首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Highly purified branched-chain 2-oxo acid dehydrogenase complex (BCOADC) oxidizes 4-methylthio-2-oxobutyrate and 2-oxobutyrate, with Km values of 67 microM and 18 microM respectively. The Vmax. for oxidation of these substrates is 27% and 53% respectively of that for 3-methyl-2-oxobutyrate. Highly purified pyruvate dehydrogenase complex (PDC) oxidizes 2-oxobutyrate (Km 100 microM; Vmax. 49% of that for pyruvate) but not 4-methylthio-2-oxobutyrate, whereas 2-oxoglutarate dehydrogenase complex will not utilize either 2-oxo acid as substrate. BCOADC kinase is inhibited by both 4-methylthio-2-oxobutyrate and 2-oxobutyrate, with half-maximal inhibition by 45 microM and 50 microM respectively. Phosphorylation of BCOADC in isolated adipocytes is inhibited by both 4-methylthio-2-oxobutyrate and 2-oxobutyrate, consistent with their inhibitory action of BCOADC kinase. Phosphorylation of PDC is decreased by 2-oxobutyrate, but not by 4-methylthio-2-oxobutyrate.  相似文献   

2.
1. Livers from fed rats were perfused in situ with whole rat blood containing glucose labelled uniformly with (14)C and specifically with (3)H at positions 2, 3 or 6. 2. When ethanol was infused at a concentration of 24mumol/ml of blood the rate of utilization was 2.8mumol/min per g of liver. 3. Ethanol infusion raised perfusate glucose concentrations and caused a 2.5-fold increase in hepatic glucose output. 4. Final blood lactate concentrations were decreased in ethanol-infused livers, but the mean uptake of lactate from erythrocyte glycolysis was unaffected. 5. Production of ketone bodies (3-hydroxybutyrate+3-oxobutyrate) and the ratio [3-hydroxybutyrate]/[3-oxobutyrate] were raised by ethanol. 6. Formation of (3)H(2)O from specifically (3)H-labelled glucoses increased in the order [6-(3)H]<[3-(3)H]<[2-(3)H]. Production of (3)H(2)O from [2-(3)H]glucose was significantly greater than that from [3-(3)H]glucose in both control and ethanol-infused livers. Ethanol significantly decreased (3)H(2)O formation from all [(3)H]glucoses. 7. Liver glycogen content was unaffected by ethanol infusion. 8. Production of very-low-density lipoprotein triacylglycerols was inhibited by ethanol and there was a small increase in liver triacylglycerols. Very-low-density-lipoprotein secretion was negatively correlated with the ratio [3-hydroxybutyrate]/[3-oxobutyrate]. Perfusate fatty acid concentrations and molar composition were unaffected by perfusion with ethanol. 9. Ethanol decreased the incorporation of [U-(14)C]glucose into fatty acids and cholesterol. 10. The concentration of total plasma amino acids was unchanged by ethanol, but the concentrations of alanine and glycine were decreased and ([glutamate]+[glutamine]) was raised. 11. It is proposed that the observed effects of ethanol on carbohydrate metabolism are due to an increased conversion of lactate into glucose, possibly by inhibition of pyruvate dehydrogenase. The increase in gluconeogenesis is accompanied by diminished substrate cycling at glucose-glucose 6-phosphate and at fructose 6-phosphate-fructose 1,6-bisphosphate.  相似文献   

3.
A method is presented for the preparation of human heart lactate dehydrogenase (l-lactate-NAD(+) oxidoreductase; EC 1.1.1.27) isoenzyme 1; this involves the use of polyacrylamide-gel electrophoresis as a preparative step. The yield was about 10% with a final specific activity of 220 units/mg of protein, one unit being defined as the amount of enzyme catalysing the oxidation of 1mumol of NADH/min at 25 degrees C, in the presence of 0.33mm-pyruvate. The crystalline preparation contained less than 2% of the other isoenzymes, was homogeneous in the ultracentrifuge and showed only a trace of protein contamination on polyacrylamide-gel electrophoresis. Some properties of the crystalline isoenzyme are reported; E(1%) (1cm)=13.2 at 280nm, s(0) (20,w)=7.43S, pI=4.6, and the apparent K(m) for pyruvate=1.02x10(-4)m. The human isoenzyme and the isoenzyme from pig heart differ with respect to amino acid composition, electrophoretic mobility and solubility. It is possible that these differences do not involve the active site, or sites, but are due to changes in amino acid residues elsewhere in the molecule. The importance of purified human LDH-1 isoenzyme with regard to enzyme radioimmunoassay is emphasized.  相似文献   

4.
In isolated perfused rat liver, added 4-methyl-thio-2-oxobutyrate and phenylpyruvate are rapidly transaminated to the corresponding amino acids with glutamine, the latter being supplied via the portal vein or by endogenous synthesis. With portal glutamine concentrations below 5mM and in the presence of a oxo-acid acceptor, the flux through glutamine transaminases exceeded the ammonium ion-stimulated glutaminase flux. 4-Methylthio-2-oxobutyrate-induced extra glutamine uptake was not dependent on the perfusate pH in the range of pH 7 to 8. During glutamine/4-methylthio-2-oxobutyrate transamination, the amide nitrogen of glutamine is fully recovered as glutamate, ammonia, urea and alanine. Oxoglutarate formed by omega-amidase activity is released as glutamate or oxidized by oxoglutarate dehydrogenase. alpha-Cyanocinnamate, the inhibitor of the monocarboxylate translocator in the mitochondrial membrane inhibited 4-methylthio-2-oxobutyrate-induced glutamine uptake and methionine release by about 30%. This might indicate that about 2/3 of glutamine transaminase flux is cytosolic. alpha-Cyanocinnamate inhibited 4-methylthio-2-oxobutyrate-induced glutamate efflux by about 90%. Stimulation of flux through glutamine transaminases is accompanied by a 70-80% inhibition of glutaminase flux. This is not explained by a direct inhibition of glutaminase by 4-methylthio-2-oxobutyrate but by a substrate competition between glutaminase and glutamine transaminases. 4-Methylthio-2-oxobutyrate decreases glutamine release by the liver due to withdrawal by transamination. The oxo acid itself is without effect on glutamine synthetase flux. With respect to hepatocyte heterogeneity there is no evidence for a zonal distribution of glutamine transaminase activities, as it has been shown for glutamine synthetase and glutaminase activities.  相似文献   

5.
Transient-kinetic studies of pig muscle lactate dehydrogenase   总被引:9,自引:8,他引:1  
1. The very fast pre-steady-state formation of NADH catalysed by pig M(4) lactate dehydrogenase was equivalent to the enzyme-site concentration at pH values greater than 8.0 and to one-half the site concentration at pH6.8. 2. The rate of dissociation of NADH from the enzyme at pH8.0 (450s(-1)) in the absence of other substrates is faster than the steady-state oxidation of lactate (80s(-1)). The latter process is therefore controlled by a step before NADH dissociation but subsequent to the hydride transfer. 3. The oxidation of enzyme-NADH by excess of pyruvate was studied as a first-order process at pH9.0. There was no effect of NADD on this reaction and it was concluded that the ternary complex undergoes a rate-limiting change before the hydride-transfer step. 4. Some conclusions about the reactions catalysed by the M(4) isoenzyme were drawn from a comparison of these results with those obtained with the H(4) isoenzyme and liver alcohol dehydrogenase.  相似文献   

6.
An NADP+ —dependent reversible 3-hydroxycarboxylate oxidoreductase present in Clostridium tyrobutyricum has been purified. As judged by gel electrophoresis the enzyme was pure after a 940-fold enrichment by four chromatographic steps. Its molecular mass was estimated to be 40–43 kDa. The enzyme was most active at pH 4.5 in the reduction of 3-oxobutyrate. Other substrates were 3-oxovalerate, 3-oxocaproate, 3-oxoisocaproate and 4-chloro-3-oxobutyrate. Except for the latter all substrates were converted enantioselectively to (S)-3-hydroxy acids in the presence of NADPH. 4-Chloro-3-oxobutyrate was reduced to the (R)-3-hydroxy acid. The specific activity of the enzyme was about 1400 mol min–1 mg–1 protein for the reduction of 3-oxobutyrate at pH 5.0. The Michaelis constant (K m) values for 3-oxobutyrate, 3-oxovalerate and 3-oxocaproate were determined to be 0.22, 1.6 and 3.0 mM, respectively. The K m values for dehydrogenation of (S)-3-hydroxybutyrate, (S)-3-hydroxyvalerate and (S)-3-hydroxycaproate were found to be 2.6, 1.1 and 5.2 mM, respectively. The identity of 43 of the first 45 N-terminal amino acid residues has been determined. So far such enzyme activities have been described in eucaryotes only.Dedicated to Prof. A. Trebst on the occasion of his 65th birthday  相似文献   

7.
Ternary complexes of M4 and H4 isoenzymes of porcine lactate dehydrogenase have been crystallized, the M4 isoenzyme in space group P22121 with one half molecule per asymmetric unit, and the H4 isoenzyme in space group C2 with one whole molecule per asymmetric unit. The orientation and position of the tetramers in their unit cells have been determined by X-ray analysis. Rotation function results comparing the ternary complexes of the pig M4 isoenzyme with the known structure of the dogfish M4 enzyme not only defined the direction but also permitted recognition of the individual P, Q and R molecular 2-fold axes. The position of the molecular center was determined by placing a properly oriented dogfish M4 lactate dehydrogenase electron density into the pig muscle cell. Structure factors were calculated as the molecular center was varied along the common crystallographic and molecular 2-fold axis and compared with observed amplitudes. Precession photographs of the three major zones of the monoclinic pig H4 isoenzyme exhibited striking similarities to the corresponding zones of the orthorhombio pig M4 isoenzyme, in spite of the differences in space groups. These similarities permit the determination of approximate phases from the implied orientation and position of the pig H4 lactate dehydrogenase molecule in its monoclinic cell.  相似文献   

8.
The activity of lactate dehydrogenase (EC 1.1.1.27) in normal human sperm lysates and in human heart and liver homogenates was determined by using a variety of 2-oxoacids as substrates. Sperm preparations were active with pyruvate, 2-oxobutanoate, 2-oxopentanoate and 2-oxohexanoate, while heart and liver extracts utilized only pyruvate and 2-oxobutanoate. Selective staining after gel electrophoresis indicated that the fraction corresponding to lactate dehydrogenase C4, the sperm-specific isoenzyme, was responsible for the utilization of substrates with a linear chain of 3 to 6 carbon atoms. The use of 5 mM 2-oxohexanoate allowed the selective determination of isoenzyme C4 in preparations containing different lactate dehydrogenase molecular forms.  相似文献   

9.
The benzyl 2-methyl-3-hydroxybutyrate dehydrogenase was purified from the cells of baker’s yeast by streptomycin treatment, Sephadex G-50 gel filtration, SP-Sephadex C-50 chromatography, and Toyopearl HW-60F gel filtration. The purified enzyme preparation was homogeneous and the molecular weight was about 31,000 to 32,000. The enzyme was NADPH-dependent and its maximum activity was at pH 7.0 and 45°C. It was stable between pH 6 and 9. The Km values at pH 7.0 were 0.42 mM for benzyl 2-methyl-3-oxobutyrate (1) and 4.2 mM for α-methyl β-hydroxy ester [syn-(2) and anti-(3)]. This enzyme reduced only benzyl 2-methyl-3-oxobutyrate (1) but had no effect on other synthetic substrates.

The reduced products [syn-(2) and anti(3)] produced by the purified enzyme were identified by 400 MHz NMR.  相似文献   

10.
1. Cells present in normal human urine contain 5-10% of the total lactate dehydrogenase excreted. The enzyme released from these cells by ultrasonication contained a distribution of isoenzymes similar to that found in the bulk of the urine and it is suggested that these cells are the main source of urinary lactate dehydrogenase. 2. Cells were thoroughly washed before examination so it is unlikely that the enzyme found in urinary sediment was simply adsorbed. In addition, full recoveries of added lactate dehydrogenase isoenzymes LDH(1) and LDH(5) showed that adsorption did not occur. 3. Most of the cells in normal urine are of the non-squamous epithelial type and their excretion is greatly increased after the ingestion by the subject of 3g. of aspirin. The possible origin of these non-squamous cells from the kidney is discussed. 4. Starch-block electrophoresis and relative activity measurements of lactate dehydrogenase excreted after the subject had taken aspirin show that the enzymes present in urine and cells are very similar, confirming the conclusion reached above (point 1). They have slightly more M subunits than the normal, shown particularly as an increase in isoenzyme LDH(2). The isoenzyme pattern is like that of the kidney medulla and the possible reasons for this are discussed in terms of the concentration of salicylic acid in various parts of the kidney. 5. The results confirm the previous suggestion that the kidney is the main source of urinary lactate dehydrogenase.  相似文献   

11.
1. The presence of a characteristic lactate-dehydrogenase isoenzyme (LD(x)) in human, mouse and dog testis and in human spermatozoa has been confirmed by electrophoresis on cellulose acetate and on polyacrylamide gel. 2. The human spermatozoal isoenzyme exhibits a much higher affinity for 2-oxobutyrate than any of the five isoenzymes found in other tissues. K(m) values of 0.05mm for pyruvate and 0.18mm for 2-oxobutyrate were obtained. 3. LD(x) differs from other lactate-dehydrogenase isoenzymes in that its properties cannot be correlated with its electrophoretic mobility. It resembles LD(1) in being strongly inhibited by 0.2mm-oxalate and relatively resistant to 2m-urea, and in being relatively stable to heat. 4. The surprisingly high activity of LD(x) with 2-oxobutyrate suggests that this substance or 2-hydroxybutyrate may play a part in spermatozoal metabolism.  相似文献   

12.
1. The effect of urea on the lactate-dehydrogenase activities of human-heart and -liver tissue extracts and on crystalline ox-heart and rabbit-muscle enzyme have been determined. Similar studies on electrophoretically separated isoenzyme fractions have shown an inverse relationship between sensitivity to urea inhibition and electrophoretic mobility. 2. With pyruvate as substrate a sharp change in the nature of the inhibition of tissue lactate dehydrogenase with increasing concentrations of urea occurs at 1 m or 4 m with the electrophoretically slow and fast isoenzymes respectively. 3. At concentrations of urea less than 1 m, inhibition of the purified enzymes is competitive with respect to pyruvate and 2-oxobutyrate. 4. Similar studies have been carried out with methylurea and hydantoic acid, both of which are more potent inhibitors than urea.  相似文献   

13.
Summary Mutants of Alcaligenes eutrophus, which are defective in the intracellular accumulation of poly(-hydroxybutyric acid), PHB, were cultivated in the presence of excess carbon source after growth had ceased due to depletion of ammonium, sulphate, phosphate, potassium, magnesium, or iron. Under these conditions all mutants excreted large amounts of pyruvate into the medium. Excretion of pyruvate occurred with lactate, gluconate or fructose as carbon sources; the highest rate of pyruvate excretion (8 mmol/1 per hour) was obtained with lactate. The rate of pyruvate excretion by strain N9A-PHB-02-HB-1 on gluconate amounted to 2.5–6.3 mmol/g protein per hour depending on the depleted nutrient. The ratios of the molar rates for the utilization of the substrates versus those for the excretion of pyruvate were 1.9, 1.0 or 0.7, respectively. Wild-type strains did not excrete even traces of pyruvate, but accumulated PHB. Depending on the limiting nutrient, strain N9A accumulated PHB at a rate of 0.21–0.49 g/g protein per hour. On a molar basis (-hydroxybutyrate monomers versus pyruvate) the ratios for the rates for accumulation of PHB in the wild-type and for excretion of pyruvate in PHB-negative mutants were 0.9–1.4. The fermentation enzymes alcohol dehydrogenase and lactate dehydrogenase were not synthesized in cells starved of a nutrient; they were only detectable in cells cultivated under conditions of restricted oxygen supply. The latter conditions caused accumulation of PHB in the wild-type and excretion of pyruvate by the PHB-negative mutant.  相似文献   

14.
Two soluble enzyme activities, 17 beta-estradiol dehydrogenase and 20 alpha-hydroxysteroid dehydrogenase, copurified from the cytosol fraction of human term placenta, were identically inactivated by 6 beta-bromoacetoxyprogesterone. This affinity alkylating steroid binds at the enzyme-active site (Km = 866 microM; Vmax = 0.073 mumol/min/mg). Enzyme inactivation by four concentrations of 6 beta-bromoacetoxyprogesterone (molar ratio of steroid to enzyme, 71/1 to 287/1) causes irreversible and time-dependent loss of both the 17 beta- and 20 alpha-activities according to first order kinetics and affirms that the alkylating steroid is an active site-directed inhibitor (KI = 2.7 X 10(-3) M; k3 = 1.6 X 10(-3) s-1). Affinity radioalkylation studies using 6 beta-[2'-14C]bromoacetoxyprogesterone indicate that 2 mol of steroid are bound to each mole of inactivated enzyme dimer (Mr = 68,000). Amino acid analyses of the acid hydrolysate of radioalkylated enzyme show that 6 beta-bromoacetoxyprogesterone carboxymethylates cysteine (56%), histidine (22%), and lysine (8%) residues in the active site. These results are identical with those reported for 2-bromo[2'-14C]acetamidoestrone methyl ether radioalkylation of purified "17 beta-estradiol dehydrogenase." The parallel inactivation of 17 beta-estradiol dehydrogenase and 20 alpha-hydroxysteroid dehydrogenase by 6 beta-bromoacetoxyprogesterone further shows that both activities reside at a single enzyme-active site. The radioalkylation profile supports our proposed model of one enzyme-active site wherein the bound progestin and estrogen substrates are inverted, one relative to the other.  相似文献   

15.
We describe the rapid and sensitive detection of 4-hydroxybutyric acid, which is a marker compound for succinic semialdehyde dehydrogenase (SSADH) deficiency. Urinary 4-hydroxybutyric acid and 3,4-dihydroxybutyric acid were targeted, quantified by gas chromatography-mass spectrometry after simplified urease digestion in which lactone formation from gamma-hydroxy acids is minimized. The recovery of 4-hydroxybutyric acid using this method was over 93%. 2,2-Dimethylsuccinic acid was used as an internal standard. The detection limit of this method was 1 nmol ml(-1) for both 4-hydroxybutyric acid and 3,4-dihydroxybutyric acid. The urinary concentrations of 4-hydroxybutyric acid and of 3,4-dihydroxybutyric acid from the patient with an SSADH deficiency were 880-3628 mmol mol(-1) creatinine (control; 3.3+/-3.3 mmol mol(-1) creatinine) and 810-1366 mmol mol(-1) creatinine (control; 67.4+/-56.2 mmol mol(-1) creatinine), respectively. The simplified urease digestion of urine is very useful for quantifying 4-hydroxybutyric acid and its related compounds in patients with 4-hydroxybutyric aciduria.  相似文献   

16.
1. Halothane at clinically effective concentrations [2.5 and 4% (v/v) of the gas phase of the incubation flask] was found to inhibit significantly lipogenesis from endogenous substrates, e.g., glycogen, or from added lactate plus pyruvate. This was accompanied by a decrease in the ratio of the free [NAD+]/[NADH] of the mitochondrion and the cytoplasm, as shown by the [3-hydroxybutyrate]/[acetoacetate] ratio and the [lactate]/[pyruvate] ratio. 2. Acetoacetate or pyruvate decreased the inhibitory effect of halothane and restored lipogenesis to control rates. They were reduced rapidly by 3-hydroxybutyrate dehydrogenase or lactate dehydrogenase respectively, with the concomitant oxidation of NADH and the generation of NAD+. 3. These results suggest that the mechanism by which halothane inhibits lipogenesis from glycogen or lactate is by inhibition of the oxidation of NADH; this results in inhibition of flux of carbon through pyruvate dehydrogenase and a shortage of acetyl-CoA for fatty acid synthesis. Thus when NADH acceptors are added in the presence of halothane, the concentration of mitochondrial NAD+ is raised so that the flux of carbon through pyruvate dehydrogenase increases and lipogenesis is restored.  相似文献   

17.
The activity of several enzymes with different intracellular sites was determined in urine at various times following nonfatal acute tubular necrosis induced by mercuric chloride administration. The excretion rate of all tested enzymes rose on the 1st and 2nd day; in the next observations (days 7-15) enzymatic values approached the basal values. The lactate dehydrogenase isoenzyme pattern of the renal cortical zone showed an early shift towards cathodic fractions and later (7 days) an increase of middle ones; the normal anodic zymogram recovered after a suitable time interval (30 days). The isoenzymatic changes are related both to the renal hypoxia and to the appearance of less differentiated cells. The behaviour of functional parameters (urine flow, osmolality, urea clearance, creatinine clearance) were well in agreement with the observed enzyme and renal isoenzyme changes.  相似文献   

18.
Properties of the testicular lactate dehydrogenase isoenzyme.   总被引:2,自引:0,他引:2       下载免费PDF全文
1. Studies were carried out with pure lactate dehydrogenase isoenzymes C4 (LDH isoenzyme X), B4, (LDH isoenzyme 1) and A4 (LDH isoenzyme 5) isolated from mouse testis, heart and muscle tissue respectively; with LDH isoenzyme X purified from pigeon testes and with crude lysates of spermatozoa from man, bull and rabbit. 2. LDH isoenzyme X from all species showed greater ability than the other isoenzymes to catalyse the NAD+-linked interconversions of 2-oxobutanoate into 2-hydroxybutanoate and of 2-oxopentanoate into 2-hydroxypentanoate. 3. Mouse LDH isoenzyme X presented the broadest spectrum of substrate specificity. It exhibited very similar Km values for a variety of 2-oxo acids: 2-oxopropanoate (pyruvate), 2-oxobutanoate, 2-oxo-3-methylbutanoate, 2-oxopentanoate, 2-oxo-3-methylpentanoate, 2-oxo-4-methylpentanoate, 2-oxohexanoate and 2-oxo-3-phenylpropanoate (phenylpyruvate). The corresponding 2-hydroxy acids were also readily utilized in the reverse reaction. A strong inhibition by substrate and product was demonstrated for the direct reaction. 4. Intracellular distribution of LDH isoenzyme X was investigated in mouse testes. LDH isoenzyme X activity was located in the fraction of "heavy mitochondria" and in the soluble phase. 5. A possible functional role for LDH isoenzyme X is proposed: the redox couple-2-oxo acid-2-hydroxy acid could integrate a shuttle system transferring reducing equivalents from cytoplasm to mitochondria.  相似文献   

19.
The enzyme succinic semialdehyde dehydrogenase from pig brain has been 2000-fold purified by a combination of DEAE-cellulose, hydroxyapatite, and AMP-Sepharose chromatography. This preparation has a molecular weight of 160,000 and a specific activity of 5.3 mumol/min.mg at 25 degrees C. The inhibition of succinic semialdehyde dehydrogenase by carbonyl compounds, i.e. P-pyridoxal and o-phthalaldehyde was investigated in detail. The enzyme is reversible, inhibited by preincubation with P-pyridoxal (mixing molar ratio, 300:1) at either 25 degrees or 37 degrees C. Reduction with NaBH1 results in the incorporation of approximately 4 mol of P-pyridoxyl residues/mol of enzyme. NAD+ protects the enzyme against inactivation by P-pyridoxal, whereas the substrate succinic semialdehyde failed to prevent the reaction of P-pyridoxal with lysine residues of the protein. The binding of approximately 10 mol of o-phthalaldehyde/mol of enzyme results in irreversible loss of catalytic activity. The reaction is fast and easily monitored by absorption and fluorescence spectroscopy.  相似文献   

20.
The temperature stability of the cytoplasmic enzyme of the glycolysis of lactate dehydrogenase from a pig muscle (isoenzyme M4) in a complex with the anion polyelectrolyte poly(styrenesulfonate) has been investigated by the methods of adiabatic differential scanning microcalorimetry, the own protein fluorescence, and circular dichroism. Calorimetric investigations of complex of lactate dehydrogenase with poly(styrenesulphonate) in 50 mM phosphate buffer at pH 7.0 have shown that the temperature of the transition and enthalpy of lactate dehydrogenase thermal denaturation sharply decreases with growing weight ratio poly(styrenesulphonate)/lactate dehydrogenase, though at 20 degrees C the enzyme activity of lactate dehydrogenase remains unchanged for several hours irrespective of the addition of poly(styrenesulphonate). The addition of phosphate ions to the solution enhances the resistance of lactate dehydrogenase to both thermal denaturation and inactivation by polyelectrolyte. The data obtained are interpreted from the viewpoint of a special role of two anion-binding centers in intersubunits contacts of lactate dehydrogenase, which enhance its resistance to both thermal denaturation and destruction by polyelectrolyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号