首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Blouse GE  Perron MJ  Thompson JH  Day DE  Link CA  Shore JD 《Biochemistry》2002,41(40):11997-12009
The inhibition mechanism of serpins requires a change in structure to entrap the target proteinase as a stable acyl-enzyme complex. Although it has generally been assumed that reactive center loop insertion and associated conformational change proceeds in a concerted manner, this has not been demonstrated directly. Through the substitution of tryptophan with 7-azatryptophan and an analysis of transient reaction kinetics, we have described the formation of an inhibited serpin-proteinase complex as a single concerted transition of the serpin structure. Replacement of the four tryptophans of plasminogen activator inhibitor type-1 (PAI-1) with the spectrally unique analogue 7-azatryptophan permitted observations of conformational changes in the serpin but not those of the proteinase. Formation of covalent acyl-enzyme complexes, but not noncovalent Michaelis complexes, with tissue-type plasminogen activator (t-PA) or urokinase (u-PA) resulted in rapid decreases of fluorescence coinciding with insertion of the reactive center loop and expansion of beta-sheet A. Insertion of an octapeptide consisting of the P14-P7 residues of the reactive center loop into beta-sheet A produced the same conformational change in serpin structure measured by 7-azatryptophan fluorescence, suggesting that introduction of the proximal loop residues induces the structural rearrangement of the serpin molecule. The atom specific modification of the tryptophan indole rings through analogue substitution produced a proteinase specific effect on function. The reduced inhibitory activity of PAI-1 against t-PA but not u-PA suggested that the mechanism of loop insertion is sensitive to the intramolecular interactions of one or more tryptophan residues.  相似文献   

2.
We have demonstrated that interactions within the conserved serpin breach region play a direct role in the critical step of the serpin reaction in which the acyl-enzyme intermediate must first be exposed to hydrolyzing water and aqueous deacylation. Substitution of the breach tryptophan in PAI-1 (Trp175), a residue found in virtually all known serpins, with phenylalanine altered the kinetics of the reaction mechanism and impeded the ability of PAI-1 to spontaneously become latent without compromising the inherent rate of cleaved loop insertion or partitioning between the final inhibited serpin-proteinase complex and hydrolyzed serpin. Kinetic dissection of the PAI-1 inhibitory mechanism using multiple target proteinases made possible the identification of a single rate-limiting intermediate step coupled to the molecular interactions within the breach region. This step involves the initial insertion of the proximal reactive center loop hinge residue(s) into beta-sheet A and facilitates translocation of the distal P'-side of the cleaved reactive center loop from the substrate cleft of the proteinase. Substitution of the tryptophan residue raised the kinetic barrier restricting the initial loop insertion event, significantly retarding the rate-limiting step in tPA reactions in which strong exosite interactions must be overcome for the reaction to proceed.  相似文献   

3.
The binding of plasminogen activator inhibitor-1 (PAI-1) to serine proteinases, such as tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA), is mediated by the exosite interactions between the surface-exposed variable region-1, or 37-loop, of the proteinase and the distal reactive center loop (RCL) of PAI-1. Although the contribution of such interactions to the inhibitory activity of PAI-1 has been established, the specific mechanistic steps affected by interactions at the distal RCL remain unknown. We have used protein engineering, stopped-flow fluorimetry, and rapid acid quenching techniques to elucidate the role of exosite interactions in the neutralization of tPA, uPA, and beta-trypsin by PAI-1. Alanine substitutions at the distal P4' (Glu-350) and P5' (Glu-351) residues of PAI-1 reduced the rates of Michaelis complex formation (k(a)) and overall inhibition (k(app)) with tPA by 13.4- and 4.7-fold, respectively, whereas the rate of loop insertion or final acyl-enzyme formation (k(lim)) increased by 3.3-fold. The effects of double mutations on k(a), k(lim), and k(app) were small with uPA and nonexistent with beta-trypsin. We provide the first kinetic evidence that the removal of exosite interactions significantly alters the formation of the noncovalent Michaelis complex, facilitating the release of the primed side of the distal loop from the active-site pocket of tPA and the subsequent insertion of the cleaved reactive center loop into beta-sheet A. Moreover, mutational analysis indicates that the P5' residue contributes more to the mechanism of tPA inhibition, notably by promoting the formation of a final Michaelis complex.  相似文献   

4.
Plasminogen activator inhibitor-1 (PAI-1) is a typical member of the serpin family that kinetically traps its target proteinase as a covalent complex by distortion of the proteinase domain. Incorporation of the fluorescently silent 4-fluorotryptophan analog into PAI-1 permitted us to observe changes in the intrinsic tryptophan fluorescence of two-chain tissue-type plasminogen activator (tPA) and the proteinase domain of tPA during the inhibition reaction. We demonstrated three distinct conformational changes of the proteinase that occur during complex formation and distortion. A conformational change occurred during the initial formation of the non-covalent Michaelis complex followed by a large conformational change associated with the distortion of the proteinase catalytic domain that occurs concurrently with the formation of stable proteinase-inhibitor complexes. Following distortion, a very slow structural change occurs that may be involved in the stabilization or regulation of the trapped complex. Furthermore, by comparing the inhibition rates of two-chain tPA and the proteinase domain of tPA by PAI-1, we demonstrate that the accessory domains of tPA play a prominent role in the initial formation of the non-covalent Michaelis complex.  相似文献   

5.
Stopped-flow fluorometry was used to study the kinetics of the reactive center loop insertion occurring during the reaction of N-((2-(iodoacetoxy)ethyl)-N-methyl)amino-7-nitrobenz-2-oxa-3-diazole (NBD) P9 plasminogen activator inhibitor-1 (PAI-1) with tissue-(tPA) and urokinase (uPA)-type plasminogen activators and human pancreatic elastase at pH 5.5-8.5. The limiting rate constants of reactive center loop insertion (k(lim)) and concentrations of proteinase at half-saturation (K(0.5)) for tPA and uPA and the specificity constants (k(lim)/K(0.5)) for elastase were determined. The pH dependences of k(lim)/K(0.5) reflected inactivation of each enzyme due to protonation of His57 of the catalytic triad. However, the specificity of the inhibitory reaction with tPA and uPA was notably higher than that for the substrate reaction catalyzed by elastase. pH dependences of k(lim) and K(0.5) obtained for tPA revealed an additional ionizable group (pKa, 6.0-6.2) affecting the reaction. Protonation of this group resulted in a significant increase in both k(lim) and K(0.5) and a 4.6-fold decrease in the specificity of the reaction of tPA with NBD P9 PAI-1. Binding of monoclonal antibody MA-55F4C12 to PAI-1 induced a decrease in k(lim) and K(0.5) at any pH but did not affect either the pKa of the group or an observed decrease in k(lim)/K(0.5) due to protonation of the group. In contrast to tPA, the k(lim) and K(0.5) for the reactions of uPA with NBD P9 PAI-1 or its complex with the monoclonal antibody were independent of pH in the 6.5-8.5 range. Since slightly acidic pH is a feature of a number of malignant tumors, alterations in PAI-1/tPA kinetics could play a role in the cancerogenesis. Changes in the protonation state of His(188), which is placed closely to the S1 site and is unique for tPA, has been proposed to contribute to the observed pH dependences of k(lim) and K(0.5).  相似文献   

6.
Substitution of the native variable region-1 (VR1/37-loop) of thrombin by the corresponding VR1 of tissue-type plasminogen activator (thrombin-VR1(tPA)) increases the rate of inhibition by plasminogen activator inhibitor type 1 (PAI-1) by three orders of magnitude, and is thus sufficient to confer PAI-1 specificity to a heterologous serine protease. A structural and kinetical approach to establish the function of the VR1 loop of t-PA in the context of the thrombin-VR1(tPA) variant is described. The crystal structure of thrombin-VR1(tPA) was resolved and showed a conserved overall alpha-thrombin structure, but a partially disordered VR1 loop as also reported for t-PA. The contribution of a prominent charge substitution close to the active site was studied using charge neutralization variants thrombin-E39Q(c39) and thrombin-VR1(tPA)-R304Q(c39), resulting in only fourfold changes in the PAI-1 inhibition rate. Surface plasmon resonance revealed that the affinity of initial reversible complex formation between PAI-1 and catalytically inactive Ser195-->Ala variants of thrombin and thrombin-VR1(tPA) is only increased fivefold, i.e. KD is 652 and 128 nM for thrombin-S195A and thrombin-S195A-VR1(tPA), respectively. We established that the partition ratio of the suicide substrate reaction between the proteases and PAI-1 was largely unaffected in any variant studied. Hirugen allosterically decreases the rate of thrombin inhibition by PAI-1 2.5-fold and of thrombin-VR1(tPA) 20-fold, by interfering with a unimolecular step in the reaction, not by decreasing initial complex formation or by altering the stoichiometry. Finally, kinetic modeling demonstrated that acylation is the rate-limiting step in thrombin inhibition by PAI-1 (k approximately 10(-3) s(-1)) and this kinetic block is alleviated by the introduction of the tPA-VR1 into thrombin (k>1 s(-1)). We propose that the length, flexibility and different charge architecture of the VR1 loop of t-PA invoke an induced fit of the reactive center loop of PAI-1, thereby enhancing the rate of acylation in the Michaelis complex between thrombin-VR1(t-PA) and PAI-1 by more than two orders of magnitude.  相似文献   

7.
Mechanism-based inhibition of proteinases by serpins involves enzyme acylation and fast insertion of the reactive center loop (RCL) into the central beta-sheet of the serpin, resulting in mechanical inactivation of the proteinase. We examined the effects of ligands specific to alpha-helix F (alphaHF) of plasminogen activator inhibitor-1 (PAI-1) on the stoichiometry of inhibition (SI) and limiting rate constant (k(lim)) of RCL insertion for reactions with beta-trypsin, tissue-type plasminogen activator (tPA), and urokinase. The somatomedin B domain of vitronectin (SMBD) did not affect SI for any proteinase or k(lim) for tPA but decreased the k(lim) for beta-trypsin. In contrast to SMBD, monoclonal antibodies MA-55F4C12 and MA-33H1F7, the epitopes of which are located at the opposite side of alphaHF, decreased k(lim) and increased SI for every enzyme. These effects were enhanced in the presence of SMBD. RCL insertion for beta-trypsin and tPA is limited by different subsequent steps of PAI-1 mechanism as follows: enzyme acylation and formation of a loop-displaced acyl complex (LDA), respectively. Stabilization of LDA through the disruption of the exosite interactions between PAI-1 and tPA induced an increase in the k(lim) but did not affect the SI. Thus it is unlikely that LDA contributes significantly to the outcome of the serpin reaction. These results demonstrate that the rate of RCL insertion is not necessarily correlated with SI and indicate that an intermediate, different from LDA, which forms during the late steps of PAI-1 mechanism, and could be stabilized by ligands specific to alphaHF, controls bifurcation between the inhibitory and the substrate pathways.  相似文献   

8.
The serpin plasminogen activator inhibitor-1 (PAI-1) is a fast and specific inhibitor of the plasminogen activating serine proteases tissue-type and urokinase-type plasminogen activator and, as such, an important regulator in turnover of extracellular matrix and in fibrinolysis. PAI-1 spontaneously loses its antiproteolytic activity by inserting its reactive centre loop (RCL) as strand 4 in beta-sheet A, thereby converting to the so-called latent state. We have investigated the importance of the amino acid sequence of alpha-helix F (hF) and the connecting loop to s3A (hF/s3A-loop) for the rate of latency transition. We grafted regions of the hF/s3A-loop from antithrombin III and alpha1-protease inhibitor onto PAI-1, creating eight variants, and found that one of these reversions towards the serpin consensus decreased the rate of latency transition. We prepared 28 PAI-1 variants with individual residues in hF and beta-sheet A replaced by an alanine. We found that mutating serpin consensus residues always had functional consequences whereas mutating nonconserved residues only had so in one case. Two variants had low but stable inhibitory activity and a pronounced tendency towards substrate behaviour, suggesting that insertion of the RCL is held back during latency transition as well as during complex formation with target proteases. The data presented identify new determinants of PAI-1 latency transition and provide general insight into the characteristic loop-sheet interactions in serpins.  相似文献   

9.
Plasminogen activator inhibitor-1 (PAI-1) rapidly inactivates tissue plasminogen activator (tPA). After initial binding and cleavage of the reactive-centre loop of PAI-1, this complex is believed to undergo a major rearrangement. Using surface plasmon resonance and SDS-PAGE, we have studied the influence of a panel of monoclonal antibodies on the reaction leading to the final covalent complex. On the basis of these data, we suggest the mechanisms for the action of different classes of inhibitory antibodies. We propose that the antibodies which convert PAI-1 into a substrate for tPA do this by means of preventing the conversion of the initial PAI-1/tPA complex into the final complex by sterical intervention. Moreover, the localisation of the binding epitopes on free PAI-1, as well as on the PAI-1/tPA complex, suggests that tPA in the final complex cannot be located near helices E and F, as has previously been proposed.  相似文献   

10.
BACKGROUND: Plasminogen activator inhibitor 1 (PAI-1) is a serpin that has a key role in the control of fibrinolysis through proteinase inhibition. PAI-1 also has a role in regulating cell adhesion processes relevant to tissue remodeling and metastasis; this role is mediated by its binding to the adhesive glycoprotein vitronectin rather than by proteinase inhibition. Active PAI-1 is metastable and spontaneously transforms to an inactive latent conformation. Previous attempts to crystallize the active conformation of PAI-1 have failed. RESULTS: The crystal structure of a stable quadruple mutant of PAI-1(Asn150-->His, Lys154-->Thr, Gln319-->Leu, Met354-->Ile) in its active conformation has been solved at a nominal 3 A resolution. In two of four independent molecules within the crystal, the flexible reactive center loop is unconstrained by crystal-packing contacts and is disordered. In the other two molecules, the reactive center loop forms intimate loop-sheet interactions with neighboring molecules, generating an infinite chain within the crystal. The overall conformation resembles that seen for other active inhibitory serpins. CONCLUSIONS: The structure clarifies the molecular basis of the stabilizing mutations and the reduced affinity of PAI-1, on cleavage or in the latent form, for vitronectin. The infinite chain of linked molecules also suggests a new mechanism for the serpin polymerization associated with certain diseases. The results support the concept that the reactive center loop of an active serpin is flexible and has no defined conformation in the absence of intermolecular contacts. The determination of the structure of the active form constitutes an essential step for the rational design of PAI-1 inhibitors.  相似文献   

11.
Peterson FC  Gordon NC  Gettins PG 《Biochemistry》2000,39(39):11884-11892
A structural understanding of the nature and scope of serpin inhibition mechanisms has been limited by the inability so far to crystallize any serpin-proteinase complex. We describe here the application of [(1)H-(15)N]-HSQC NMR on uniformly and residue-selectively (15)N-labeled serpin alpha(1)-proteinase inhibitor (Pittsburgh variant with stabilizing mutations) to provide a nonperturbing and exquisitely sensitive means of probing the conformation of the serpin alone and in a noncovalent complex with inactive, serine 195-modified, bovine trypsin. The latter should be a good model both for the few examples of reversible serpin-proteinase complexes and for the initial Michaelis-like complex formed en route to irreversible covalent inhibition. Cleavage of the reactive center loop, with subsequent insertion into beta-sheet A, caused dramatic perturbation of most of the NMR cross-peaks. This was true for both the uniformly labeled and alanine-specifically labeled samples. The spectra of uniformly or leucine- or alanine-specifically labeled alpha(1)-proteinase inhibitor in noncovalent complex with unlabeled inactive trypsin gave almost no detectable chemical shift changes of cross-peaks, but some general increase in line width. Residue-specific assignments of the four alanines in the reactive center loop, at P12, P11, P9, and P4, allowed specific examination of the behavior of the reactive center loop. All four alanines showed higher mobility than the body of the serpin, consistent with a flexible reactive center loop, which remained flexible even in the noncovalent complex with proteinase. The three alanines near the hinge point for insertion showed almost no chemical shift perturbation upon noncovalent complex formation, while the alanine at P4 was perturbed, presumably by interaction with the active site of bound trypsin. Reporters from both the body of the serpin and the reactive center loop therefore indicate that noncovalent complex formation involves no conformational change in the body of the serpin and only minor perturbation of the reactive center loop in the region which contacts proteinase. Thus, despite the large size of serpin and serpin-proteinase complex, 45 and 69 kDa respectively, NMR provides a very sensitive means of probing serpin conformation and mobility, which should be applicable both to noncovalent and to covalent complexes with a range of different proteinases, and probably to other serpins.  相似文献   

12.
The serine protease tissue-type plasminogen activator (t-PA) initiates the fibrinolytic protease cascade and plays a significant role in motor learning, memory, and neuronal cell death induced by excitotoxin and ischemia. In the fibrinolytic system, the serpin PAI-1 negatively regulates the enzymatic activity of both single-chain and two-chain t-PA (sct-PA and tct-PA). In the central nervous system, neuroserpin (NSP) is a serpin thought to regulate t-PA enzymatic activity. We report that although both sct-PA and tct-PA rapidly form acyl-enzyme complexes with NSP in vitro, the interactions are short-lived, rapidly progressing to complete cleavage of NSP and regeneration of fully active enzyme. All NSP molecules appear to transit through the detectable acyl-enzyme intermediate and progress to completion of cleavage; no subpopulation that functions as a pure substrate was detected. Likewise, all molecules were reactive, with no evidence of a latent subpopulation. The interactions between NSP and t-PA were distinct from those between plasmin and NSP, wherein the same peptide bond was cleaved but there was no evidence of a detectable plasmin-NSP acyl-enzyme complex. The interactions between t-PA and NSP contrast with the formation of long-lived, physiologically irreversible acyl-enzyme complexes between t-PA and PAI-1, suggesting that the physiologic effect of t-PA-NSP interactions may be more complex than previously thought.  相似文献   

13.
We have shown that synthetic peptides containing the amino acid sequence Asn-Arg-Arg-Leu, derived from the amino acid sequence of the inner loop of the kringle-2 domain of tissue-type plasminogen activator (tPA), inhibited complex formation between two chain tPA and plasminogen activator inhibitor-1 (PAI-1) by binding to PAI-1. This binding was reversible and was inhibited by not only tPA but also by enzymatically inactive tPA. Quantitative analyses of the interaction of PAI-1 with the peptide containing the Asn-Arg-Arg-Leu sequence indicated that the PAI-1 binding site residues in the inner loop of the kringle-2 domain and is preferentially expressed in two chain tPA.  相似文献   

14.
Maspin is a member of the serpin family with a reactive center loop that is incompatible with proteinase inhibition by the serpin conformational change mechanism. Despite this there are reports that maspin might regulate uPA-dependent processes in vivo. Using exogenous and endogenous fluorescence, we demonstrate here that maspin can bind uPA and tPA in both single-chain and double-chain forms, with K(d) values between 300 and 600 nM. Binding is at an exosite on maspin close to, but outside of, the reactive center loop and is therefore insensitive to mutation of Arg(340) within the reactive center loop. The binding site on tPA does not involve the proteinase active site, with the result that maspin can bind to S195A tPA that is already complexed to plasminogen activator inhibitor-1. The ability of maspin to bind these proteinases without involvement of the reactive center loop leaves the latter free to engage in additional, as yet unidentified, maspin-protein interactions that may serve to regulate the properties of the exosite-bound proteinase. This may help to reconcile apparently conflicting studies that demonstrate the importance of the reactive center loop in certain maspin functions, despite the inability of maspin to directly inhibit tPA or uPA catalytic activity in in vitro assays through engagement between its reactive center loop and the active site of the proteinase.  相似文献   

15.
The inhibitory mechanism of serine proteinase inhibitors of the serpin family is based on their unique conformational flexibility. The formation of a stable proteinase-serpin complex implies insertion of the reactive centre loop of the serpin into the large central beta-sheet A and a shift in the relative positions of two groups of secondary structure elements, the smaller one including alpha-helix F. In order to elucidate this mechanism, we have used phage-display and alanine scanning mutagenesis to map the epitopes for four monoclonal antibodies against alpha-helix F and its flanking region in the serpin plasminogen activator inhibitor-1 (PAI-1). One of these is known to inhibit the reaction between PAI-1 and its target proteinases, an effect that is potentiated by vitronectin, a physiological carrier protein for PAI-1. When combined with the effects these antibodies have on PAI-1 activity, our epitope mapping points to the mobility of amino-acid residues in alpha-helix F and the loop connecting alpha-helix F and beta-strand 3A as being important for the inhibitory function of PAI-1. Although all antibodies reduced the affinity of PAI-1 for vitronectin, the potentiating effect of vitronectin on antibody-induced PAI-1 neutralization is based on formation of a ternary complex between antibody, PAI-1 and vitronectin, in which PAI-1 is maintained in a state behaving as a substrate for plasminogen activators. These results thus provide new details about serpin conformational changes and the regulation of PAI-1 by vitronectin and contribute to the necessary basis for rational design of drugs neutralizing PAI-1 in cancer and cardiovascular diseases.  相似文献   

16.
We have delineated two different reaction mechanisms of monoclonal antibodies (mAbs), MA-8H9D4 and either MA-55F4C12 or MA-33H1F7, that convert plasminogen activator inhibitor 1 (PAI-1) to a substrate for tissue (tPA)- and urokinase plasminogen activators. MA-8H9D4 almost completely (98-99%) shifts the reaction to the substrate pathway by preventing disordering of the proteinase active site. MA-8H9D4 does not affect the rate-limiting constants (k(lim)) for the insertion of the reactive center loop cleaved by tPA (3.5 s(-1)) but decreases k(lim) for urokinase plasminogen activator from 25 to 4.0 s(-1). MA-8H9D4 does not cause deacylation of preformed PAI-1/proteinase complexes and probably acts prior to the formation of the final inhibitory complex, interfering with displacement of the acylated serine from the proteinase active site. MA-55F4C12 and MA-33H1F7 (50-80% substrate reaction) do not interfere with initial PAI-1/proteinase complex formation but retard the inhibitory pathway by decreasing k(lim) (>10-fold for tPA). Interaction of two mAbs with the same molecule of PAI-1 has been directly demonstrated for pairs MA-8H9D4/MA-55F4C12 and MA-8H9D4/MA-33H1F7 but not for MA-55F4C12/MA-33H1F7. The strong functional additivity observed for MA-8H9D4 and MA-55F4C12 demonstrates that these mAbs interact independently and affect different steps of the PAI-1 reaction mechanism.  相似文献   

17.
Plasminogen activator inhibitor-1 (PAI-1) is a serpin protease inhibitor that binds plasminogen activators (uPA and tPA) at a reactive center loop located at the carboxyl-terminal amino acid residues 320-351. The loop is stretched across the top of the active PAI-1 protein maintaining the molecule in a rigid conformation. In the latent PAI-1 conformation, the reactive center loop is inserted into one of the beta sheets, thus making the reactive center loop unavailable for interaction with the plasminogen activators. We truncated porcine PAI-1 at the amino and carboxyl termini to eliminate the reactive center loop, part of a heparin binding site, and a vitronectin binding site. The region we maintained corresponds to amino acids 80-265 of mature human PAI-1 containing binding sites for vitronectin, heparin (partial), uPA, tPA, fibrin, thrombin, and the helix F region. The interaction of "inactive" PAI-1, rPAI-1(23), with plasminogen and uPA induces the formation of a proteolytic protein with angiostatin properties. Increasing amounts of rPAI-1(23) inhibit the proteolytic angiostatin fragment. Endothelial cells exposed to exogenous rPAI-1(23) exhibit reduced proliferation, reduced tube formation, and 47% apoptotic cells within 48 h. Transfected endothelial cells secreting rPAI-1(23) have a 30% reduction in proliferation, vastly reduced tube formation, and a 50% reduction in cell migration in the presence of VEGF. These two studies show that rPAI-1(23) interactions with uPA and plasminogen can inhibit plasmin by two mechanisms. In one mechanism, rPAI-1(23) cleaves plasmin to form a proteolytic angiostatin-like protein. In a second mechanism, rPAI-1(23) can bind uPA and/or plasminogen to reduce the number of uPA and plasminogen interactions, hence reducing the amount of plasmin that is produced.  相似文献   

18.
Plasminogen activator inhibitor-1 (PAI-1) is a specific inhibitor of the serine proteases tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA). To systematically investigate the roles of the reactive center P1 and P1' residues in PAI-1 function, saturation mutagenesis was utilized to construct a library of PAI-1 variants. Examination of 177 unique recombinant proteins indicated that a basic residue was required at P1 for significant inhibitory activity toward uPA, whereas all substitutions except proline were tolerated at P1'. P1Lys variants exhibited lower inhibition rate constants and greater sensitivity to P1' substitutions than P1Arg variants. Alterations at either P1 or P1' generally had a larger effect on the inhibition of tPA. A number of variants that were relatively specific for either uPA or tPA were identified. P1Lys-P1'Ala reacted 40-fold more rapidly with uPA than tPA, whereas P1Lys-P1'Trp showed a 6.5-fold preference for tPA. P1-P1' variants containing additional mutations near the reactive center demonstrated only minor changes in activity, suggesting that specific amino acids in this region do not contribute significantly to PAI-1 function. These findings have important implications for the role of reactive center residues in determining serine protease inhibitor (serpin) function and target specificity.  相似文献   

19.
We have used two fluorescent probes, NBD and dansyl, attached site-specifically to the serpin plasminogen activator inhibitor-1 (PAI-1) to address the question of whether a common mechanism of proteinase translocation and full insertion of the reactive center loop is used by PAI-1 when it forms covalent SDS-stable complexes with four arginine-specific proteinases, which differ markedly in size and domain composition. Single-cysteine residues were incorporated at position 119 or 302 as sites for specific reporter labeling. These are positions approximately 30 A apart that allow discrimination between different types of complex structure. Fluorescent derivatives were prepared for each of these variants using both NBD and dansyl as reporters of local perturbations. Spectra of native and cleaved forms also allowed discrimination between direct proteinase-induced changes and effects solely due to conformational change within the serpin. Covalent complexes of these derivatized PAI-1 species were made with the proteinases trypsin, LMW u-PA, HMW u-PA, and t-PA. Whereas only minor perturbations of either NBD and dansyl were found for almost all complexes when label was at position 119, major perturbations in both wavelength maximum (blue shifts) and quantum yield (both increases and decreases) were found for all complexes for both NBD and dansyl at position 302. This is consistent with all four complexes having similar location of the proteinase catalytic domain and hence with all four using the same mechanism of full-loop insertion with consequent distortion of the proteinase wedged in at the bottom of the serpin.  相似文献   

20.
Plasminogen activator inhibitor-1 (PAI-1), together with its physiological target urokinase-type plasminogen activator (uPA), plays a pivotal role in fibrinolysis, cell migration, and tissue remodeling and is currently recognized as being among the most extensively validated biological prognostic factors in several cancer types. PAI-1 specifically and rapidly inhibits uPA and tissue-type PA (tPA). Despite extensive structural/functional studies on these two reactions, the underlying structural mechanism has remained unknown due to the technical difficulties of obtaining the relevant structures. Here, we report a strategy to generate a PAI-1·uPA(S195A) Michaelis complex and present its crystal structure at 2.3-Å resolution. In this structure, the PAI-1 reactive center loop serves as a bait to attract uPA onto the top of the PAI-1 molecule. The P4–P3′ residues of the reactive center loop interact extensively with the uPA catalytic site, accounting for about two-thirds of the total contact area. Besides the active site, almost all uPA exosite loops, including the 37-, 60-, 97-, 147-, and 217-loops, are involved in the interaction with PAI-1. The uPA 37-loop makes an extensive interaction with PAI-1 β-sheet B, and the 147-loop directly contacts PAI-1 β-sheet C. Both loops are important for initial Michaelis complex formation. This study lays down a foundation for understanding the specificity of PAI-1 for uPA and tPA and provides a structural basis for further functional studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号