首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stefin A, an intracellular inhibitor of cysteine proteinases, is expressed most abundantly in epithelial cells and in cells of lymphatic origin. In order to study its role in normal and pathological conditions we have prepared and characterized monoclonal antibodies against recombinant stefin A. Two high affinity monoclonal antibodies (mAbs) (A22 and C52) were tested for binding to free and papain-complexed stefin A and to a chimeric inhibitor, consisting of 61 amino acid residues of stefin A and 37 carboxy-terminal residues of stefin B. mAb A22 recognized not only free stefin A but also stefin A in complex with papain. The mAbs were further tested for their cross-reactivity against stefin A and B isolated from different mammalian species. On the basis of sequence similarity and tertiary structure of human stefin A we have prepared three mutants - Glu33Lys, Asp61Gly and Asn62Tyr and their reactivity with the mAbs was tested. The binding affinities of mAb A22 for the Asp61Gly and Asn62Tyr mutants were significantly lower, indicating thatthe two amino acids are part of the stefin A epitope recognized by A22. The binding of both mAbs to the mutants Gly4Arg and Gly4Glu was comparable to wild-type stefin A.  相似文献   

2.
Trifluoroethanol (TFE) has been used to probe differences in the stability of the native state and in the folding pathways of the homologous cysteine protein inhibitors, human stefin A and B. After complete unfolding in 4.5 mol/L GuHCl, stefin A refolded in 11% (vol/vol) TFE, 0.75 mol/L GuHCl, at pH 6.0 and 20 degrees C, with almost identical first-order rate constants of 4.1 s-1 and 5.5 s-1 for acquisition of the CD signal at 230 and 280 nm, respectively, rates that were markedly greater than the value of 0.11 s-1 observed by the same two probes when TFE was absent. The acceleration of the rates of refolding, monitored by tyrosine fluorescence, was maximal at 10% (vol/vol) TFE. Similar rates of refolding (6.2s-1 and 7.2 s-1 for ellipticity at 230 and 280 nm, respectively) were observed for stefin A denatured in 66% (vol/vol) TFE, pH 3.3, when refolding to the same final conditions. After complete unfolding in 3.45 mol/L GuHCl, stefin B refolded in 7% (vol/vol) TFE, 0.57 mol/L GuHCl, at pH 6.0 and 20 degrees C, with a rate constant for the change in ellipticity at 280 nm of 32.8 s-1; this rate was only twice that observed when TFE was absent. As a major point of distinction from stefin A, the refolding of stefin B in the presence of TFE showed an overshoot in the ellipticity at 230 nm to a value 10% greater than that in the native protein; this signal relaxed slowly (0.01 s-1) to the final native value, with little concomitant change in the near-ultraviolet CD signal; the majority of this changes in two faster phases. After denaturation in 42% (vol/vol) TFE, pH 3.3, the kinetics of refolding to the same final conditions exhibited the same rate-limiting step (0.01 s-1) but were faster initially. The results show that similarly to stefin A, stefin B forms its hydrophobic core and predominant part of the tertiary structure faster in the presence of TFE. The results imply that the alpha-helical intermediate of stefin B is highly structured. Proteins 1999;36:205-216.  相似文献   

3.
Reversible GuHCl denaturation of human stefin A (25 degrees C, pH 8) was monitored by the tyrosine fluorescence, by circular dichroism in the near UV and by circular dichroism in the far UV. In each case a midpoint of 2.8 +/- 0.1 M GuHCl was obtained, demonstrating the cooperativity of the denaturation. Kinetics of the slow folding on diluting the protein from the GuHCl denatured state, was also measured by the three spectroscopic probes (10 degrees C, pH 8). Results conform to a sequential mechanism. Denaturant concentration and temperature dependence of the slow folding were measured by fluorescence. From a linear Arrhenius plot the Ea of 100 +/- 5 kJ/mol was read. 'Double mixing' experiments revealed a slow reaction going on in the unfolded state which influenced the amplitude of the fluorescence changes. 'Double mixing' experiments performed by FPLC have shown that the folding itself, i.e., the formation of a compact state, was not dependent on the time spent under unfolding conditions.  相似文献   

4.
Thermal denaturation of two homologous proteins, low-M(r) cysteine-proteinase inhibitors stefins A and B, has been investigated by microcalorimetry. Calorimetric enthalpies, as well as the temperatures at maximum heat capacity, were determined as a function of pH for each protein. Transitions were found reversible at all pH values examined (5.0, 6.5, 8.1) for the thermally more stable stefin A, in contrast to stefin B. Stefin B shows a sharp irreversible transition around 65 degrees C at pH 6.5 and 8.1, probably due to unfolding of a dimeric state followed by oligomerisation. At pH 5.0, both proteins exhibit a reversible transition with temperatures of half-denaturation at 50.2 degrees C and 90.8 degrees C for stefins B and A, respectively. The calorimetric enthalpies, which equal the van't Hoff enthalpies to within 10%, are 293 kJ/mol and 490 kJ/mol for stefins B and A, respectively. Using the predictive method of Ooi and Oobatake (1991) [Proc. Natl Acad. Sci. USA 88, 2859] the thermodynamic functions of unfolding were calculated for stefin B, whose three-dimensional structure has been determined. The calculated enthalpy, heat-capacity change on unfolding and the temperature of half denaturation compare well to the microcalorimetric data.  相似文献   

5.
Dubey VK  Jagannadham MV 《Biochemistry》2003,42(42):12287-12297
The structural and functional aspects along with equilibrium unfolding of procerain, a cysteine protease from Calotropis procera, were studied in solution. The energetic parameters and conformational stability of procerain in different states were also estimated and interpreted. Procerain belongs to the alpha + beta class of proteins. At pH 2.0, procerain exists in a partially unfolded state with characteristics of a molten globule-like state, and the protein is predominantly a beta-sheet conformation and exhibits strong ANS binding. GuHCl and temperature denaturation of procerain in the molten globule-like state is noncooperative, contrary to the cooperativity seen with the native protein, suggesting the presence of two parts in the molecular structure of procerain, possibly domains, with different stability that unfolds in steps. Moreover, tryptophan quenching studies suggested the exposure of aromatic residues to solvent in this state. At lower pH, procerain unfolds to the acid-unfolded state, and a further decrease in the pH drives the protein to the A state. The presence of 0.5 M salt in the solvent composition directs the transition to the A state while bypassing the acid-unfolded state. GuHCl-induced unfolding of procerain at pH 3.0 seen by various methods is cooperative, but the transitions are noncoincidental. Besides, a strong ANS binding to the protein is observed at low concentrations of GuHCl, indicating the presence of an intermediate in the unfolding pathway. On the other hand, even in the presence of urea (8 M), procerain retains all the activity as well as structural parameters at neutral pH. However, the protein is susceptible to unfolding by urea at lower pH, and the transitions are cooperative and coincidental. Further, the properties of the molten globule-like state and the intermediate state are different, but both states have the same conformational stability. This indicates that these intermediates may be located on parallel folding routes of procerain.  相似文献   

6.
Ervatamin A, a cysteine proteases from Ervatamia coronaria, has been used as model system to examine structure-function relationship by equilibrium unfolding methods. Ervatamin A belongs to alpha+beta class of proteins and exhibit stability towards temperature and chemical denaturants. Acid induced unfolding of ervatamin A was incomplete with respect to the structural content of the enzyme. Between pH 0.5 and 2.0, the enzyme is predominantly in beta-sheet conformation and shows a strong ANS binding suggesting the existence of a partially unfolded intermediate state (I(A) state). Surprisingly, high concentrations of GuHCl required to unfold this state and the transition mid points GuHCl induced unfolding curves are significantly higher. GuHCl induced unfolding of ervatamin A at pH 3.0 as well as at pH 4.0 is complex and cannot be satisfactorily fit to a two-state model for unfolding. Besides, a strong ANS binding to the protein is observed at low concentration of GuHCl, indicating the presence of intermediate in the unfolding pathway. On the other hand, even in the presence of urea (8M) the enzyme retains all the activity as well as structural parameters at neutral pH. However, the protein is susceptible to urea unfolding at pH 3.0 and below. Urea induced unfolding of ervatamin A at pH 3.0 is cooperative and the transitions curves obtained by different probes are and non-coincidental. Temperature denaturation of ervatamin A in I(A) state is non-cooperative, contrary to the cooperativity seen with native protein, suggesting the presence of two parts in the molecular structure of ervatamin A may be domains, with different stability that unfolds in steps. Careful inspection of biophysical properties of intermediate states populated in urea and GuHCl (I(UG) state) induced unfolding suggests all these three intermediates are identical and populated in different conditions. However, the properties of the intermediate (I(A) state) identified at pH approximately 1.5 are different from those of the I(UG) state.  相似文献   

7.
A synthetic gene coding for the human intracellular cysteine proteinase inhibitor, stefin B, was constructed from 13 chemically synthesized oligonucleotides according to the method of Khorana. The gene was inserted into the plasmid vector pTZ, amplified and sequenced. For expression, a temperature-inducible system producing fusion proteins was used. With the vector pEx31A containing the synthetic cystatin B gene, E. coli strain 537 produced a fusion protein of the N-terminal part of bacteriophage MS-2 polymerase and [Met-2Gly-1]stefin B. Lysates of the induced bacteria were inhibitorily active against papain. The fusion protein was expressed in high yield (about 20% of total E. coli proteins) and mostly deposited as inclusion bodies. The unfolded fusion protein was partially purified in the presence of urea. After refolding, approx. 6% of the protein was inhibitorily active against papain, human cathepsin H and B. Des[Met1,2(2)]stefin B was released by cyanogen bromide cleavage of the fusion protein and identified by N-terminal amino-acid sequence analysis. The non-separated cleavage products were also inhibitorily active after refolding. The estimated inhibition constants for the fusion protein and its cleavage products were similar to those reported for natural stefin B.  相似文献   

8.
Cathepsin D inactivates cysteine proteinase inhibitors, cystatins   总被引:2,自引:0,他引:2  
The formation of inactive complexes in excess molar amounts of human cathepsins H and L with their protein inhibitors human stefin A, human stefin B and chicken cystatin at pH 5.6 has been shown by measurement of enzyme activity coupled with reverse-phase HPLC not to involve covalent cleavage of the inhibitors. Inhibition must be the direct result of binding. On the contrary the interaction of cystatins with aspartic proteinase cathepsin D at pH 3.5 for 60 min followed by HPLC resulted in their inactivation accompanied by peptide bond cleavage at several sites, preferentially those involving hydrophobic amino acid residues. The released peptides do not inhibit papain and cathepsin L. These results explain reported elevated levels of cysteine proteinases and lead to the proposal that cathepsin D exerts an important function, through inactivation of cystatins, in the increased activities of cysteine proteinases in human diseases including muscular distrophy.  相似文献   

9.
Cystatin, the protein inhibitor of cysteine proteinases from chicken egg white was purified by a new method. The two major forms with pI 6.5 (Peak I) and 5.6 (Peak II) were separated. Molecular masses of both forms are approx. 12700 Da as determined by gel chromatography; Form A from Peak I has a molecular mass of 12191 Da as calculated from its amino-acid sequence. The complete amino-acid sequence of Form A was determined by automated solid-phase Edman degradation of the whole inhibitor and its cyanogen bromide fragments. It contains 108 amino-acid residues. Form B from Peak II represents an elongation of Form A by 8 amino-acid residues at the N-terminus. Cystatin contains four cysteine residues, presumably forming two disulphide bridges. Comparison of the amino-acid sequences and near ultraviolet circular dichroism spectra of stefin, the cysteine proteinase inhibitor from human granulocytes, and cystatin shows that the two proteins are entirely different. According to the primary structures, probably neither proteinase inhibitor is involved in a thiol-disulphide exchange mechanism in the interaction with its target enzyme.  相似文献   

10.
The spin label method has been used to obtain information about conformational changes of histone oligomers taking advantage of the fact that at a low ionic strength and in the presence of other histones about 45% of cysteine residues of histone H3 react with the 3-maleimido-2,2,5,5-tetramethyl-1-pyrrolidinyloxyl spin label. For the labeled complexes H3-H4 and H nu the degree of immobilization of the spin label is a function of the ionic strength. This variation is identical for both complexes within a long range of ionic strengths, including the interval of 0.8-2 M NaCl, under which conditions interactions are known to exist between the tetramer (H3)2 (H4)2 and the dimer (H2A) (H2B). This finding suggests a negligible influence of the dimer for modifying the cysteine residue environment of histone H3 on octamer formation. GuHCl treatment at high ionic strength of the labeled complexes gives rise to a non-lineal increase in the degree of mobility of the spin label. This increase, at low GuHCl concentration (0-0.5 M GuHCl), is interpreted as showing a lowering in rigidity for the Cys residue environment, without affecting the general stability of the tetramer (H3)2 (H4)2. At higher GuHCl concentration (2-3 M GuHCl) the increase in the spin label mobility is related to a dissociation of the complexes in single histones. Our results are consistent with the view that the overall structure of the tetramer, as well as its conformational changes during complex structuration or denaturation, are not strongly affected by the presence of the dimer (H2A) (H2B).  相似文献   

11.
We describe expression, purification, and characterization of three site-specific mutants of recombinant human stefin B: H75W, P36G, and P79S. The far- and near-UV CD spectra have shown that they have similar secondary and tertiary structures to the parent protein. The elution on gel-filtration suggests that recombinant human stefin B and the P36G variant are predominantly monomers, whereas the P79S variant is a dimer. ANS dye binding, reflecting exposed hydrophobic patches, is highest for the P36G variant, both at pH 5 and 3. ANS dye binding also is increased for stefin B and the other two variants at pH 3. Under the chosen conditions the highest tendency to form amyloid fibrils has been shown for the recombinant human stefin B. The P79S variant demonstrates a longer lag phase and a lower rate of fibril formation, while the P36G variant is most prone to amorphous aggregation. This was demonstrated by ThT fluorescence as a function of time and by transmission electron microscopy.  相似文献   

12.
For the first time the pro-form of a recombinant cysteine proteinase has been expressed at a high level in Escherichia coli. This inactive precursor can subsequently be processed to yield active enzyme. Sufficient protein can be produced using this system for X-ray crystallographic structure studies of engineered proteinases. A cDNA clone encoding propapain, a precursor of the papaya proteinase, papain, was expressed in E. coli using a T7 polymerase expression system. Insoluble recombinant protein was solubilized in 6 M guanidine hydrochloride and 10 mM dithiothreitol, at pH 8.6. A protein-glutathione mixed disulphide was formed by dilution into oxidized glutathione and 6 M GuHCl, also at pH 8.6. Final refolding and disulphide bond formation was induced by dilution into 3 mM cysteine at pH 8.6. Renatured propapain was processed to active papain at pH 4.0 in the presence of excess cysteine. Final processing could be inhibited by the specific cysteine proteinase inhibitors E64 and leupeptin, but not by pepstatin, PMSF or EDTA. This indicates that final processing was due to a cysteine proteinase and suggests that an autocatalytic event is required for papain maturation.  相似文献   

13.
The structural and functional aspects of ervatamin B were studied in solution. Ervatamin B belongs to the alpha + beta class of proteins. The intrinsic fluorescence emission maximum of the enzyme was at 350 nm under neutral conditions, and at 355 nm under denaturing conditions. Between pH 1.0- 2.5 the enzyme exists in a partially unfolded state with minimum or no tertiary structure, and no proteolytic activity. At still lower pH, the enzyme regains substantial secondary structure, which is predominantly a beta-sheet conformation and shows a strong binding to 8-anilino-1- napthalene-sulfonic acid (ANS). In the presence of salt, the enzyme attains a similar state directly from the native state. Under neutral conditions, the enzyme was stable in urea, while the guanidine hydrochloride (GuHCl) induced equilibrium unfolding was cooperative. The GuHCl induced unfolding transition curves at pH 3.0 and 4.0 were non-coincidental, indicating the presence of intermediates in the unfolding pathway. This was substantiated by strong ANS binding that was observed at low concentrations of GuHCl at both pH 3.0 and 4.0. The urea induced transition curves at pH 3.0 were, however, coincidental, but non-cooperative. This indicates that the different structural units of the enzyme unfold in steps through intermediates. This observation is further supported by two emission maxima in ANS binding assay during urea denaturation. Hence, denaturant induced equilibrium unfolding pathway of ervatamin B, which differs from the acid induced unfolding pathway, is not a simple two-state transition but involves intermediates which probably accumulate at different stages of protein folding and hence adds a new dimension to the unfolding pathway of plant proteases of the papain superfamily.  相似文献   

14.
Proteolytically active complexes of the proteinase cathepsin L, with an endogenous inhibitor of cysteine proteinases, were purified from sheep liver. The complexes were active against the synthetic substrate Z-Phe-Arg-NHMec and also the proteins azocasein and gelatin. The composition of the complexes was demonstrated by Western blotting, after reducing and nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis with monospecific antibodies raised against purified sheep liver cathepsin L and purified sheep liver cysteine proteinase inhibitor (probably stefin B). Similar complexes could be formed in vitro, by coincubation of purified sheep liver cathepsin L with the purified sheep liver cystatin at a pH of 5.5 or higher.  相似文献   

15.
In order to elucidate the stabilization mechanism of CutA1 from Pyrococcus horikoshii (PhCutA1) with a denaturation temperature of nearly 150 degrees C, GuHCl denaturation and heat denaturation were examined at neutral and acidic pHs. As a comparison, CutA1 proteins from Thermus thermophilus (TtCutA1) and Oryza sativa (OsCutA1) were also examined, which have lower optimum growth temperatures of 75 and 28 degrees C, respectively, than that (98 degrees C) of P. horikoshii. GuHCl-induced unfolding and refolding curves of the three proteins showed hysteresis effects due to an unusually slow unfolding rate. The midpoints of refolding for PhCutA1, TtCutA1 and OsCutA1 were 5.7 M, 3.3 M, and 2.3 M GuHCl, respectively, at pH 8.0 and 37 degrees C. DSC experiments with TtCutA1 and OsCutA1 showed that the denaturation temperatures were remarkably high, 112.8 and 97.3 degrees C, respectively, at pH 7.0 and that the good heat reversibility was amenable to thermodynamic analyses. At acidic pH, TtCutA1 showed higher stability to both heat and denaturant than PhCutA1. Combined with the data for DSC and denaturant denaturation, the unfolding Gibbs energy of PhCutA1 could be depicted as a function of temperature. It was experimentally revealed that (1) the unusually high stability of PhCutA1 basically originates from a common trimer structure of the three proteins, (2) the stability of PhCutA1 is superior to those of the other two CutA1s over all temperatures above 0 degrees C at neutral pH, due to the decrease in both enthalpy and entropy, and (3) ion pairs of PhCutA1 contribute to the unusually high stability at neutral pH.  相似文献   

16.
The recently described inhibitor of cysteine proteinases from Trypanosoma cruzi, chagasin, was found to have close homologs in several eukaryotes, bacteria and archaea, the first protein inhibitors of cysteine proteases in prokaryotes. These previously uncharacterized 110-130 residue-long proteins share a well-conserved sequence motif that corresponds to two adjacent beta-strands and the short loop connecting them. Chagasin-like proteins also have other conserved, mostly aromatic, residues, and share the same predicted secondary structure. These proteins adopt an all-beta fold with eight predicted beta-strands of the immunoglobulin type. The phylogenetic distribution of the chagasins generally correlates with the presence of papain-like cysteine proteases. Previous studies have uncovered similar trends in cysteine proteinase binding by two unrelated inhibitors, stefin and p41, that belong to the cystatin and thyroglobulin families, respectively. A hypothetical model of chagasin-cruzipain interaction suggests that chagasin may dock to the cruzipain active site in a similar manner with the conserved NPTTG motif of chagasin forming a loop that is similar to the wedge structures formed at the active sites of papain and cathepsin L by stefin and p41.  相似文献   

17.
A new cysteine proteinase inhibitor (CPI) was isolated from bovine thymus. According to the amino acid sequence it belongs to the stefin family. It appears as a monomer and a dimer with monomer M(r) of 11,178 and pI values 5.6 for the monomer and 5.2 and 5.6 for the dimer. Ki for the interaction with papain was determined to be 0.12 nM. The most interesting feature of bovine stefin B is the replacement of the highly conserved QVVAG region in stefins with the QLVAG sequence without interfering its inhibitory properties.  相似文献   

18.
Human stefin B (cystatin B) is an intracellular cysteine proteinase inhibitor broadly distributed in different tissues. Here, we show that recombinant human stefin B readily forms amyloid fibrils in vitro. It dimerises and further oligomerises, starting from the native-like acid intermediate, I(N), populated at pH 5. On standing at room temperature it produces regular (over 4 microm long) fibrils over a period of several months. These have been visualised by transmission electron microscopy and atomic force microscopy. Their cross-sectional diameter is about 14 nm and blocks of 27 nm repeat longitudinally. The fibrils are smooth, of unbranched surface, consistent with findings of other amyloid fibrils. Thioflavin T fluorescence spectra as a function of time were recorded and Congo red dye binding to the fibrils was demonstrated. Adding 10% (v/v) trifluoroethanol resulted in an increased rate of fibrillation with a typical lag phase. The finding that human stefin B, in contrast to the homologue stefin A, forms amyloid fibrils rather easily should promote further studies of the protein's behaviour in vivo, and/or as a model system for fibrillogenesis.  相似文献   

19.
Guanidinium HCl (GdmHCl), pH, and heat denaturation of the recombinant human stefin B, a low molecular weight protein inhibitor of cysteine proteinases, has been followed by circular dichroism. From the noncoincidence of the transitions in the near and far UV, the existence of stable intermediate states possessing few persistent tertiary interactions but most of the native-like secondary structure, was inferred. These intermediate states exist at equilibrium under various conditions, namely, state G at 1.7 M GdmHCl (pH 8, 25 degrees C), state A at pH 4 (0.6 M GdmHCl, 25 degrees C) and state T above 68 degrees C. By size exclusion chromatography, their apparent compactness was determined. The intermediate states A, T, and G were compact and are therefore classified as "molten globule" states.  相似文献   

20.
Molecular dynamics study was performed on the cysteine proteinase inhibitor stefin B. Structure of inhibitor from the complex with papain was used as a starting point. Amino terminal "trunk" of the inhibitor which lies extended along the cleft of the enzyme in the complex, folded onto the body of inhibitor during MD simulation, thereby reducing the total and particularly hydrophobic surface exposed to the solvent. This effect counterbalances hydrophobic contribution of the "trunk" and explains why its deletion in stefin B and related inhibitors doesn't reduce the dissociation constant. The rest of stefin B conformation is conserved together with main chain hydrogen bonds. Fluctuations of C alpha atoms resembles crystallographic B factors with exception of residues in contact with enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号