首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Introgression versus immigration in hybridizing high-dispersal echinoderms   总被引:1,自引:0,他引:1  
Phylogeographic studies designed to estimate rates and patterns of genetic differentiation within species often reveal unexpected and graphically striking cases of allele or haplotype sharing between species (introgression) via hybridization and backcrossing. Does introgression between species significantly influence population genetic structure relative to more conventional sources of differentiation (drift) and similarity (dispersal) among populations within species? Here we use mtDNA sequences from four species in two genera of sea urchins and sea stars to quantify the relative magnitude of gene flow across oceans and across species boundaries in the context of the trans-Arctic interchange of marine organisms between the Pacific and Atlantic oceans. In spite of the much smaller distances between sympatric congeners, rates of gene flow between sympatric species via heterospecific gamete interactions were small and significantly lower than gene flow across oceans via dispersal of planktonic larvae. We conclude that, in these cases at least, larvae are more effective than gametes as vectors of gene flow.  相似文献   

2.
3.
The evolution of incompatibilities between eggs and sperm is thought to play important roles in establishing and maintaining reproductive isolation among species of broadcast-spawning marine invertebrates. However, the effectiveness of gametic isolation in initiating the speciation process and/or in limiting the introgression of genes among species at later stages of divergence remains largely unknown. In the present study, we collected DNA sequence data from five loci in four species of Strongylocentrotus sea urchins ( S. droebachiensis , S. pallidus , S. purpuratus , and S. franciscanus ) to test whether the susceptibility of S. droebachiensis eggs to fertilization by heterospecific sperm results in gene flow between species. Despite the potential for introgression, a small but statistically significant signal of introgression was observed only between the youngest pair of sister taxa ( S. pallidus and S. droebachiensis ) that was strongly asymmetrical (from the former into the latter). No significant gene flow was observed for either S. purpuratus or S. franciscanus despite the ability of their sperm to readily fertilize the eggs of S. droebachiensis . Our results demonstrate that asymmetrical gamete compatibilities in strongylocentrotids can give rise to asymmetrical patterns of introgression but suggest that gamete traits alone cannot be responsible for maintaining species integrities. The genetic boundaries between strongylocentrotid urchin species in the northeast Pacific appear to be related to postzygotic isolating mechanisms that scale with divergence times and not intrinsic gametic incompatibilities per se .  相似文献   

4.
Marine species with high dispersal potential often have huge ranges and minimal population structure. Combined with the paucity of geographic barriers in the oceans, this pattern raises the question as to how speciation occurs in the sea. Over the past 20 years, evidence has accumulated that marine speciation is often linked to the evolution of gamete recognition proteins. Rapid evolution of gamete recognition proteins in gastropods, bivalves, and sea urchins is correlated with gamete incompatibility and contributes to the maintenance of species boundaries between sympatric congeners. Here, we present a counterexample to this general pattern. The sea urchins Pseudoboletia indiana and P. maculata have broad ranges that overlap in the Indian and Pacific oceans. Cytochrome oxidase I sequences indicated that these species are distinct, and their 7.3% divergence suggests that they diverged at least 2 mya. Despite this, we suspected hybridization between them based on the presence of morphologically intermediate individuals in sympatric populations at Sydney, Australia. We assessed the opportunity for hybridization between the two species and found that (1) individuals of the two species occur within a meter of each other in nature, (2) they have overlapping annual reproductive cycles, and (3) their gametes cross-fertilize readily in the laboratory and in the field. We genotyped individuals with intermediate morphology and confirmed that many were hybrids. Hybrids were fertile, and some female hybrids had egg sizes intermediate between the two parental species. Consistent with their high level of gamete compatibility, there is minimal divergence between P. indiana and P. maculata in the gamete recognition protein bindin, with a single fixed amino acid difference between the two species. Pseudoboletia thus provides a well-characterized exception to the idea that broadcast spawning marine species living in sympatry develop and maintain species boundaries through the divergence of gamete recognition proteins and the associated evolution of gamete incompatibility.  相似文献   

5.
The asteroidal sperm-activating peptides (asterosaps) from the egg jelly bind to their sperm receptor, a membrane-bound guanylate cyclase, on the tail to activate sperm in sea stars. Asterosaps are produced as single peptides and then cleaved into shorter peptides. Sperm activation is followed by the acrosome reaction, which is subfamily specific. In order to investigate the molecular details of the asterosap-receptor interaction, corresponding cDNAs have been cloned, sequenced and analysed from the Asteriinae subfamily including Asterias amurensis, A. rubens, A. forbesi and Aphelasterias japonica, as well as Distolasterias nipon from the Coscinasteriinae subfamily. Averages of 29% and 86% identity were found from the deduced amino acid sequences in asterosap and its receptor extracellular domains, respectively, across all species examined. The phylogenic tree topology for asterosap and its receptor was similar to that of the mitochondrial cytochrome c oxidase subunit I. In spite of a certain homology, the amino acid sequences exhibited speciation. Conservation was found in the asterosap residues involved in disulphide bonding and proteinase-cleaving sites. Conversely, similarities were detected between potential asterosap-binding sites and the structure of the atrial natriuretic peptide receptor. Although the sperm-activating peptide and its receptor share certain common sequences, they may serve as barriers that ensure speciation in the sea star A. amurensis and closely related species.  相似文献   

6.
Reproductive isolation at the gamete stage has become a focus of speciation research because of its potential to evolve rapidly between closely related species. Conspecific sperm precedence (CSP), a type of gametic isolation, has been demonstrated in a number of taxa, both marine and terrestrial, with the potential to play an important role in speciation. Free-spawning marine invertebrates are ideal subjects for the study of CSP because of a likely central role for gametic barriers in reproductive isolation. The western Atlantic Mytilus blue mussel hybrid zone, ranging from the Atlantic Canada to eastern Maine, exhibits characteristics conducive to the study of CSP. Previous studies have shown that gametic incompatibility is incomplete, variable in strength and the genotype distribution is bimodal—dominated by the parental species, with a low frequency of hybrids. We conducted gamete crossing experiments using M. trossulus and M. edulis individuals collected from natural populations during the spring spawning season in order to detect the presence or absence of CSP within this hybrid zone. We detected CSP, defined here as a reduction in heterospecific offspring from competitive fertilizations in vitro compared to that seen in non-competitive fertilizations, in five of the twelve crosses in which conspecific crosses were detectable. This is the first finding of CSP in a naturally hybridizing population of a free-spawning marine invertebrate. Our findings support earlier predictions that CSP can promote assortative fertilization in bimodal hybrid zones, further advancing their hypothesized progression towards full speciation. Despite strong CSP numerous heterospecific fertilizations remain, reinforcing the hypothesis that compatible females are a source of hybrid offspring in mixed natural spawns.  相似文献   

7.
SUMMARY The genetic basis for the evolution of development includes genes that encode proteins expressed on the surfaces of sperm and eggs. Previous studies of the sperm acrosomal protein bindin have helped to characterize the adaptive evolution of gamete compatibility and speciation in sea urchins. The absence of evidence for bindin expression in taxa other than the Echinoidea has limited such studies to sea urchins, and led to the suggestion that bindin might be a sea urchin-specific molecule. Here we characterize the gene that encodes bindin in a broadcast-spawning asterinid sea star ( Patiria miniata ). We describe the sequence and domain structure of a full-length bindin cDNA and its single intron. In comparison with sea urchins, P. miniata bindin is larger but the two molecules share several general features of their domain structure and some sequence features of two domains. Our results extend the known evolutionary history of bindin from the Mesozoic (among the crown group sea urchins) into the early Paleozoic (and the common ancestor of eleutherozoans), and present new opportunities for understanding the role of bindin molecular evolution in sexual selection, life history evolution, and speciation among sea stars.  相似文献   

8.
Abstract. Glacial cycles and other climatic events have been widely invoked as factors promoting divergence, secondary contact, and hybridization between populations of terrestrial organisms, but the origin and fate of secondary contact in the sea is much less well understood. We studied the distribution of morphological and genetic variation in a northwest Atlantic zone of secondary contact between congeneric sea stars of Asterias that probably separated after the Pliocene as part of the trans-Arctic interchange. These species have similar reproductive biology and can hybridize in the laboratory. However, multivariate analysis of morphological traits scored from sea stars inside and outside the zone of secondary contact clearly indicated two clusters of phenotypes that corresponded to the two taxonomic species. A quantitative analysis of this clustering pattern did not support the hypothesis of a third grouping that might correspond to intermediate hybrid phenotypes. Known F1 hybrids from laboratory matings grouped with one of the two taxonomic species. However, a survey of mtDNA sequence variation clearly indicated that ∼13% of individuals of one species ( Asterias forbesi ) are descendants of hybridization events that resulted in introgression of haplotypes of Asterias rubens into populations of A. forbesi . We conclude that morphological phenotypes are inadequate to identify hybrids of Asterias and their descendants, and that hybridization and introgression might be common in this secondary contact zone.  相似文献   

9.
Developmental failure caused by excess sperm (polyspermy) is thought to be an important mechanism driving the evolution of gamete-recognition proteins, reproductive isolation, and speciation in marine organisms. However, these theories assume that there is heritable variation in the susceptibility to polyspermy and that this variation is related to the overall affinity between sperm and eggs. These assumptions have not been critically examined. We investigated the relationship between ease of fertilization and susceptibility to polyspermy within and among three congeneric sea urchins. The results from laboratory studies indicate that, both within and among species, individuals and species that produce eggs capable of fertilization at relatively low sperm concentrations are more susceptible to polyspermy, whereas individuals and species producing eggs that require higher concentrations of sperm to be fertilized are more resistant to polyspermy. This relationship sets the stage for selection on gamete traits that depend on sperm availability and for sexual conflict that can influence the evolution of gamete-recognition proteins and eventually lead to reproductive isolation.  相似文献   

10.
Conspecific sperm precedence occurs when females are exposed to sperm from males of multiple species, but preferentially use sperm of a conspecific. Conspecific sperm precedence and its mechanisms have been documented widely in terrestrial species, in which complex female behaviors or reproductive tract morphologies can allow many opportunities for female choice and sperm competition, however, the opportunity for conspecific sperm precedence in free spawning marine invertebrates has been largely ignored. Two sea urchin species, Echinometra oblonga and E. sp. C, have high levels of interspecific fertilization in no-choice lab crosses, but no natural hybrids have been found. We performed competitive fertilization assays to test for conspecific sperm precedence and found that eggs of both species showed a marked preference for conspecific sperm when fertilized with heterospecific sperm mixtures. Strong rejection of heterospecific sperm would not have been predicted from no-choice assays and helps explain the lack of natural hybrids. We also found significant variation in hybridization success among crosses. Conspecific sperm precedence in free spawning invertebrates shows that the simple surfaces of eggs and sperm provide ample opportunity for egg choice and sperm competition even in the absence of intricate behavior or complex reproductive morphologies.  相似文献   

11.
Gamete Recognition and Egg Activation in Sea Urchins   总被引:2,自引:0,他引:2  
SYNOPSIS. Free-spawning marine invertebrates face the challengeof ensuring that gametes of the same species come into contact,recognize, bind to and fuse with one another once they havebeen released by the adults. Coordinated spawning, chemoattractionand specific cell-cell recognition events help to overcome thischallenge. One marine invertebrate, the sea urchin, has servedas a model system for the study of gamete recognition and fertilizationfor over 100 years. Recent biochemical and molecular advancesin this area have begun to address the questions that have beenraised by the results of elegant physiological observations.The picture of fertilization that is emerging is characterizedby highly specific cell-cell interactions between proteins onthe surfaces of the gametes. These proteins then mediate thebinding and subsequent events that lead to activation of theegg and delivery of the male genetic material. Because of theserecent insights, the sea urchin egg is in a position to provideanswers to one of the central debates in developmental biology—themechanism of egg activation. Does the sperm deliver an activatingfactor? Does sperm binding trigger a receptor-mediated signal?Or is the mechanism a complex combination? With the tools andknowledge gained from the study of sea urchin fertilization,testing of these hypotheses should be feasible in the near future.  相似文献   

12.
Successful fertilization in free-spawning marine organisms depends on the interactions between genes expressed on the surfaces of eggs and sperm. Positive selection frequently characterizes the molecular evolution of such genes, raising the possibility that some common deterministic process drives the evolution of gamete recognition genes and may even be important for understanding the evolution of prezygotic isolation and speciation in the marine realm. One hypothesis is that gamete recognition genes are subject to selection for prezygotic isolation, namely, reinforcement. In a previous study, positive selection on the gene coding for the acrosomal sperm protein M7 lysin was demonstrated among allopatric populations of mussels in the Mytilus edulis species group (M. edulis, Mytilus galloprovincialis, and Mytilus trossulus). Here, we expand sampling to include M7 lysin haplotypes from populations where mussel species are sympatric and hybridize to determine whether there is a pattern of reproductive character displacement (RCD), which would be consistent with reinforcement driving selection on this gene. We do not detect a strong pattern of RCD; neither are there unique haplotypes in sympatry nor is there consistently greater population structure in comparisons involving sympatric populations. One distinct group of haplotypes, however, is strongly affected by natural selection, and this group of haplotypes is found within M. galloprovincialis populations throughout the Northern Hemisphere concurrent with haplotypes common to M. galloprovincialis and M. edulis. We suggest that balancing selection, perhaps resulting from sexual conflicts between sperm and eggs, maintains old allelic diversity within M. galloprovincialis.  相似文献   

13.
Gamete age has been postulated to be unimportant to the fertilization ecology of marine invertebrates. However, recent research suggests that, for some species at least, it may have a direct impact upon fertilization success. We present comparative data on the influence of gamete age on fertilization and development success in several marine invertebrates: the polychaetes Arenicola marina and Nereis virens and the asteroid echinoderm Asterias rubens. Oocytes are much longer lived in the polychaetes than in the echinoderm, with A. marina oocytes still capable of fertilizing and developing normally 96 h post-spawning. Developmental abnormalities and failure to reach blastula tend to occur well before the fertilizable life of the oocytes has expired. Sperm are similarly longer lived in the polychaetes; however, fertilizing capacity is markedly reduced following incubation in conspecific egg-conditioned seawater. These results are discussed in terms of the fertilization strategies of the three species. We further suggest that, for A. marina at least, longer-lived sperm and eggs are central to the fertilization strategy of this species.  相似文献   

14.
The rapid evolution of traits related to fertilization such as sperm morphology may be pivotal in the evolution of reproductive barriers and speciation. The sea urchin Strongylocentrotus droebachiensis has a circumarctic distribution and shows substantial genetic subdivision between northeastern Atlantic populations and northwestern Atlantic and Pacific populations. Using transmission electron microscopy, we show here that sperm shape, size, and ultrastructure differ markedly among populations of S. droebachiensis from different oceans and reflect patterns of genetic divergence. Sperm nuclei from northwestern Atlantic and Pacific populations were longer and narrower than those from the northeastern Atlantic. We additionally demonstrate population-level differences in the amount and location of filamentous actin (F-actin) prior to the occurrence of the acrosome reaction. Sperm from Pacific and northwest Atlantic populations differed from that of all other echinoids examined in that intact sperm contains a partly preformed acrosomal process, a structure more closely resembling the acrosomal rod seen in some molluscs. Immunofluorescent studies using anti-bindin antibodies and the F-actin-specific stain phalloidin confirmed these findings. Divergence of reproductive traits such as sperm morphology may be related to divergence in gamete compatibility and genetic divergence, and could represent the first stages of speciation in free-spawning marine invertebrates.  相似文献   

15.
The Pliocene rise of the Central American Isthmus has resulted in numerous “geminate pairs,” i.e., closely related species, one on each coast. Such species pairs can provide information on the evolution of isolating mechanisms in allopatry and on the relationship between genetic divergence and reproductive isolation in populations separated at a known time. The sea urchin genus Echinometra has one species, E. vanbrunti, in the eastern Pacific, and two, E. lucunter and E. viridis, in the Caribbean. E. viridis is morphologically distinct from the other two species, leading to the conclusion that E. lucunter and E. vanbrunti constitute a geminate pair. Allozyme data, on the other hand, place the speciation event of the two currently sympatric species after the rise of the Isthmus. We report fertilization experiments between the gametes of the three species performed to determine degree of reproductive isolation. Crosses between E. viridis and E. vanbrunti produce rates of fertilization almost equal to those manifested in homogamic crosses. Sperm of E. lucunter can fertilize eggs of the other two species, but few of its eggs permit fertilization by heterospecific sperm. Contrary to the predictions of the “speciation by reinforcement” hypothesis, degree of incompatibility between the allopatric E. lucunter and E. vanbrunti is higher than between the sympatric E. lucunter and E. viridis. Despite the incomplete and unidirectional nature of their gametic isolation, E. lucunter and E. viridis maintain their genetic integrities. Consideration of the likely phylogenetic relationships between the three species suggests that incompatibility of E. lucunter eggs with heterospecific sperm has evolved in the last 3.5 million years, after the rise of the Isthmus. There is no correlation between genetic divergence and strength of reproductive isolation, either within Echinometra, or among the geminate species pairs of echinoids that have been studied to date. Because recognition between echinoid gametes depends on the chemical compositions of a sperm protein and an egg glycoprotein, the appearance of gametic isolation would require only the fixation of a few mutations in each population on either side of a geographic barrier and could be independent of any other kind of genetic divergence. Thus, in animals with external fertilization, speciation need not be accompanied by major genomic reorganization.  相似文献   

16.
Few data are available on the effectiveness of reproductive isolating mechanisms in externally fertilizing taxa. I investigated patterns of conspecific and heterospecific fertilization among three coexisting sea urchin species, Strongylocentrotus droebachiensis, S.franciscanus, and S. purpuratus. In the laboratory, both among and within species, eggs from individual females whose eggs are more easily fertilized by conspecific sperm are also most susceptible to heterospecific fertilization. At one extreme, S. droebachiensis requires an order of magnitude fewer conspecific sperm to fertilize eggs than do the other two species and shows very little distinction between conspecific and heterospecific sperm in no choice experiments. Strongylocentrotus franciscanus has an intermediate susceptibility to fertilization by heterospecific sperm. At the other extreme, S. purpuratus rarely cross-fertilizes. Field observations indicate that S. droebachiensis is often surrounded by heterospecific sea urchins. Genetic analysis of larvae produced during heterospecific spawning events indicate that hybrids are generally produced if male conspecifics are more than 1 m from a spawning female S. droebachiensis. Laboratory cultures indicate that these hybrids suffer high mortality relative to conspecific larvae. Comparisons of reproductive success of S. droebachiensis during single-species and multispecies spawning events indicate that the benefits of producing easily fertilized eggs under conditions of sperm limitation may outweigh the costs of losing some offspring to hybrid fertilization. Patterns of variability in heterospecific fertilization are considered in light of three hypotheses: phylogenetic relatedness, reinforcement selection, and sexual selection.  相似文献   

17.
One of the major goals in speciation research is to understand which isolation mechanisms form the first barriers to gene flow. This requires examining lineages that are still in the process of divergence or incipient species. Here, we investigate the presence of behavioral and several cryptic barriers between the sympatric willow and birch host races of Lochmaea capreae. Behavioral isolation did not have any profound effect on preventing gene flow. Yet despite pairs mating indiscriminately, no offspring were produced from the heterospecific matings between birch females and willow males due to the inability of males to transfer sperm to females. We found evidence for differences in genital morphology that may contribute to failed insemination attempts during copulation. The heterospecific matings between willow females and birch males resulted in viable offspring. Yet fecundity and hatchability was remarkably reduced, which is likely the result of lower efficiency in sperm transportation and storage and lower survival of sperm in the foreign reproductive tract. Our results provide evidence for the contribution of several postmating‐prezygotic barriers that predate behavioral isolation and act as primary inhibitors of gene flow in this system. This is a surprising, yet perhaps often overlooked feature of barriers acting early in sympatric speciation process.  相似文献   

18.
19.
Fossil evidence suggests that the seastar genus Asterias arrived in the North Atlantic during the trans-Arctic interchange around 3.5 Ma. Previous genetic and morphological studies of the two species found in the Atlantic today suggested two possible scenarios for the speciation of A. rubens and A. forbesi. Through phylogenetic and population genetic analysis of data from a portion of the cytochrome oxidase I mitochondrial gene and a fragment of the ribosomal internal transcribed spacer region, I show that the formation of the Labrador Current 3.0 Ma was probably responsible for the initial vicariance of North Atlantic Asterias populations. Subsequent adaptive evolution in A. forbesi was then possible in isolation from the European species A. rubens. The contact zone between these two species formed recently, possibly due to a Holocene founding event of A. rubens in New England and the Canadian Maritimes.  相似文献   

20.
For plants and animals alike, eggs and sperm carry life from one generation to the next through the process of fertilisation. Gametes are designed to ensure that fertilisation takes place successfully so that the species is maintained. In this context, the dissimilar appearance of eggs and sperm simply reflects the dissimilar duties they carry out during the process of fertilisation. Progress in elucidating the pathway of fertilisation in mice has revealed some of the gamete organelles and macromolecules involved in critical steps of this pathway. Certain of these macromolecules are located on the surface of gametes and support species-specific interactions between eggs and sperm during fertilisation. Interestingly, it seems that large differences in the appearance of eggs and sperm belie mechanistic themes common to both gametes during the course of fertilisation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号