首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glucuronolactone reductase [EC 1.1.1.20] from rat kidney was purified over 300-fold by ammonium sulfate fractionation, chromatography on DEAE-cellulose and hydroxylapatite columns, and preparative isoelectric focusing. The substrate specificity of the enzyme in the reduction reaction was broad, and hexuronic acid was one of the best substrates among monosaccharides. Km values for D-glucuronic acid, D-glucuronolactone, D-galacturonic acid, and L-iduronic acid were 6, 9, 4, and 6 mM, respectively. An investigation of the activity for aldose led to the finding that triose and tetrose served as good substrates for this enzyme. However, the activity for aldopentose or aldohexose was less than 1% of that for D-glucuronic acid at the same concentration. The enzyme was inactive towards most hexosamines (galactosamine, mannosamine, N-acetylglucosamine, N-acetylgalactosamine, and N-acetylmannosamine, but not glucosamine), meso-inositol, D-fructose, and tetrasaccharides from hyaluronic acid and chondroitin 4-sulfate. Trisaccharides from hyaluronic acid and chondroitin 6-sulfate which possess glucuronic acid at the reducing end were poor substrates for the enzyme and the activity towards these 4-substituted glucuronic acids was less than 3% of that towards non-substituted glucuronic acid.  相似文献   

2.
Band-3 glycoprotein was purified from human blood-group-A erythrocyte membranes by selective solubilization and gel chromatography on Sepharose 6B in the presence of sodium dodecyl sulphate. The purified glycoprotein was subjected to hydrazinolysis in order to release the carbohydrate moiety. The released oligosaccharides were N-acetylated and applied to a column of DEAE-cellulose. Most of the band-3 oligosaccharides obtained were found to be free of sialic acids. When this neutral fraction was subjected to gel chromatography on a column of Sephadex G-50, two broad peaks were observed indicating that the band-3 glycoprotein was heterogeneous in the size of the oligosaccharide moieties. All fractions from gel chromatography were found to contain galactose, mannose, N-acetylglucosamine and fucose. The higher-molecular-weight (mol.wt. 3000-8000) peak consisted of fucose, mannose, galactose, N-acetylglucosamine and N-acetylgalactosamine in a molar proportion of 1.6:3.0:8.4:10.5:0.2. Most of these oligosaccharides were digested with a mixture of beta-galactosidase and beta-N-acetylhexosaminidase after alpha-L-fucosidase treatment to give a small oligosaccharide with the structure alpha Man2-beta Man-beta GlcNAc-GlcNAc. Methylation studies and limited degradation by nitrous acid deamination showed that the oligosaccharides contained the repeating disaccharide Gal beta 1----4GlcNAc beta 1----3, with branching points at C-6 of some of the galactose residues. These results indicate that a major portion of the band-3 oligosaccharide has a common core structure, with heterogeneity in the numbers of the repeating disaccharides, and contains fucose residues both in the peripheral portion and in the core portion. Haemagglutination tests were also carried out to determine the blood-group specificities of the glycoprotein and the results demonstrated the presence of both blood-group-H and I antigenic activities.  相似文献   

3.
A beta-N-acetylhexosaminidase was purified 800-fold from extracts of Trichomonas foetus by affinity chromatography on a column of N-(epsilon-aminohexanoyl)-2-acetamido-2-deoxy-beta-D-glucopyranosylamine bound to CNBr-activated Sepharose. The enzyme has a dual specificity for the p-nitrophenyl beta-D-glycosides of N-acetylglucosamine and N-acetyl-galactosamine. The parent sugars are both competitive inhibitors. The enzyme has a mol. wt. approx. 150000 and a pH optimum of 6.2. It is suggested that the same active site catalyses both activities and that no part is played by the 4-hydroxyl group in substrate binding, but it is involved in determining the catalytic rate.  相似文献   

4.
Previous studies in vitro on proteoglycan biosynthesis from our laboratory have shown that nucleotide sugar precursors of all the sugars of the linkage oligosaccharides (xylose, galactose, and glucuronic acid) and of the glycosaminoglycans (N-acetylglucosamine, N-galactosamine, and glucuronic acid) are transported by specific carriers into the lumen of Golgi vesicles. More recently, we also reported the reconstitution in phosphatidylcholine liposomes of detergent-solubilized Golgi membrane proteins containing transport activities of CMP-sialic acid and adenosine-3'-phosphate-5'-phosphosulfate. We have now completed the successful reconstitution into liposomes of the Golgi membrane transport activities of UDP-galactose, UDP-xylose, and UDP-glucuronic acid. Transport of these nucleotide sugars into Golgi protein proteoliposomes occurred with the same affinity, temperature dependence, and sensitivity to inhibitors as observed with intact Golgi vesicles. Preloading of proteoliposomes with UMP, the putative antiporter for Golgi vesicle transport of these nucleotide sugars, stimulated transport of the nucleotide sugars by 2-3-fold. Transport of UDP-xylose into Golgi protein proteoliposomes was dependent on the presence of endogenous Golgi membrane lipids while that of UDP-galactose and UDP-glucuronic acid was not. This suggests a possible stabilizing or regulatory role for Golgi lipids on the UDP-xylose translocator. Finally, we have also shown that detergent-solubilized Golgi membrane translocator proteins can be partially purified by an ion-exchange chromatographic step before successful reconstitution into liposomes, demonstrating that this reconstitution approach can be used for the biochemical purification of these transporters.  相似文献   

5.
6-O-[6-O-(N-acetyl-beta-D-glucosaminyl)-N-acetyl-beta-D-glucosaminyl]cyclomaltoheptaose (beta CD) and three positional isomers of 6(1),6(n)-di-O-(N-acetyl-beta-D-glucosaminyl)cyclomaltoheptaose (n=2, 3, and 4) in a mixture of products from beta CD and N-acetylglucosamine by the reversed reaction of beta-N-acetylhexosaminidase from jack bean were isolated and purified by HPLC. The structures of four isomers of di-N-acetylglucosaminyl-beta CDs were determined by FABMS and NMR spectroscopy. The degree of polymerization of the branched oligosaccharides produced by enzymatic degradation with bacterial saccharifying alpha-amylase (BSA) was established by LC-MS methods.  相似文献   

6.
The UDP glycosyltransferases (UGT) attach sugar residues to small lipophilic chemicals to alter their biological properties and enhance elimination. Of the four families present in mammals, two families, UGT1 and UGT2, use UDP glucuronic acid to glucuronidate bilirubin, steroids, bile acids, drugs, and many other endogenous chemicals and xenobiotics. UGT8, in contrast, uses UDP galactose to galactosidate ceramide, an important step in the synthesis of glycosphingolipids and cerebrosides. The function of the fourth family, UGT3, is unknown. Here we report the cloning, expression, and functional characterization of UGT3A1. This enzyme catalyzes the transfer of N-acetylglucosamine from UDP N-acetylglucosamine to ursodeoxycholic acid (3alpha, 7beta-dihydroxy-5beta-cholanoic acid). The enzyme uses ursodeoxycholic acid and UDP N-acetylglucosamine in preference to other primary and secondary bile acids, and other UDP sugars such as UDP glucose, UDP glucuronic acid, UDP galactose, and UDP xylose. In addition to ursodeoxycholic acid, UGT3A1 has activity toward 17alpha-estradiol, 17beta-estradiol, and the prototypic substrates of the UGT1 and UGT2 forms, 4-nitrophenol and 1-naphthol. A polymorphic UGT3A1 variant containing a C121G substitution was catalytically inactive. UGT3A1 is found in the liver and kidney, and to a lesser, in the gastrointestinal tract. These data describe the first characterization of a member of the UGT3 family. Its activity and distribution suggest that UGT3A1 may have an important role in the metabolism and elimination of ursodeoxycholic acid in therapies for ameliorating the symptoms of cholestasis or for dissolving gallstones.  相似文献   

7.
利用生物酶进行体外催化反应合成不同种类的尿苷二磷酸糖(uridine diphosphate sugar,UDP-糖),生物酶的重复利用率较低。为提高尿苷二磷酸糖的合成效率及增加产物种类,以镍螯合聚丙烯酸酯树脂为载体,对带有HIS标签的N-乙酰己糖胺激酶(N-acetylhexosamine kinase,NahK)和尿苷转移酶(uridine transferase,GlmU)进行固定化。以固定化NahK和固定化GlmU为催化酶,不同单糖作为底物,研究尿苷二磷酸糖的一锅法合成情况。利用Q柱对产物进行纯化,通过高效液相色谱法、质谱法、核磁共振氢谱法对反应产物进行检测。确定了镍螯合聚丙烯酸酯树脂对游离NahK和GlmU的实际载量分别为10和20 mg·g-1。固定化酶量的最优配比为5.5 g固定化NahK和2.5 g固定化GlmU。固定化酶的最适pH和温度分别为8.0和35℃,且能在重复反应中稳定反应5个批次。葡萄糖、N-乙酰氨基葡萄糖和甘露糖可以参与一锅法反应,生成UDP-糖的相对分子质量分别为566、607、566,而葡萄糖醛酸、半乳糖和果糖在该体系下不能合成相应的UDP-糖。基于固定化酶技术,一锅法可合成UDP-葡萄糖、UDP-N-乙酰氨基葡萄糖、UDP-甘露糖。  相似文献   

8.
1. beta-N-acetylhexosaminidase isoenzymes from the gastropod, T. cornutus, were purified and their properties studied. 2. The two isoenzymes, designated A and B were separated by DEAE-Sephadex column chromatography and further purified by CM-cellulose, Concanavalin-A-Sepharose-4B and Sephadex G-200 column chromatography. 3. beta-N-Acetylhexosaminidase A and B were purified 416 and 208 fold, with yields of 10.6 and 5.1%, respectively. 4. The two isoenzymes appear homogeneous on polyacrylamide gel electrophoresis, with the A form migrating faster towards the anode than the B form. 5. The purified isoenzymes are virtually free of all other common glycosidase contaminations. 6. The apparent molecular weight of both beta-N-acetylhexosaminidase A and B is about 100,000 when estimated with gel filtration column chromatography and the pH optimum for both is 4.0. 7. Both beta-N-acetylhexosaminidase isoenzyme activities are stimulated by Cl-, Br-, F-, I- and NO3-, and inhibited by Hg+, Ag+, Fe3+, N-acetylglucosamine and N-acetylgalactosamine. 8. The Km values of beta-N-acetylhexosaminidase A and B for the substrate p-nitrophenyl-beta-2-acetamide-2-deoxy-D-glucopyranoside were 2.9 and 3.2 mM, respectively.  相似文献   

9.
Acyl glucuronides bind irreversibly to plasma proteins, and one mechanism proposed for this covalent binding is similar to that for glycation of protein by reducing sugars. Because glycation of protein by glucose and other reducing sugars can alter protein function, this lead to the hypothesis that the glycation of proteins by acyl glucuronides may cause similar effects. When human serum albumin (HSA) was incubated with 0.5 M glucose for 5 days, the unbound fractions of diazepam and warfarin were increased by 41 and 35%, respectively, less than that caused by glucuronic acid which increased the unbound fractions by 90% for diazepam and 420% for warfarin. When HSA was incubated with suprofen glucuronide (SG) at a much lower concentration of 0.005 M for only 24 h, the effects on the unbound fractions of diazepam and warfarin to HSA were altered dramatically with increases of 340 and 230%, respectively. After incubation of superoxide dismutase (SOD) with 0.5 or 1 M reducing sugars for 14 days, the enzyme activity decreased to 82 and 61% of initial levels at day 14, respectively, whereas glucuronic acid almost completely inactivated the enzyme activity over the same period. Even at a very low concentration (0.005 M) of SG, SOD activity was reduced significantly to 11% of initial levels by day 14, which was comparable to the effect by 0.5 and 1.0 M concentrations of glucuronic acid. Sodium dodecyl sulfate polyacrylamide gel electrophoresis and matrix associated laser desorption/ionization time of flight mass spectrometry indicated that several equivalents of reducing sugars or SG became attached to albumin after incubation. These results suggest that acyl glucuronides may affect the function of proteins by the formation of glycated protein in vivo and may be associated with the toxicity of xenobiotics metabolized to labile acyl glucuronides.  相似文献   

10.
Oligosaccharides of a non-oligomannoside type were released from porcine alpha-mannosidase by hydrazinolysis, and were fractionated into at least 15 homogeneous oligosaccharides. Most of them are oligosaccharides with galactose and N-acetylglucosamine residues attached to a common core, alpha Man2 beta Man beta GlcNAc(+/- alpha-L-Fuc)beta GlcNAc. About 50% of the oligosaccharides contain one or two outer chains composed of one beta-linked N-acetylglucosamine and two beta-linked galactose residues attached to the core portions, and the others seem to be metabolic intermediates. Based on the results of studies on the binding of alpha-mannosidase to RCA (Ricinus communis agglutinin) I-agarose and MBP (mannan-binding protein)-Sepharose, which are specific for glycoproteins possessing N-acetyllactosamine-type and oligomannoside-type (including oligomannosides with N-acetylglucosamine at the reducing termini) oligosaccharides, respectively, about 85% of the enzyme molecules were found to have both types of oligosaccharides. Similarly, it was shown that of the several acid hydrolases present in the lysosomes purified from rat liver, only alpha-mannosidase has both types of oligosaccharides, and the greater parts of beta-glucuronidase, acid phosphatase and beta-N-acetylhexosaminidase seem to have only oligomannoside-type oligosaccharides.  相似文献   

11.
Paucimannosidic glycans are often predominant in N-glycans produced by insect cells. However, a beta-N-acetylhexosaminidase responsible for the generation of paucimannosidic glycans in lepidopteran insect cells has not been identified. We report the purification of a beta-N-acetylhexosaminidase from the culture medium of Spodoptera frugiperda Sf9 cells (Sfhex). The purified Sfhex protein showed 10 times higher activity for a terminal N-acetylglucosamine on the N-glycan core compared with tri-N-acetylchitotriose. Sfhex was found to be a homodimer of 110 kDa in solution, with a pH optimum of 5.5. With a biantennary N-glycan substrate, it exhibited a 5-fold preference for removal of the beta(1,2)-linked N-acetylglucosamine from the Man alpha(1,3) branch compared with the Man alpha(1,6) branch. We isolated two corresponding cDNA clones for Sfhex that encode proteins with >99% amino acid identity. A phylogenetic analysis suggested that Sfhex is an ortholog of mammalian lysosomal beta-N-acetylhexosaminidases. Recombinant Sfhex expressed in Sf9 cells exhibited the same substrate specificity and pH optimum as the purified enzyme. Although a larger amount of newly synthesized Sfhex was secreted into the culture medium by Sf9 cells, a significant amount of Sfhex was also found to be intracellular. Under a confocal microscope, cellular Sfhex exhibited punctate staining throughout the cytoplasm, but did not colocalize with a Golgi marker. Because secretory glycoproteins and Sfhex are cotransported through the same secretory pathway and because Sfhex is active at the pH of the secretory compartments, this study suggests that Sfhex may play a role as a processing beta-N-acetylhexosaminidase acting on N-glycans from Sf9 cells.  相似文献   

12.
Oligomers of hyaluronic acid were prepared by digestion of hyaluronic acid from rooster combs with testicular hyaluronidase (hyaluronate 4-glycanohydrolase, EC 3.2.1.35), leech head hyaluronidase (hyaluronate 3-glycanohydrolase, EC 3.2.1.36), and with fungal hyaluronidase (hyaluronate lyase from Streptomyces hyalurolyticus). The oligomers were fractionated by gel permeation, using Sephadex G-50. Oligomers isolated after incubation of the hyaluronic acid with the testicular hyaluronidase were further modified. To prepare oligomers with N-acetylglucosamine at both ends, terminal nonreducing glucuronic acid residues were removed with beta-glucuronidase. Reducing terminal N-acetylglucosamine residues were removed by reaction under mildly alkaline conditions. The reducing terminal N-acetylglucosamine residues were also reduced with sodium borohydride to form N-acetylglucosaminitol. The potentials of the various oligosaccharides to bind to the proteoglycan from bovine nasal septum cartilage were estimated by determining their effectiveness as inhibitors of the proteoglycan-hyaluronate interaction. The present study shows that, to bind maximally to the proteoglycan, the hyaluronate oligosaccharide must be at least 10 sugar residues in length and be terminated at the nonreducing and reducing ends with a glucuronate residue and an N-acetylglucosamine residue, respectively. Sugar residues extended beyond this basic decasaccharide, do not interact with the hyaluronate binding site on the proteoglycan.  相似文献   

13.
We describe the chemoenzymatic synthesis of a variety of monodisperse hyaluronan (beta 4-glucuronic acid-beta 3-N-acetylglucosamine (HA)) oligosaccharides. Potential medical applications for HA oligosaccharides (approximately 10-20 sugars in length) include killing cancerous tumors and enhancing wound vascularization. Previously, the lack of defined oligosaccharides has limited the exploration of these sugars as components of new therapeutics. The Pasteurella multocida HA synthase, pmHAS, a polymerizing enzyme that normally elongates HA chains rapidly (approximately 1-100 sugars/s), was converted by mutagenesis into two single-action glycosyltransferases (glucuronic acid transferase and N-acetylglucosamine transferase). The two resulting enzymes were purified and immobilized individually onto solid supports. The two types of enzyme reactors were used in an alternating fashion to produce extremely pure sugar polymers of a single length (up to HA20) in a controlled, stepwise fashion without purification of the intermediates. These molecules are the longest, non-block, monodisperse synthetic oligosaccharides hitherto reported. This technology platform is also amenable to the synthesis of medicant-tagged or radioactive oligosaccharides for biomedical testing. Furthermore, these experiments with immobilized mutant enzymes prove both that pmHAS-catalyzed polymerization is non-processive and that a monomer of enzyme is the functional catalytic unit.  相似文献   

14.
The sugar determination of ulvans, the water-soluble polysaccharides from Ulva sp. and Enteromorpha sp., was optimized by combining partial acid prehydrolysis (2 mol L-1 trifluoroacetic acid, 120°C) with enzymic hydrolysis (with β-D-glucuronidase). The different constitutive sugars (rhamnose, galactose, glucose, xylose, glucuronic acid), released after hydrolysis, were separated by high performance anion-exchange chromatography and determined by pulsed amperometric detection. The ulvanobiouronic acid, β-D-GlcA-(1,4)-L-Rha, which is the main constituent of ulvans was always present after 3 h of trifluoroacetic acid hydrolysis (approx. 2% D.M.) when acid hydrolysis was performed alone but the xylose amount fell to 75% of its maximum value at this time. The optimal duration of 2 mol L−1 trifluoroacetic acid hydrolysis of ulvans (i.e. without any degradation of xylose, rhamnose and glucuronic acid) was 45 min. Additionnal treatment of the partial acid hydrolysate by purified β-D-glucuronidase allowed the hydrolysis of the residual ulvanobiouronic acid in rhamnose and glucuronic acid. High performance anion exchange chromatography coupled to this chemical-enzymic hydrolysis revealed to be a high resolution chromatographic technique for monitoring the hydrolysis of the aldobiouronic acid by β-D-glucuronidase. This method allowed the simultaneous quantitative determination of neutral and acidic sugars and revealed the presence of iduronic acid inulvans. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

15.
16.
Oligosaccharides obtained from heparan sulphate by nitrous acid degradation were shown to be degraded sequentially by beta-D-glucuronidase or alpha-L-iduronidase followed by alpha D-N-acetylglucosaminidase. Structural analysis of the tetrasaccharide fraction showed the following. (1) N-Acetylglucosamine is preceded by a non-sulphated uronic acid residue that can be either D-glucuronic of L-iduronic acid, but followed by a glucuronic acid residue. (2) The N-acetylglucosamine in the major fraction is sulphated. (3) Very few if any of the uronic acid residues are sulphated (4). The results indicate that the area of the heparan sulphate chain where disaccharides containing N-acetylglucosamine and N-sulphated glucosamine residues alternate is higher in sulphate content than expected and that the sulphate groups are mainly located on the hexosamine units.  相似文献   

17.
1. Membrane preparations from Klebsiella aerogenes type 8 were shown to transfer glucose and galactose from their uridine diphosphate derivatives to a lipid and to polymer. The ratio of glucose to galactose transfer in both cases was 1:2. This is the same ratio in which these sugars occur in native polysaccharide. Galactose transfer was dependent on prior glucosylation of the lipid. Mutants were obtained lacking (a) glucosyltransferase and (b) galactosyltransferase. The transferase activities in a number of non-mucoid mutants was examined. 2. Glucose transfer was partially inhibited by uridine monophosphate, and incorporation of either glucose or galactose into lipid was decreased in the presence of uridine diphosphate. The sugars are thought to be linked to a lipid through a pyrophosphate bond, and treatment of the lipid intermediates with phenol yielded water-soluble compounds. These could be dephosphorylated with alkaline phosphatase. Transfer of glucuronic acid to lipid or polymer from uridine diphosphate glucuronic acid was much lower than that of the other two sugars. 3. The fate of sugars incorporated into polymer was also followed. Some conversion of glucose into galactose and glucuronic acid occurred. Mutants unable to transfer glucose or galactose to lipid were unable to form polymer. Other mutants capable of lipid glycosylation were in some cases unable to form polymer. A model for capsular polysaccharide synthesis is proposed and its similarity to the formation of other polymers outside the cell membrane is discussed.  相似文献   

18.
Odd- and even-numbered hyaluronate oligosaccharides with N-acetylglucosamine, glucuronic acid, or 4,5-unsaturated glucuronic acid at their nonreducing ends were separated by thin-layer chromatography, using silica gel and a solvent system of isopropanol-water (66 : 34) containing 0.05 M NaCl. In the isopropanol system, small amounts of electrolytes were necessary for the resolution of each oligosaccharide.  相似文献   

19.
Hyaluronan oligosaccharides display physiological activities not associated with the polymer and are widely used to characterize hyaluronan-binding proteins. They can also be used as biocompatible starting blocks for chemical derivatization. Here we present methods for generating milligram quantities of unusual odd- and even-numbered oligosaccharides, greatly increasing the diversity of reagents for use in such studies. These methods are based upon protocols from the 1960s, at which time it was very difficult to assess the stereochemical purity of the products. To address this, products were analyzed with modern high-field nuclear magnetic resonance spectroscopy. Alkaline beta-elimination conditions previously used to remove reducing-terminal N-acetylglucosamine residues in fact introduce a significant ( approximately 30%) level of stereoisomerism in the products by alkali-catalyzed keto-enol tautomerizations. Milder alkaline conditions were used to overcome this problem, reducing the contamination to <5%. The elimination by-products from this reaction were isolated and characterized, allowing the mechanism of alkaline degradation of hyaluronan to be investigated for the first time. beta-Glucuronidase was used to remove nonreducing-terminal glucuronic acid residues from oligosaccharides. Odd-numbered oligosaccharides with terminal glucuronic acid residues isolated from hyaluronidase digests are shown to originate from acid-catalyzed acetal hydrolysis during boiling denaturation and also have significant levels of stereochemical impurities.  相似文献   

20.
Extracts of Acanthamoeba castellanii (Neff) contain alpha- and beta-glucosidase, beta-galactosidase, beta-N-acetylglucosaminidase, amylase, and peptidase. All of these activities are optimal between pH 3 and 4. These extracts also were found to clarify suspensions of cell walls from nine different gram-positive bacteria, including Micrococcus lysodeikticus. The pH optimum for the lytic activity was between 3 and 4. The extent of lysis of the various cell walls did not correlate with the release of free amino groups and of free N-acetylated sugars from the walls during digestion with these extracts. Suspensions of cell walls of Escherichia coli (a gram-negative bacterium), Cordiceps militaris (a fungus), and Acanthamoeba cysts, as well as of colloidal chitin, were not clarified by incubation with these extracts, although reducing sugars were released from each of these materials. Exhaustive digestion of M. lysodeikticus walls by lysozyme released no free N-acetylglucosamine. The products of exhaustive digestion of this cell wall with Acanthamoeba extracts were free N-acetylglucosamine, free N-acetylmuramic acid, glycine, alanine, glutamic acid, lysine, and N-acetylmuramic acid peptide fragments. These results suggest that the amoeba extracts contain endo- and exo-hexosaminidases, in addition to beta-hexosaminidase and peptide hydrolases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号