首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S Nakamura  E Racker 《Biochemistry》1984,23(2):385-389
The polypeptide antibiotic duramycin inhibited the (Na+,K+)-adenosinetriphosphatase purified from dog kidney. An analysis of its mode of action revealed that the formation of phosphoenzyme from Pi but not from ATP was inhibited. The rate of dephosphorylation of the phosphoenzyme formed from ATP was markedly reduced. In contrast to quercetin, duramycin did not inhibit K+-dependent p-nitrophenylphosphatase activity. The effect of duramycin was completely reversed by phospholipids.  相似文献   

2.
Inhibition of (Na+ + K+)-dependent adenosine triphosphatase phosphatase by vanadate is thought to occur through the tight binding of vanadate to the same site from which Pi is released. To see if ATP binds to [48V] vanadate-enzyme complex, just as it does to the phosphoenzyme, the effects of Na+, K+, and ATP on the dissociation rate of the complex at 10 degrees C were studied. The rate constant was increased by Na+, and this increase was blocked by K+, indicating that either Na+ or K+ binds to the complex. ATP alone, or in combination with K+, had no effect on the rate constant. In the presence of Na+, however, ATP caused a further increase in the rate constant. The value of K0.5 of Na+ was the same in the presence or absence of ATP; K0.5 of ATP (0.2 mM) did not seem to change significantly when Na+ concentration was varied, and K0.5 of K+, at a constant Na+ concentration, was the same in the presence or absence of ATP. The data indicate that ATP binds to the enzyme-vanadate complex regardless of the presence or absence of Na+ or K+, but it affects the dissociation rate only when Na+ is bound simultaneously. The value of K0.5 of Na+ decreased as pH was increased in the range of 6.5-7.8, but K0.5 of ATP was independent of pH. Demonstration of ATP binding to the enzyme-vanadate complex provides further support for the suggestion that the oligomeric enzyme contains a low-affinity regulatory site for ATP that is distinct from the interacting high-affinity catalytic sites.  相似文献   

3.
The reactivity towards Na+ and K+ of Na+/K+-ATPase phosphoenzymes formed from ATP and Pi during Na+-ATPase turnover and that obtained from Pi in the absence of ATP, Na+ and K+ was studied. The phosphoenzyme formed from Pi in the absence of cycling and with no Na+ or K+ in the medium showed a biphasic time-dependent breakdown. The fast component, 96% of the total EP, had a decay rate of about 4 s(-1) in K+-free 130 mm Na+, and was 40% inhibited by 20 mm K+. The slow component, about 0.14 s(-1), was K+ insensitive. Values for the time-dependent breakdown of the phosphoenzymes obtained from ATP and from Pi during Na+-ATPase activity were indistinguishable from each other. In K+-free medium containing 130 mm Na+, the decays followed a single exponential with a rate constant of 0.45 s(-1). The addition of 20 mm K+ markedly increased the decays and made them biphasic. The fast components had a rate of approximately 220 s-1 and accounted for 92-93% of the total phosphoenzyme. The slow components decayed at a rate of about 47-53 s(-1). A second group of experiments examined the reactivity towards Na+ of the E2P forms obtained with ATP and Pi when the enzyme was cycling. In both cases, the rate of dephosphorylation was a biphasic function of [Na+]: inhibition at low [Na+], with a minimum at about 5 mm Na+, followed by recovery at higher [Na+]. Although qualitatively similar, the phosphoenzyme formed from Pi showed slightly less inhibition and more pronounced recovery. These results indicate that forward and backward phosphorylation during Na+-ATPase turnover share the same intermediates.  相似文献   

4.
J B Fagan  E Racker 《Biochemistry》1977,16(1):152-158
Adenosine triphosphate (ATP) hydrolysis catalyzed by the plasma membrane (Na+,K+)ATPase isolated from several sources was inhibited by Mg+, provided that K+ and ATP were also present. Phosphorylation of the adenosine triphosphatase (ATPase) by ATP and by inorganic phosphate was also inhibited, as was p-nitrophenyl phosphatase activity. (Ethylenedinitrilo)tetraacetic acid (EDTA) and catecholamines protected from and reversed the inhibition of ATP hydrolysis by Mg2+, K+ and ATP. EDTA was protected by chelation of Mg2+ but catecholamines acted by some other mechanism. The specificities of various nucleotides as inhibitors (in conjunction with Mg2+ and K+) and as substrates for the (Na+, K+) ATPase were strikingly different. ATP, ADP, beta,gamma-CH2-ATP and alpha,beta-CH2-ADP were active as inhibitors, whereas inosine, cytidine, uridine, and guanosine triphosphates (ITP, CTP, UTP, and GTP) and adenosine monophosphate (AMP) were not. On the other hand, ATP and CTP were substrates and beta,gamma-NH-ATP was a competitive inhibitor of ATP hydrolysis, but not an inhibitor in conjunction with Mg2+ and K+. The Ca2+-ATPase from sarcoplasmic reticulum and F1, the Mg2+-ATPase from the inner mitochondrial membrane, were also inhibited by Mg2+. Catecholamines reversed inhibition of the Ca2+-ATPase, but not that of F1.  相似文献   

5.
Effects of Na+, K+, and nucleotides on Mg2+-dependent phosphorylation of (Na+ + K+)-dependent adenosine triphosphatase by Pi were studied under equilibrium conditions. Na+ was a linear competitive inhibitor with respect to Mg2+ and a mixed inhibitor with respect to Pi. K+ was a partial inhibitor; it interacted with positive cooperativity and induced negative cooperativities in the interactions of Mg2+ and Pi with the enzyme. Adenyl-5'-yl (beta, gamma-methylene)diphosphonate, a nonhydrolyzable analog of ATP, interacted with negative cooperativity to inhibit phosphorylation in competition with Pi. ATP was also a competitive inhibitor. Na+ and K+ acted antagonistically, Na+ and nucleotides inhibited synergistically, and K+ and nucleotides were mutually exclusive. In the presence of ouabain, when nucleotides were excluded from the site inhibiting phosphorylation, a low affinity regulatory site for nucleotides became apparent, the occupation of which reduced the rate of dephosphorylation and the initial rate of phosphorylation of the enzyme without affecting the equilibrium constant of the reaction of Pi with the ouabain-complexed enzyme. The regulatory site was also detected in the absence of ouabain. The data suggest that catalytic and transport functions of the oligomeric enzyme may be regulated by homotropic and heterotropic site-site interactions, ligand-induced slow isomerizations, and distinct catalytic and regulatory sites for ATP.  相似文献   

6.
The fluorescence of (Na,K)-ATPase labeled with 5-iodoacetamidofluorescein was studied under turnover conditions. At 4 degrees C the hydrolysis of ATP is slowed sufficiently to permit study of the effects of Na+, K+, and ATP on the steady-state intermediates. With Na+ and Mg2+ (Na-ATPase conditions), addition of ATP produces a 7% drop in signal that reverts back to the initial, high fluorescence after a steady state of several minutes. K-sensitive phosphoenzyme is formed under these conditions, indicating that the fluorescence signal during the steady state is associated with E2P. Under (Na,K)-ATPase conditions (Na+, K+, Mg2+), micromolar ATP produces a steady-state signal that is 25% lower than the initial fluorescence, with no detectable phosphoenzyme formed. This low-fluorescence intermediate, which is also formed by adding K+ to enzyme in the Na-ATPase steady state described above, resembles the state produced by adding K+ directly to enzyme under equilibrium conditions, i.e. E2K. The K0.5(K+) for the fluorescence decrease and for keeping the enzyme dephosphorylated are nearly identical, indicating that the fluorescence change accompanies K+-dependent dephosphorylation. High ATP increases the steady-state fluorescence during the (Na,K)-ATPase reaction; while oligomycin produces still another steady-state fluorescent intermediate. These last two intermediates may be associated with the formation of E2P and E1P, respectively.  相似文献   

7.
In order to characterize low affinity ATP-binding sites of renal (Na+,K+) ATPase and sarcoplasmic reticulum (Ca2+)ATPase, the effects of ATP on the splitting of the K+-sensitive phosphoenzymes were compared. ATP inactivated the dephosphorylation in the case of (Na+,K+)ATPase at relatively high concentrations, while activating it in the case of (Ca2+)ATPase. When various nucleotides were tested in place of ATP, inactivators of (Na+,K+)ATPase were found to be activators in (Ca2+)ATPase, with a few exceptions. In the absence of Mg2+, the half-maximum concentration of ATP for the inhibition or for the activation was about 0.35 mM or 0.25 mM, respectively. These values are comparable to the previously reported Km or the dissociation constant of the low affinity ATP site estimated from the steady-state kinetics of the stimulation of ATP hydrolysis or from binding measurements. By increasing the concentration of Mg2+, but not Na+, the effect of ATP on the phosphoenzyme of (Na+,K+)ATPase was reduced. On the other hand, Mg2+ did not modify the effect of ATP on the phosphoenzyme of (Ca2+)ATPase. During (Na+,K+)ATPase turnover, the low affinity ATP site appeared to be exposed in the phosphorylated form of the enzyme, but the magnesium-complexed ATP interacted poorly with the reactive K+-sensitive phosphoenzyme, which has a tightly bound magnesium, probably because of interaction between the divalent cations. In the presence of physiological levels of Mg2+ and K+, ATP appeared to bind to the (Na+,K+)ATPase only after the dephosphorylation, while it binds to the (Ca2+)-ATPase before the dephosphorylation to activate the turnover.  相似文献   

8.
In previous studies we had demonstrated that in the presence of 0.25 mM Cu2+ and 1.25 mM o-phenanthroline, cross-linking of the alpha-subunits of Na+ + K+)-dependent adenosine triphosphatase was induced by the addition of Na+ + ATP, and that the formation of the alpha,alpha-dimer was preceded by that of phosphoenzyme. The purpose of the present studies was the further evaluation of the role of phosphoenzyme in the process of cross-linking. Na+ + UTP did not induce cross-linking unless Mg2+ was also added. In contrast, Na+ + ATP-induced cross-linking did not require the addition of Mg2+. The different effects of ATP and UTP in the absence of added Mg2+ could be accounted for by the presence in the enzyme preparation of bound Mg2+ which supported enzyme phosphorylation by ATP but not by UTP. When the enzyme was phosphorylated by Pi, in the presence of Mg2 and ouabain, and the exposed to Cu2+ and o-phenanthroline, the alpha,alpha-dimer was obtained. Under these conditions, Na+ blocked both phosphorylation and cross-linking. These results indicate that it is the formation of phosphoenzyme per se that leads to conformational transitions favorable to cross-linking. They also suggest that Cu2+ and o-phenanthroline participate in the cross-linking reaction, but not in the phosphorylation reactions. In the digitonin-treated enzyme, Na+ and ATP induced the formation of phosphoenzyme, but not that of alpha,alpha-dimer. These findings indicate that in addition to phosphorylation, a proper orientation o alpha-subunits in an oligomer is also necessary for cross-linking.  相似文献   

9.
The rate of phosphorylation of sodium and potassium ion-transport adenosine triphosphatase by 10 microM [gamma-32P]ATP was much slower with Ca2+ than with Mg2+ (0.13-10 mM) in the presence of 16 to 960 mM Na+ at 0 degrees C and pH 7.4. In the presence of a fixed concentration of Mg2+ or Ca2+, the rate became slower with increasing Na+ concentration. When the Na+ concentration was fixed, the rate became slower with decreasing divalent cation concentration. Sodium ions appear to antagonize the divalent cation in the phosphorylation to slow its rate. In the presence of 1 mM Ca2+ and 126 or 270 mM Na+, the rate was slow enough to permit the manual addition of a chasing solution at various times before the phosphorylation reached the steady state. Therefore, we studied the time-dependent change of the sensitivity to ADP or to K+ of the phosphoenzyme by a chase with unlabeled ATP containing ADP or K+ during the time range from the transient to the steady state of the phosphorylation. The ADP sensitivity decreased and the K+ sensitivity increased with the progress of the phosphorylation. With 270 mM Na+, the phosphoenzyme found at 1 s, when its amount was 5.5% of the maximum level, was virtually completely sensitive to ADP. Under these conditions, it was concluded that the form of the phosphoenzyme initially produced from the enzyme.ATP complex has ADP sensitivity and that the phosphoenzyme acquires K+ sensitivity later. The initially produced ADP-sensitive phosphoenzyme partially lost its normal instability and sensitivity upon adding a chelating agent, probably because of dissociation of a divalent cation from the phosphoenzyme.  相似文献   

10.
In experiments performed at 37 degrees C, Ca2+ reversibly inhibits the Na+-and (Na+ + K+)-ATPase activities and the K+-dependent phosphatase activity of (Na+ + K+)-ATPase. With 3 mM ATP, the Na+-ATPase was less sensitive to CaCl2 than the (Na+ + K+)-ATPase activity. With 0.02 mM ATP, the Na+-ATPase and the (Na+ + K+)-ATPase activities were similarly inhibited by CaCl2. The K0.5 for Ca2+ as (Na+ + K+)-ATPase inhibitor depended on the total MgCl2 and ATP concentrations. This Ca2+ inhibition could be a consequence of Ca2+-Mg2+ competition, Ca . ATP-Mg . ATP competition or a combination of both mechanisms. In the presence of Na+ and Mg2+, Ca2+ inhibited the K+-dependent dephosphorylation of the phosphoenzyme formed from ATP, had no effect on the dephosphorylation in the absence of K+ and inhibited the rephosphorylation of the enzyme. In addition, the steady-state levels of phosphoenzyme were reduced in the presence both of NaCl and of NaCl plus KCl. With 3 mM ATP, Ca2+ alone sustained no more than 2% of the (Na+ + K+)-ATPase activity and about 23% of the Na+-ATPase activity observed with Mg2+ and no Ca2+. With 0.003 mM ATP, Ca2+ was able to maintain about 40% of the (Na+ + K+)-ATPase activity and 27% of the Na+-ATPase activity seen in the presence of Mg2+ alone. However, the E2(K)-E1K conformational change did not seem to be affected. Ca2+ inhibition of the K+-dependent rho-nitrophenylphosphatase activity of the (Na+ + K+)-ATPase followed competition kinetics between Ca2+ and Mg2+. In the presence of 10 mM NaCl and 0.75 mM KCl, the fractional inhibition of the K+-dependent rho-nitrophenylphosphatase activity as a function of Ca2+ concentration was the same with and without ATP, suggesting that Ca2+ indeed plays the important role in this process. In the absence of Mg2+, Ca2+ was unable to sustain any detectable ouabain-sensitive phosphatase activity, either with rho-nitrophenylphosphate or with acetyl phosphate as substrate.  相似文献   

11.
The effects of K+, Na+ and nucleotides (ATP or ADP) on the steady-state phosphorylation from [32P]Pi (0.5 and 1 mM) and acetyl [32P]phosphate (AcP) (5 mM) were studied in membrane fragments and in proteoliposomes with partially purified pig kidney Na,K-ATPase incorporated. The experiments were carried out at 20 degrees C and pH 7.0. In broken membranes, the Pi-induced phosphoenzyme levels were reduced to 40% by 10 mM K+ and to 20% by 10 mM K+ plus 1 mM ADP (or ATP); in the presence of 50 mM Na+, no E-P formation was detected. On the other hand, with AcP, the E-P formation was reduced by 10 mM K+ but was 30% increased by 50 mM Na+. In proteoliposomes E-P formation from Pi was (i) not influenced by 5-10 mM K+cyt or 100 mM Na+ext, (ii) about 50% reduced by 5, 10 or 100 mM K+ext and (iii) completely prevented by 50 mM Na+cyt. Enzyme phosphorylation from AcP was 30% increased by 10 mM K+cyt or 50 mM Na+cyt; these E-P were 50% reduced by 10-100 mM K+ext. However, E-P formed from AcP without K+cyt or Na+cyt was not affected by extracellular K+. Fluorescence changes of fluorescein isothiocyanate labelled membrane fragments, indicated that E-P from AcP corresponded to an E2 state in the presence of 10 mM Na+ or 2 mM K+ but to an E1 state in the absence of both cations. With pNPP, the data indicated an E1 state in the absence of Na+ and K+ and also in the presence of 20 mM Na+, and an E2 form in the presence of 5 mM K+. These results suggest that, although with some similarities, the reversible Pi phosphorylation and the phosphatase activity of the Na,K-ATPase do not share the whole reaction pathway.  相似文献   

12.
In order to study the action of the divalent cation which is essential for phosphorylation of sodium- and potassium-transport adenosine triphosphatase, magnesium ion, the normal ligand, was replaced with calcium ion, which had properties diffeerent from those of Mg2+, Mn2+, Fe2+, Co2+, Ni2+, or Zn2+. Phosphorylation of the enzyme from ATP at pH 7.4 in the presence of Na+ and Ca2+ yielded a Ca.phosphoenzyme (60% of the maximal level) with a normal rate of dephosphorylation following a chase with unlabeled Ca.ATP (PK = 0.092S-1 at 0 degrees C). In contrast, after a chase by a chelator, namely ethylenediaminetetraacetic acid, 1,2-cyclohexylenedinitrilotetraacetic acid, or ethylene glycol bis-(beta-aminoethyl ether)N,N'-tetraacetic acid, dephosphorylation slowed within 5 s and half of the initial phosphoenzyme remained with a stability about 5-fold greater than normal. Three states of the phosphoenzyme were distinguished according to their relative sensitivity to ADP or to K+ added during a chase. Normally prepared Mg.phosphoenzyme was sensitive to K+ but not to ADP; Ca.phosphoenzyme was sensitive either to ADP or to K+; and the stabilized phosphoenzyme prepared from Ca.phosphoenzyme by addition of a chelator was sensitive neither to ADP nor to K+ nor to both together. Addition of Ca2+ to the stabilized phosphoenzyme restored the reactivity to that of Ca.phosphoenzyme. Addition of Mg2+ to the stabilized phosphoenzyme changed the reactivity to that of Mg.phosphoenzyme. Therefore, this unreactive, stabilized state of the phosphoenzyme appeared to be a divalent cation-free phosphoenzyme. With respect to sensitivity to ouabain, Ca.phosphoenzyme was as sensitive as Mg.phosphoenzyme but calcium-free phosphoenzyme was much less sensitive. It was concluded that the divalent cation required for phosphorylation normally remains tightly bound to the phosphoenzyme and is required for normal reactivity. Calcium ion was almost unique in dissociating relatively easily from the phosphoenzyme. Strontium ion appeared to act similarly to Ca2+.  相似文献   

13.
1. Sea bass kidney microsomal preparations contain two Mg2+ dependent ATPase activities: the ouabain-sensitive (Na+ + K+)-ATPase and an ouabain-insensitive Na+-ATPase, requiring different assay conditions. The (Na+ + K+)-ATPase under the optimal conditions of pH 7.0, 100 mM Na+, 25 mM K+, 10 mM Mg2+, 5 mM ATP exhibits an average specific activity (S.A.) of 59 mumol Pi/mg protein per hr whereas the Na+-ATPase under the conditions of pH 6.0, 40 mM Na+, 1.5 mM MgATP, 1 mM ouabain has a maximal S.A. of 13.9 mumol Pi/mg protein per hr. 2. The (Na+ + K+)-ATPase is specifically inhibited by ouabain and vanadate; the Na+-ATPase specifically by ethacrynic acid and preferentially by frusemide; both activities are similarly inhibited by Ca2+. 3. The (Na+ + K+)-ATPase is specific for ATP and Na+, whereas the Na+-ATPase hydrolyzes other substrates in the efficiency order ATP greater than GTP greater than CTP greater than UTP and can be activated also by K+, NH4+ or Li+. 4. Minor differences between the two activities lie in the affinity for Na+, Mg2+, ATP and in the thermosensitivity. 5. The comparison between the two activities and with what has been reported in the literature only partly agree with our findings. It tentatively suggests that on the one hand two separate enzymes exist which are related to Na+ transport and, on the other, a distinct modulation in vivo in different tissues.  相似文献   

14.
Purified Na+,K(+)-ATPase from kidney outer medulla was phosphorylated by Pi in a reaction synergistically stimulated by Mg2+, when 40% (v/v) dimethyl sulfoxide was added to the assay medium. The phosphoenzyme formed at this solvent concentration was able to synthesize ATP even in the presence of Mg2+, because hydrolysis was impaired. ATP in equilibrium [32P]Pi exchange was also inhibited, indicating that partial reactions in the forward direction were blocked by the solvent. In 40% (v/v) dimethyl sulfoxide the enzyme's affinity for ADP decreased, in comparison with the values observed in purely aqueous medium. Addition of K+, which accelerated dephosphorylation of Na+,K(+)-ATPase in a totally water medium, partially reversed the inhibition of hydrolysis that was observed in the presence of dimethyl sulfoxide.  相似文献   

15.
The possibility that H+ might substitute for Na+ at Na+ sites of Na+,K+-ATPase was studied. Na+,K+-ATPase purified from pig kidney showed ouabain-sensitive K+-dependent ATPase activity in the absence of Na+ at acid pH (H+,K+-ATPase). The specific activity was 1.1 mumol Pi/mg/min at pH 5.7, whereas the specific activity of Na+,K+-ATPase was 14 mumol Pi/mg/min at pH 7.5. The enzyme was phosphorylated from ATP in the absence of Na+ at the acid pH. The initial rate of the phosphorylation was also accelerated at the acid pH in the absence of Na+, and the maximal rate obtained at pH 5.5 without Na+ was 9% of the rate at pH 7.0 with Na+. The phosphoenzyme was sensitive to K+ but almost insensitive to ADP. The phosphoenzyme was sensitive to hydroxylamine treatment and the alpha-subunit of the enzyme was found to be phosphorylated. H+,K+-ATPase was inhibited as effectively as Na+,K+-ATPase by N-ethylmaleimide but was less inhibited by oligomycin or dimethyl sulfoxide. These results indicate that protons have an Na+-like effect on the Na+ sites of Na+,K+-ATPase and suggest that protons can be transported by the sodium pump in place of Na+.  相似文献   

16.
The dephosphorylation kinetics of acid-stable phosphointermediates of (Na+ + K+)-ATPase from ox brain, ox kidney and pig kidney was studied at 0 degree C. Experiments performed on brain enzyme phosphorylated at 0 degree C in the presence of 20-600 mM Na+, 1 mM Mg2+ and 25 microM [gamma-32P]ATP show that irrespectively of the EP-pool composition, which is determined by Na+ concentration, all phosphoenzyme is either ADP- or K+-sensitive. After phosphorylation of kidney enzymes at 0 degree C with 1 mM Mg2+, 25 microM [gamma-32P]ATP and 150-1000 mM Na+ the amounts of ADP- and K+-sensitive phosphoenzymes were determined by addition of 1 mM ATP + 2.5 mM ADP or 1 mM ATP + 20 mM K+. Similarly to the previously reported results on brain enzyme, both types of dephosphorylation curves have a fast and a slow phase, so that also for kidney enzymes a slow decay of a part of the phosphoenzyme, up to 80% at 1000 mM Na+, after addition of 1 mM ATP + 20 mM K+ is observed. The results obtained with the kidney enzymes seem therefore to reinforce previous doubts about the role played by E1 approximately P(Na3) as intermediate of (Na+ + K+)-ATPase activity. Furthermore, for both kidney enzymes the sum of ADP- and K+-sensitive phosphoenzymes is greater than E tot. In experiments on brain enzyme an estimate of dissociation rate constant for the enzyme-ATP complex, k-1, is obtained. k-1 varies between 1 and 4 s-1 and seems to depend on the ligands present during formation of the complex. The highest values are found for enzyme-ATP complex formed in the presence of Na+ or Tris+. The results confirm the validity of the three-pool model in describing dephosphorylation kinetics of phosphointermediates of Na+-ATPase activity.  相似文献   

17.
1. (Na+ + K+)-dependent adenosine triphosphatase was phosphorylated on the alpha-subunit by Pi in the presence of Mg2+. Phosphorylation was stimulated by ouabain. The interactions of Pi, Mg2+, and ouabain with the enzyme could be explained by a random terreactant scheme in which the binding of each ligand to the enzyme increased the affinities for the other two. Dissociation constants of all steps of this scheme were estimated. 2. In the presence of Pi and ouabain and without added Mg2+, the phosphoenzyme was formed. Because this could be prevented by ethylenediaminetetraacetic acid, but not ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid, phosphoenzyme formation under these conditions was probably dependent on traces of endogenous Mg2+. The ability of this Mg2+ to support phosphorylation could be explained by the large increase in the enzyme's affinity for Mg2+ by ouabain. 3. In the absence of ouabain, Ca2+ did not support phosphorylation and inhibited Mg2+-dependent phosphorylation. At lower concentrations, Ca2+ was competitive with Mg2+. With increasing Ca2+ concentration, negative cooperativity was observed, suggesting the existence of multiple divalent cation sites with equivalent affinities for Mg2+, but varying affinities for Ca2+. 4. In the presence of ouabain, the maximum inhibition of Mg2+-dependent phosphorylation by Ca2+ was 50%. With saturating Pi, Mg2+, and ouabain, the number of sites binding ouabain was equal to the number of sites phosphorylated. Although Ca2+ halved phosphorylation and reduced the affinity for ouabain about 100-fold, it did not affect the number of ouabain sites. 5. We suggest that the enzyme is an alpha-oligomer and that the half-of-the-sites reactivity for phosphorylation in the presence of Pi, Mg2+, ouabain, and optimal Ca2+ is caused by (a) ouabain-induced increase in the affinities of both protomers for Mg2+ and (b) the inability of Ca2+ to replace Mg2+ on one of the protomers.  相似文献   

18.
Addition of up to 300 microM ATP in the presence of 2 M NaCl with MgCl2 to pig kidney Na+,K+-ATPase treated with N-[p-(2-benzimidazolyl)phenyl]maleimide seemed to be insufficient to saturate the rate of the fluorescence decrease. However, both the extent of the decrease and the amount of phosphoenzyme at a steady state were saturated below 20 microM ATP. Addition of Mg2+ with Na+ to the enzyme preincubated with 20 to 600 microM ATP gave nearly the same rate constant, which was below 50% of that obtained by adding 300 microM ATP to the Na+-form enzyme in the presence of Mg2+. High concentrations of ATP affected neither the rate of light-scattering change (Taniguchi, K. et al. (1986) J. Biol. Chem. 261, 3272-3281) after ADP-sensitive phosphoenzyme formation (E1P) nor that of the breakdown of E1P. A stoichiometric amount of [32P]Pi was liberated from [32P]E1P. The data suggested that ATP did not bind to E1P in such a way as to increase the extent of phosphorylation further or to accelerate dephosphorylation. The data also suggested that the reason for the large difference in the apparent affinity of ATP as evaluated from the rate and the extent of fluorescence change is the large dissociation constant for ATP of a Michaelis complex.  相似文献   

19.
Previous studies showed that microsomal (Na+ + K+)ATPase (ATP phosphohydrolase, EC 3.6.1.3) is activated by a proteinaeous material released by polymorphonuclear leukocytes. Investigations on the mode of action of the activator have been conducted by the siolation of 32P-labeled phosphoenzyme intermediates formed in the reaction of ATP and (Na+ + K)-ATPase, which has been postulated to occur through the formation and hydrolysis of acyl phosphate intermediates. The activator caused a concentration-dependent decrease in the recovery of phosphoenzyme intermediates that was not quantitatively altered by the Na+ or K+ concentration of the reaction mixture of by the presence of 1 mM oubain. A decline in phosphoenzyme intermediate recovery was promoted by the addition of the activator to preformed phosphoenzyme intermediates but not by activator that had been pretreated with protease or phenol. In addition, the activator caused a concentration-dependent stimulation of the p-nitrophenyl phosphatase and acetyl phosphatase activities of microsomal (Na+ + K+)-ATPase. It was proposed that the activator stimulates the dephosphorylation step of the (Na+ + K+)-ATPase reaction sequence.  相似文献   

20.
The effect of an ionophore A23187 on the purified Na+,K+-ATPase from the outer medulla of pig kidney was investigated. When the enzyme was pretreated with A23187 in the presence of Na+ and K+, the ATPase activity was inhibited almost completely. When the pretreatment was performed in the presence of Na+ and absence of K+, formation of the phosphoenzyme (EP) from ATP was only slightly retarded. The steady state level of EP thus formed was not altered, but EP decomposition was strongly inhibited. Under these conditions, the accumulated EP was sensitive to ADP and insensitive to K+. On the other hand, when the pretreatment was performed in the absence of Na+ and presence of K+, EP formation following simultaneous addition of Na+ and ATP was extremely slow, but the steady state level of EP was not substantially altered. When the pretreatment was performed in the absence of Na+ and presence of K+, EP formation from Pi was unaffected, and the EP formed was in rapid equilibrium with Pi of the medium. These results demonstrate that A23187 selectively inhibits isomerization of the enzyme between the high Na+ and low K+ affinity form and the low Na+ and high K+ affinity form in the catalytic cycle, whether or not the enzyme is phosphorylated. This inhibition is quite similar to the A23187-induced inhibition of the enzyme isomerization in the catalytic cycle of the Ca2+ -ATPase from sarcoplasmic reticulum (Hara, H., and Kanazawa, T. (1986)J. Biol. Chem.261, 16584-16590). These findings suggest that some common mechanism, which is involved in the enzyme isomerization, between these two transport ATPases is strongly disturbed by A23187.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号