首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SH2-B, APS, and Lnk constitute a family of adapter proteins that modulate signaling by protein tyrosine kinases. These adapters contain an N-terminal dimerization region, a pleckstrin homology domain, and a C-terminal Src homology-2 (SH2) domain. SH2-B is recruited via its SH2 domain to various protein tyrosine kinases, including Janus kinase-2 (Jak2) and the insulin receptor. Here, we present the crystal structure at 2.35 A resolution of the SH2 domain of SH2-B in complex with a phosphopeptide representing the SH2-B recruitment site in Jak2 (pTyr813). The structure reveals a canonical SH2 domain-phosphopeptide binding mode, but with specific recognition of a glutamate at the +1 position relative to phosphotyrosine, in addition to recognition of a hydrophobic residue at the +3 position. Biochemical studies of SH2-B and APS demonstrate that, although the SH2 domains of these two adapter proteins share 79% sequence identity, the SH2-B SH2 domain binds preferentially to Jak2, whereas the APS SH2 domain has higher affinity for the insulin receptor. This differential specificity is attributable to the difference in the oligomeric states of the two SH2 domains: monomeric for SH2-B and dimeric for APS.  相似文献   

2.
SHP-1 is an SH2-containing cytoplasmic tyrosine phosphatase that is widely distributed in cells of the hematopoietic system. SHP-1 plays an important role in the signal transduction of many cytokine receptors, including the receptor for erythropoietin, by associating via its SH2 domains to the receptors and dephosphorylating key substrates. Recent studies have suggested that SHP-1 regulates the function of Jak family tyrosine kinases, as shown by its constitutive association with the Tyk2 kinase and the hyperphosphorylation of Jak kinases in the motheaten cells that lack functional SHP-1. We have examined the interactions of SHP-1 with two tyrosine kinases activated during engagement of the erythropoietin receptor, the Janus family kinase Jak-2 and the c-fps/fes kinase. Immunoblotting studies with extracts from mouse hematopoietic cells demonstrated that Jak2, but not c-fes, was present in anti-SHP-1 immunoprecipitates, suggesting that SHP-1 selectively associates with Jak2 in vivo. Consistent with this, when SHP-1 was coexpressed with these kinases in Cos-7 cells, it associated with and dephosphorylated Jak2 but not c-fes. Transient cotransfection of truncated forms of SHP-1 with Jak2 demonstrated that the SHP-1-Jak2 interaction is direct and is mediated by a novel binding activity present in the N terminus of SHP-1, independently of SH2 domain-phosphotyrosine interaction. Such SHP-1-Jak2 interaction resulted in induction of the enzymatic activity of the phosphatase in in vitro protein tyrosine phosphatase assays. Interestingly, association of the SH2n domain of SHP-1 with the tyrosine phosphorylated erythropoietin receptor modestly potentiated but was not essential for SHP-1-mediated dephosphorylation of Jak2 and had no effect on c-fes phosphorylation. These data indicate that the main mechanism for regulation of Jak2 phosphorylation by SHP-1 involves a direct, SH2-independent interaction with Jak2 and suggest the existence of similar mechanisms for other members of the Jak family of kinases. They also suggest that such interactions may provide one of the mechanisms that control SHP-1 substrate specificity.  相似文献   

3.
The immunoreceptor tyrosine-based inhibitory motif (ITIM) of human type IIb Fcgamma receptor (FcgammaRIIb) is phosphorylated on its tyrosine upon co-clustering with the B cell receptor (BCR). The phosphorylated ITIM (p-ITIM) binds to the SH2 domains of polyphosphoinositol 5-phosphatase (SHIP) and the tyrosine phosphatase, SHP-2. We investigated the involvement of the molecular complex composed of the phosphorylated SHIP and FcgammaRIIb in the activation of SHP-2. As a model compound, we synthesized a bisphosphopeptide, combining the sequences of p-ITIM and the N-terminal tyrosine phosphorylated motif of SHIP with a flexible spacer. This compound bound to the recombinant SH2 domains of SHP-2 with high affinity and activated the phosphatase in an in vitro assay. These data suggest that the phosphorylated FcgammaRII-SHIP complexes formed in the intact cells may also activate SHP-2. Grb2-associated binder 1 (Gab1) is a multisite docking protein, which becomes tyrosine-phosphorylated in response to various types of signaling, including BCR. In turn it binds to the SH2 domains of SHP-2, SHIP and the p85 subunit of phosphatidyl inositol 3-kinase (PtdIns3-K) and may regulate their activity. Gab1 is a potential substrate of SHP-2, thus its binding to FcgammaRIIb may modify the Gab1-bound signaling complex. We show here that Gab1 is part of the multiprotein complex assembled by FcgammaRIIb upon its co-clustering with BCR. Gab1 may recruit SH2 domain-containing molecules to the phosphorylated FcgammaRIIb. SHP-2, activated upon the binding to FcgammaRIIb-SHIP complex, partially dephosphorylates Gab1, resulting in the release of PtdIns3-K and ultimately in the inhibition of downstream activation pathways in BCR/FcgammaRIIb co-aggregated cells.  相似文献   

4.
Angiotensin II activates the Jak-STAT pathway via the AT(1) receptor. We studied two mutant AT(1) receptors, termed M5 and M6, that contain Y to F substitutions for the tyrosine residues naturally found in the third intracellular loop and the carboxyl terminus. After binding ligand, both the M5 and M6 AT(1) receptors trigger STAT1 tyrosine phosphorylation equivalent to that observed with the wild type receptor, indicating that angiotensin II-mediated phosphorylation of STAT1 is independent of these receptor tyrosine residues. In response to angiotensin II, Jak2 autophosphorylates on tyrosine, and Jak2 and STAT1 physically associate, a process that depends on the SH2 domain of STAT1 in vitro. Evaluation of the wild type, M5, and M6 AT(1) receptors showed that angiotensin II-dependent AT(1) receptor-Jak2-STAT1 complex formation is dependent on catalytically active Jak2, not on the receptor tyrosine residues in the third intracellular loop and carboxyl tail. Immunodepletion of Jak2 virtually eliminated the ligand-dependent binding of STAT1 to the AT(1) receptor. These data indicate that the association of STAT1 with the AT(1) receptor is not strictly bimolecular; it requires Jak2 as both a STAT1 kinase and as a molecular bridge linking STAT1 to the AT(1) receptor.  相似文献   

5.
The heptahelical AT(1) G-protein-coupled receptor lacks inherent tyrosine kinase activity. Angiotensin II binding to AT(1) nevertheless activates several tyrosine kinases and stimulates both tyrosine phosphorylation and phosphatase activity of the SHP-2 tyrosine phosphatase in vascular smooth muscle cells. Since a balance between tyrosine kinase and tyrosine phosphatase activities is essential in angiotensin II signaling, we investigated the role of SHP-2 in modulating tyrosine kinase signaling pathways by stably transfecting vascular smooth muscle cells with expression vectors encoding wild-type SHP-2 protein or a catalytically inactive SHP-2 mutant. Our data indicate that SHP-2 is an efficient negative regulator of angiotensin II signaling. SHP-2 inhibited c-Src catalytic activity by dephosphorylating a positive regulatory tyrosine 418 within the Src kinase domain. Importantly, SHP-2 expression also abrogated angiotensin II-induced activation of ERK, whereas expression of catalytically inactive SHP-2 caused sustained ERK activation. Thus, SHP-2 likely regulates angiotensin II-induced MAP kinase signaling by inactivating c-Src. These SHP-2 effects were specific for a subset of angiotensin II signaling pathways, since SHP-2 overexpression failed to influence Jak2 tyrosine phosphorylation or Fyn catalytic activity. These data show SHP-2 represents a critical negative regulator of angiotensin II signaling, and further demonstrate a new function for this phosphatase in vascular smooth muscle cells.  相似文献   

6.
Signal transduction events are often mediated by small protein domains such as SH2 (Src homology 2) domains that recognize phosphotyrosines (pY) and flanking sequences. In case of the SHP-2 receptor tyrosine phosphatase an N-terminal SH2 domain binds and inactivates the phosphatase (PTP) domain. The pY-peptide-binding site on the N-terminal SH2 domain does not overlap with the PTP binding region. Nevertheless, pY-peptide binding causes domain dissociation and phosphatase activation. Comparative multi-nanosecond molecular dynamics simulations on the N-SH2 domain in ligand-bound and free states have been performed to study the allosteric mechanism that leads to domain dissociation upon pY-peptide binding. Significant ligand-dependent differences in the conformational flexibility of regions that are involved in SH2-PTP domain association have been observed. The results support a mechanism of signal transduction where SH2-peptide binding modulates the domain flexibility and reduces its capacity to fit into the entrance of the PTP catalytic domain of SHP-2.  相似文献   

7.
The protein-tyrosine phosphatase SHP-2 modulates signaling events through receptor tyrosine kinases and cytokine receptors including the receptor for prolactin (PRLR). Here we investigated mechanisms of SHP-2 recruitment within the PRLR signaling complex. Using SHP-2 and PRLR immunoprecipitation studies in 293 cells and in the mouse mammary epithelial cell line HC11, we found that SHP-2 co-immunoprecipitates with the PRLR and that the C-terminal tyrosine of the PRLR plays a regulatory role in both the tyrosine phosphorylation and the recruitment of SHP-2. Our results further indicate that SHP-2 association to the PRLR occurs via the C-terminal SH2 domain of the phosphatase. In addition, we determined that the newly identified adaptor protein Gab2, but not Gab1, is specifically tyrosine phosphorylated and is able to recruit SHP-2 and phosphatidyinositol 3-kinase in response to PRLR activation. Together, these studies suggest the presence of dual recruitment sites for SHP-2; the first is to the C-terminal tyrosine of the PRLR and the second is to the adaptor protein Gab2.  相似文献   

8.
Male "viable motheaten" (me(v)) mice, with a naturally occurring mutation in the gene of the SH2 domain protein tyrosine phosphatase SHP-1, are sterile. Known defects in sperm maturation in these mice correlate with an impaired differentiation of the epididymis, which has similarities to the phenotype of mice with a targeted inactivation of the Ros receptor tyrosine kinase. Ros and SHP-1 are coexpressed in epididymal epithelium, and elevated phosphorylation of Ros in the epididymis of me(v) mice suggests that Ros signaling is under control of SHP-1 in vivo. Phosphorylated Ros strongly and directly associates with SHP-1 in yeast two-hybrid, glutathione S-transferase pull-down, and coimmunoprecipitation experiments. Strong binding of SHP-1 to Ros is selective compared to six other receptor tyrosine kinases. The interaction is mediated by the SHP-1 NH(2)-terminal SH2 domain and Ros phosphotyrosine 2267. Overexpression of SHP-1 results in Ros dephosphorylation and effectively downregulates Ros-dependent proliferation and transformation. We propose that SHP-1 is an important downstream regulator of Ros signaling.  相似文献   

9.
10.
Recent work with interleukins has shown a convergence of tyrosine phosphorylation signal transduction cascades at the level of the Janus and Src families of tyrosine kinases. Here we demonstrate that activation of the seven-transmembrane AT(1) receptor by angiotensin II induces a physical association between Jak2 and Fyn, in vivo. This association requires the catalytic activity of Jak2 but not Fyn. Deletion studies indicate that the region of Jak2 that binds Fyn is located between amino acids 1 and 240. Studies of the Fyn SH2 and SH3 domains demonstrate that the SH2 domain plays the primary role in Jak2/Fyn association. Not surprisingly, this domain shows a marked preference for tyrosine-phosphorylated Jak2. Surface plasmon resonance estimated the dissociation equilibrium constant (K(d)) of this association to be 2.36 nM. Last, in vivo studies in vascular smooth muscle cells show that, in response to angiotensin II, Jak2 activation is required for Fyn activation and induction of the c-fos gene. The significance of these data is that Jak2, in addition to serving as a critical angiotensin II activated signal transduction kinase, also functions as a docking protein and participates in the activation of Fyn by providing phosphotyrosine residues that bind the SH2 domain of Fyn.  相似文献   

11.
Tyrosine phosphorylation of membrane proteins plays a crucial role in cell signaling by recruiting Src homology 2 (SH2) domain-containing signaling molecules. Recently, we have isolated a transmembrane protein designated PZR that specifically binds tyrosine phosphatase SHP-2, which has two SH2 domains (Zhao, Z. J., and Zhao, R. (1998) J. Biol. Chem. 273, 29367-29372). PZR belongs to the immunoglobulin superfamily. Its intracellular segment contains four putative sites of tyrosine phosphorylation. By site-specific mutagenesis, we found that the tyrosine 241 and 263 embedded in the consensus immunoreceptor tyrosine-based inhibitory motifs VIYAQL and VVYADI, respectively, accounted for the entire tyrosine phosphorylation of PZR. The interaction between PZR and SHP-2 requires involvement of both tyrosyl residues of the former and both SH2 domains of the latter, since its was disrupted by mutating a single tyrosyl residue or an SH2 domain. Overexpression of catalytically inactive but not active forms of SHP-2 bearing intact SH2 domains in cells caused hyperphosphorylation of PZR. In vitro, tyrosine-phosphorylated PZR was efficiently dephosphorylated by the full-length form of SHP-2 but not by its SH2 domain-truncated form. Together, the data indicate that PZR serves not only as a specific anchor protein of SHP-2 on the plasma membrane but also as a physiological substrate of the enzyme. The coexisting binding and dephosphorylation of PZR by SHP-2 may function to terminate signal transduction initiated by PZR and SHP-2 and to set a threshold for the signal transduction to be initiated.  相似文献   

12.
13.
It is a consensus that a cytotoxic T lymphocyte associated molecule-4 (CTLA-4) transduces inhibitory signal for T cell activation under physiological condition, indicating that this molecule is an important regulator of T cell homeostasis in vivo. It has been reported that phosphorylation and dephosphorylation of tyrosine residue Y-165 in the cytoplasmic region of CTLA-4 play an important role in its negative signaling and cell surface expression. Some signaling molecules such as Src homology 2 protein tyrosine phosphatase 2 (SHP-2) and the p85 subunit of phosphatidylinositol 3 kinase (PI3 kinase) associate with phosphorylated tyrosine residue Y-165, through Src homology 2 (SH2) domains. On the other hand, the adapter complex proteins, AP-2 and AP-50 interact with the same tyrosine residue when unphosphorylated, resulting in clathrin-mediated endocytosis of CTLA-4 molecules. The objective of this study is to identify a tyrosine kinase that can directly bind and phosphorylate the critical tyrosine residue, Y-165 in the cytoplasmic domain of CTLA-4. Here, we demonstrated that 1) Janus Kinase 2 (Jak2) was directly associated with a box 1-like motif in the cytoplasmic tail of CTLA-4 molecule, 2) Jak2 phosphorylated Y-165 residue in the cytoplasmic region of CTLA-4 molecule, and 3) Jak2 was associated with CTLA-4 in HUT 78 T cell lines.  相似文献   

14.
SHP-2 is a positive component of many receptor tyrosine kinase signaling pathways. The related protein-tyrosine phosphatase (PTP) SHP-1 usually acts as a negative regulator. The precise domains utilized by SHP-2 to transmit positive signals in vivo and the basis for specificity between SHP-1 and SHP-2 are not clear. In Xenopus, SHP-2 is required for mesoderm induction and completion of gastrulation. We investigated the effects of SHP-2 mutants and SHP-2/SHP-1 chimeras on basic fibroblast growth factor-induced mesoderm induction. Both SH2 domains and the PTP domain are required for normal SHP-2 function in this pathway. The N-terminal SH2 domain is absolutely required, whereas the C-terminal SH2 contributes to wild-type function. The C-terminal tyrosyl phosphorylation sites and proline-rich region are dispensable, arguing against adapter models of SHP-2 function. Although the SH2 domains contribute to SHP-2 specificity, studies of SHP chimeras reveal that substantial specificity resides in the PTP domain. Thus, PTP domains exhibit biologically relevant specificity in vivo, and noncatalytic and catalytic domains of PTPs contribute to specificity in a combinatorial fashion.  相似文献   

15.
The erythropoietin (Epo) receptor transduces its signals by activating physically associated tyrosine kinases, mainly Jak2 and Lyn, and thereby inducing tyrosine phosphorylation of various substrates including the Epo receptor (EpoR) itself. We previously demonstrated that, in Epo-stimulated cells, an adapter protein, CrkL, becomes tyrosine-phosphorylated, physically associates with Shc, SHP-2, and Cbl, and plays a role in activation of the Ras/Erk signaling pathway. Here, we demonstrate that Epo induces binding of CrkL to the tyrosine-phosphorylated EpoR and SHIP1 in 32D/EpoR-Wt cells overexpressing CrkL. In vitro binding studies showed that the CrkL SH2 domain directly mediates the EpoR binding, which was specifically inhibited by a synthetic phosphopeptide corresponding to the amino acid sequences at Tyr(460) in the cytoplasmic domain of EpoR. The CrkL SH2 domain was also required for tyrosine phosphorylation of CrkL in Epo-stimulated cells. Overexpression of Lyn induced constitutive phosphorylation of CrkL and activation of Erk, whereas that of a Lyn mutant lacking the tyrosine kinase domain attenuated the Epo-induced phosphorylation of CrkL and activation of Erk. Furthermore, Lyn, but not Jak2, phosphorylated CrkL on tyrosine in in vitro kinase assays. Together, the present study suggests that, upon Epo stimulation, CrkL is recruited to the EpoR through interaction between the CrkL SH2 domain and phosphorylated Tyr(460) in the EpoR cytoplasmic domain and undergoes tyrosine phosphorylation by receptor-associated Lyn to activate the downstream signaling pathway leading to the activation of Erk and Elk-1.  相似文献   

16.
Janus kinase 2 (Jak2) protein tyrosine kinase plays an important role in interleukin-3– or granulocyte–macrophage colony-stimulating factor–mediated signal transduction pathways leading to cell proliferation, activation of early response genes, and inhibition of apoptosis. However, it is unclear whether Jak2 can activate these signaling pathways directly without the involvement of cytokine receptor phosphorylation. To investigate the specific role of Jak2 in the regulation of signal transduction pathways, we generated gyrase B (GyrB)–Jak2 fusion proteins, dimerized through the addition of coumermycin. Coumermycin induced autophosphorylation of GyrB–Jak2 fusion proteins, thus bypassing receptor activation. Using different types of chimeric Jak2 molecules, we observed that although the kinase domain of Jak2 is sufficient for autophosphorylation, the N-terminal regions are essential for the phosphorylation of Stat5 and for the induction of short-term cell proliferation. Moreover, coumermycin-induced activation of Jak2 can also lead to increased levels of c-myc and CIS mRNAs in BA/F3 cells stably expressing the Jak2 fusion protein with the intact N-terminal region. Conversely, activation of the chimeric Jak2 induced neither phosphorylation of Shc or SHP-2 nor activation of the c-fos promoter. Here, we showed that the GyrB–Jak2 system can serve as an excellent model to dissect signals of receptor-dependent and -independent events. We also obtained evidence indicating a role for the N-terminal region of Jak2 in downstream signaling events.  相似文献   

17.
The functional role of AT(2) receptors is unclear and it activates unconventional signaling pathways, which in general do not involve a classical activation of a G-protein. In the present study, we aimed to investigate the transduction mechanism of AT(2) Ang II receptors in PND15 rat hindbrain membrane preparations, which represents a physiological developmental condition. To determine whether Ang II AT(2) receptors induced association to SHP-1 in rat hindbrain, co-immunoprecipitation assays were performed. Stimulation of Ang II AT(2) receptors induced both a transient tyr-phosphorylation and activation of SHP-1. The possible participation of c-Src in Ang II-mediated SHP-1 activation, we demonstrated by recruitment of c-Src in immunocomplexes obtained with anti AT(2) or anti-SHP-1 antibodies. The association of SHP-1 to c-Src was inhibited by PD123319 and the c-Src inhibitor PP2. Similarly, SHP-1 activity determined in AT(2)-immunocomplexes was inhibited by PD123319 and the c-Src inhibitor PP2. Following stimulation with Ang II, AT(2) receptors recruit c-Src, which was responsible for SHP-1 tyr-phosphorylation and activation. Since AT(2) receptors are involved in neuron migration, we tested the presence of FAK in immunocomplexes. Surprisingly, AT(2)-immunocomplexes contained mainly the 85kDa fragment of FAK. Besides, p125FAK associated to SHP-1. In summary, we demonstrated the presence of an active signal transduction mechanism in PND15 rat hindbrain, a developmental stage critical for cerebellar development. In this model, we showed a complex containing AT(2)/SHP-1/c-Src/p85FAK, suggesting a potential role of Ang II AT(2) receptors in cerebellar development and neuronal differentiation.  相似文献   

18.
SHP-1 is a cytosolic tyrosine phosphatase implicated in down-regulation of B cell antigen receptor signaling. SHP-1 effects on the antigen receptor reflect its capacity to dephosphorylate this receptor as well as several inhibitory comodulators. In view of our observation that antigen receptor-induced CD19 tyrosine phosphorylation is constitutively increased in B cells from SHP-l-deficient motheaten mice, we investigated the possibility that CD19, a positive modulator of antigen receptor signaling, represents another substrate for SHP-1. However, analysis of CD19 coimmunoprecipitable tyrosine phosphatase activity in CD19 immunoprecipitates from SHP-1-deficient and wild-type B cells revealed that SHP-1 accounts for only a minor portion of CD19-associated tyrosine phosphatase activity. As CD19 tyrosine phosphorylation is modulated by the Lyn protein-tyrosine kinase, Lyn activity was evaluated in wild-type and motheaten B cells. The results revealed both Lyn as well as CD19-associated Lyn kinase activity to be constitutively and inducibly increased in SHP-1-deficient compared with wild-type B cells. The data also demonstrated SHP-1 to be associated with Lyn in stimulated but not in resting B cells and indicated this interaction to be mediated via Lyn binding to the SHP-1 N-terminal SH2 domain. These findings, together with cyanogen bromide cleavage data revealing that SHP-1 dephosphorylates the Lyn autophosphorylation site, identify Lyn deactivation/dephosphorylation as a likely mechanism whereby SHP-1 exerts its influence on CD19 tyrosine phosphorylation and, by extension, its inhibitory effect on B cell antigen receptor signaling.  相似文献   

19.
Angiotensin II (Ang II) AT(2) receptors are abundantly expressed in rat fetal tissues where they probably contribute to development. In the present study we examine the effects of Ang II type 2 receptor stimulation on SHP-1 activation. Ang II (10(-7) M) elicits a rapid and transient tyrosine phosphorylation of SHP-1, maximal at 1 min, in a dose-dependent form, blocked by the AT(2) antagonist, PD123319. SHP-1 phosphorylation is followed in time by tyrosine dephosphorylation of different proteins, suggesting a sequence of events. Ang II induces association of SHP-1 to AT(2) receptors as shown by co-immunoprecipitation, Western blot and binding assays. SHP-1 activity was determined in immunocomplexes obtained with either anti-AT(2) or anti-SHP-1 antibodies, after Ang II stimulation (1 min), in correlation with the maximal level of SHP-1 phosphorylation. Interestingly, following receptor stimulation (1 min) c-Src was associated to AT(2) or SHP-1 immunocomplexes. Preincubation with the c-Src inhibitor PP2 inhibited SHP-1 activation and c-Src association, thus confirming the participation of c-Src in this pathway. We demonstrated here for the first time the involvement of c-Src in SHP-1 activation via AT(2) receptors present in an ex vivo model expressing both receptor subtypes. In this model, AT(2) receptors are not constitutively associated to SHP-1 and SHP-1 is not constitutively activated. Thus, we clearly establish that SHP-1 activation, mediated by the AT(2) subtype, involves c-Src and precedes protein tyrosine dephosphorylation, in rat fetal membranes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号