent. Analysis of endothelial cell conditioned media of cells cultured in the presence of this peptide indicated degradation of the Matrigel and zymograms demonstrated active collagenase IV (gelatinase) at 68 and 62 Kd. A murine in vivo angiogenesis assay and the chick yolk sac/chorioallantoic membrane assays with the peptide demonstrated increased endothelial cell mobilization, capillary branching, and vessel formation. These data suggest that the -SIKVAV-site may play an important role in initiating branching and formation of new capillaries from the parent vessels, a behavior that is observed in vivo in response to tumor growth or in the normal vascular response to injury.  相似文献   

11.
12.
Plasminogen-related protein B (PRP-B) closely resembles the N-terminal plasminogen activation peptide, which is released from plasminogen during conversion to plasmin. We have previously demonstrated that the steady-state level of mRNA encoding PRP-B is increased within tumor tissues, and that recombinant PRP-B antagonizes neoplastic growth when administered systemically to mice harboring tumors, but no insights into the cell targets of PRP-B have been presented. Employing serum-free medium optimized for culturing human endothelial or smooth muscle cells, we show that recombinant PRP-B inhibits basic fibroblast growth factor-dependent cell migration for both cell types, as well as tube formation of endothelial cells. Comparison with the angiogenesis inhibitors angiostatin and endostatin revealed similar results. Recombinant PRP-B is effective in promoting cell attachment of endothelial and smooth muscle cells, and antibody interference experiments reveal that the interaction of recombinant PRP-B with endothelial cells is mediated at least in part by alpha(v)-containing integrins. Inhibition of angiogenesis in vivo by PRP-B was demonstrated in the chicken chorioallantoic membrane assay. PRP-B and other antiangiogenic molecules may elicit metabolic perturbations in endothelial cells as well as perivascular mesenchymal cells such as smooth muscle cells and pericytes.  相似文献   

13.
Adipose tissue is highly vascularized and requires the angiogenic properties for its mass growth. Visfatin has been recently characterized as a novel adipokine, which is preferentially produced by adipose tissue. In this study, we report that visfatin potently stimulates in vivo neovascularization in chick chorioallantoic membrane and mouse Matrigel plug. We also demonstrate that visfatin activates migration, invasion, and tube formation in human umbilical vein endothelial cells (HUVECs). Moreover, visfatin evokes activation of the extracellular signal-regulated kinase 1/2 (ERK1/2) in endothelial cells, which is closely linked to angiogenesis. Inhibition of ERK activation markedly decreases visfatin-induced tube formation of HUVECs and visfatin-stimulated endothelial cell sprouting from rat aortic rings. Taken together, these results demonstrate that visfatin promotes angiogenesis via activation of mitogen-activated protein kinase ERK-dependent pathway and suggest that visfatin may play important roles in various pathophysiological angiogenesis including adipose tissue angiogenesis.  相似文献   

14.
Hwang J  Kim CW  Son KN  Han KY  Lee KH  Kleinman HK  Ko J  Na DS  Kwon BS  Gho YS  Kim J 《FEBS letters》2004,570(1-3):47-51
CCL15 is a novel human CC chemokine and exerts its biological activities on immune cells through CCR1 and CCR3. Because a number of chemokines induce angiogenesis and endothelial cells express CCR1 and CCR3, we investigated the angiogenic activity of CCL15. Both CCL15(1-92) and N-terminal truncated CCL15(25-92) stimulate the chemotactic endothelial cell migration and differentiation, but CCL15(25-92) is at least 100-fold more potent than CCL15(1-92). Treatment with pertussis toxin (PTX), with anti-CCR1, or with anti-CCR3 antibody inhibits the CCL15(25-92)-induced endothelial cell migration. CCL15(25-92) also stimulates sprouting of vessels from aortic rings and mediates angiogenesis in the chick chorioallantoic membrane assay. Our findings demonstrate that CCL15(25-92) has in vitro and in vivo angiogenic activity, and suggest roles of the chemokine in angiogenesis.  相似文献   

15.
People have known that autophagy plays a very important role in many physiological and pathological events. But the role of autophagy on embryonic angiogenesis still remains obscure. In this study, we demonstrated that Atg7, Atg8 and Beclin1 were expressed in the plexus vessels of angiogenesis at chick yolk sac membrane and chorioallantoic membrane. Interfering in autophagy with autophagy inducer or inhibitor could restrict the angiogenesis in vivo, which might be driven by the disorder of angiogenesis-related gene expressions, and also lead to embryonic hemorrhage, which was due to imperfection cell junctions in endothelial cells including abnormal expressions of tight junction, adheren junction and desmosome genes. Using HUVECs, we revealed that cell viability and migration ability changed with the alteration of cell autophagy exposed to RAPA or 3-MA. Interestingly, tube formation assay showed that HUVECs ability of tube formation altered with the change of Atg5, Atg7 and Atg8 manipulated by the transfection of their corresponding siRNA or plasmids. Moreover, the lost cell polarity labeled by F-actin and the absenced β-catenin in RAPA-treated and 3-MA-treated cell membrane implied intracellular cytoskeleton alteration was induced by the activation and depression of autophagy. Taken together, our current experimental data reveal that autophagy is really involved in regulating angiogenesis during embryo development.  相似文献   

16.
The yolk splanchnopleure and chorioallantoic membrane of oviparous reptiles transport calcium from the yolk and eggshell to the developing embryo. Among oviparous amniotes, the mechanism of calcium mobilization to embryos has been studied only in domestic fowl, in which the mechanism of calcium transport of the yolk splanchnopleure differs from the chorioallantoic membrane. Transport of calcium is facilitated by calbindin-D(28K) in endodermal cells of the yolk splanchnopleure of chickens but the chorioallantoic membrane does not express calbindin-D(28K). We used immunoblotting to assay for calbindin-D(28K) expression in yolk splanchnopleure and chorioallantoic membrane of the corn snake, Elaphe guttata, to test the hypothesis that the mechanism of calcium transport by extraembryonic membranes of snakes is similar to birds. High calbindin-D(28K) expression was detected in samples of yolk splanchnopleure and chorioallantoic membrane during late embryonic stages. We conclude that calbindin-D(28K) is expressed in these extraembryonic membranes to facilitate transport of calcium and that the mechanism of calcium transport of the chorioallantoic membrane of the corn snake differs from that of the chicken. Further, we conclude that calbindin-D(28K) expression is developmentally regulated and increases during later embryonic stages in the corn snake.  相似文献   

17.
Angiogenesis is an essential requirement for embryonic development and adult homeostasis. Its deregulation is a key feature of numerous pathologies and many studies have shown that members of the transforming growth factor beta (TGF‐β) family of proteins play important roles in angiogenesis during development and disease. Betaglycan (BG), also known as TGF‐β receptor type III, is a TGF‐β coreceptor essential for mice embryonic development but its role in angiogenesis has not been described. We have cloned the cDNA encoding zebrafish BG, a TGF‐β‐binding membrane proteoglycan that showed a dynamic expression pattern in zebrafish embryos, including the notochord and cells adjacent to developing vessels. Injection of antisense morpholinos decreased BG protein levels and morphant embryos exhibited impaired angiogenesis that was rescued by coinjection with rat BG mRNA. In vivo time‐lapse microscopy revealed that BG deficiency differentially affected arterial and venous angiogenesis: morphants showed impaired pathfinding of intersegmental vessels migrating from dorsal aorta, while endothelial cells originating from the caudal vein displayed sprouting and migration defects. Our results reveal a new role for BG during embryonic angiogenesis in zebrafish, which has not been described in mammals and pose interesting questions about the molecular machinery regulating angiogenesis in different vertebrates. genesis 53:583–603, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

18.
19.
Increased numbers of submucosal vessels are a consistent pathologic component of asthmatic airway remodeling. However, the relationship between new vessel formation and asthmatic inflammatory response is unknown. We hypothesized that angiogenesis is a primary event during the initiation of airway inflammation and is linked to the recruitment of bone marrow-derived endothelial progenitor cells (EPC). To test this hypothesis, circulating EPC and EPC-derived endothelial cell colony formation of individuals with asthma or allergic rhinitis and health controls was evaluated. Circulating EPC were increased in asthma, highly proliferative, and exhibited enhanced incorporation into endothelial cell tubes as compared with controls. In an acute allergen challenge murine asthma model, EPC mobilization occurred within hours of challenge and mobilized EPC were selectively recruited into the challenged lungs of sensitized animals, but not into other organs. EPC recruitment was Th1 and Th2 dependent and was temporally associated with an increased microvessel density that was noted within 48 h of allergen challenge, indicating an early switch to an angiogenic lung environment. A chronic allergen challenge model provided evidence that EPC recruitment to the lung persisted and was associated with increasing microvessel density over time. Thus, a Th1- and Th2-dependent angiogenic switch with EPC mobilization, recruitment, and increased lung vessel formation occurs early but becomes a sustained and cumulative component of the allergen-induced asthmatic response.  相似文献   

20.
Vasculogenesis and angiogenesis in embryonic-stem-cell-derived embryoid bodies   总被引:48,自引:0,他引:48  
Embryonic stem cells (ESC) have been established previously from the inner cell mass cells of mouse blastocysts. In suspension culture, they spontaneously differentiate to blood-island-containing cystic embryoid bodies (CEB). The development of blood vessels from in situ differentiating endothelial cells of blood islands, a process which we call vasculogenesis, was induced by injecting ESC into the peritoneal cavity of syngeneic mice. In the peritoneum, fusion of blood islands and formation of an in vivo-like primary capillary plexus occurred. Transplantation of ESC and ESC-derived complex and cystic embryoid bodies (ESC-CEB) onto the quail chorioallantoic membrane (CAM) induced an angiogenic response, which was directed by nonyolk sac endoderm structures. Neither yolk sac endoderm from ESC-CEB nor normal mouse yolk sac tissue induced angiogenesis on the quail CAM. Extracts from ESC-CEB stimulated the proliferation of capillary endothelial cells in vitro. Mitogenic activity increase during in vitro culture and differentiation of ESC. Almost all growth factor activity was associated with the cells. The ESC-CEB derived endothelial cell growth factor bound to heparin-sepharose. The identification of acidic fibroblast growth factor (FGF)in heparin-sepharose-purified material was accomplished by immunoblot experiments involving antibodies against acidic and basic FGF. We conclude that vasculogenesis, the development of blood vessels from in situ differentiating endothelial cells, and angiogenesis, the sprouting of capillaries from preexisting vessels are very early events during embryogenesis which can be studied using ESC differentiating in vitro. Our results suggest that vasculogenesis and angiogenesis are differently regulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号