首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Collagen prolyl 4-hydroxylases catalyze the formation of 4-hydroxyproline in -X-Pro-Gly-sequences and have an essential role in collagen synthesis. The vertebrate enzymes are alpha2beta2 tetramers in which the catalytic alpha-subunits contain separate peptide-substrate-binding and catalytic domains. We report on the crystal structure of the peptide-substrate-binding domain of the human type I enzyme refined at 2.3 A resolution. It was found to belong to a family of tetratricopeptide repeat domains that are involved in many protein-protein interactions and consist of five alpha-helices forming two tetratricopeptide repeat motifs plus the solvating helix. A prominent feature of its concave surface is a deep groove lined by tyrosines, a putative binding site for proline-rich Tripeptides. Solvent-exposed side chains of three of the tyrosines have a repeat distance similar to that of a poly-L-proline type II helix. The aromatic surface ends at one of the tyrosines, where the groove curves almost 90 degrees away from the linear arrangement of the three tyrosine side chains, possibly inducing a bent conformation in the bound peptide. This finding is consistent with previous suggestions by others that a minimal structural requirement for proline 4-hydroxylation may be a sequence in the poly-L-proline type II conformation followed by a beta-turn in the Pro-Gly segment. Site-directed mutagenesis indicated that none of the tyrosines was critical for tetramer assembly, whereas most of them were critical for the binding of a peptide substrate and inhibitor both to the domain and the alpha2beta2 enzyme tetramer.  相似文献   

2.
The structure of the influenza-virus-matrix-protein (IMP) 58-66 nonapeptide, bound to the major-histocompatibility-complex-encoded human leukocyte antigen (HLA) A2 protein was studied by molecular dynamics simulation. Starting from the extra electron density map of peptides co-crystallized with HLA-A2, the nonapeptide IMP58-66 was docked residue by residue in the protein binding cleft. The complex was simulated for 100 ps in a shell of 1372 water molecules. The averaged simulated HLA-A2 conformation was found to be similar to the crystal structure (0.182 nm RMS deviation, for the backbone atoms of the alpha 1-alpha 2 domain). Nine out of the 14 hydrogen bonds observed in the antigen-binding site were reproduced in the simulation. The IMP58-66 peptide exhibits an extended conformation with kinks at positions 3 and 5. The side chains of residues 2, 3 and 9 develop van der Waals' interactions with hydrophobic pockets of HLA-A2, corresponding to polymorphic residues of the major-histocompatibility-complex-encoded proteins. Both the N-terminus and C-terminus of the nonapeptide were anchored in the antigen-binding groove by hydrogen bonds with conserved amino acids. The N-terminus was more flexible and contacts four HLA-A2 conserved tyrosines (Tyr7, Tyr59, Tyr159 and Tyr171) and Glu63 by direct or water-relayed hydrogen bonds. Water intercalation occurred only around the N-terminus of the peptide, the C-terminal carboxylate forming strong hydrogen bonds with polar residues (Tyr84 and Thr143) and a salt bridge with Lys146 all over the molecular dynamics simulation. This model is fully compatible with the recently published crystal structure of the HLA-B27 protein, complexed by a mixture of self nonapeptides.  相似文献   

3.
A point mutation in a highly conserved region of the beta 1 subunit, Asp130 to Ala (D130A) substitution, abrogates the Arg-Gly-Asp (RGD)-dependent binding of alpha 5 beta 1 to fibronectin (FN) without disrupting gross structure or heterodimer assembly. The D130A mutation also interferes with binding to invasin, a ligand that lacks RGD sequence. In spite of the lack of detectable FN binding by alpha 5 beta 1(D130A), it was recruited to adhesion plaques formed on FN by endogenous hamster receptors. Thus, intact ligand binding function is not required for recruitment of alpha 5 beta 1 to adhesion plaques. Overexpression of beta 1(D130A) partially interfered with endogenous alpha 5 beta 1 function, thus defining a dominant negative beta 1 integrin mutation.  相似文献   

4.
Chicken beta 2-microglobulin (beta 2m) and class I (B-F19 alpha chain) cDNA clones were isolated and the sequences compared to those of B-F Ag isolated from chicken E. These clones represent the major expressed class I molecules on E, with B-F alpha size variants evidently due to alternative use of small exons in the cytoplasmic region. The cDNA sequences were compared to turkey beta 2m, the apparent allele B-F12 alpha and other vertebrate homologs, using the 2.6 A structure of the human HLA-A2 molecule as a model. Both chicken alpha 1 and alpha 2 domains resemble mammalian classical class I molecules and the MHC-encoded nonclassical molecules more than CD1 or the class I-like FcR. In contrast, the chicken alpha 3 domain is equally homologous to all alpha 3 domains, to beta 2m and to class II beta 2 domains. For each pair of extracellular domains (alpha 1 vs alpha 2, alpha 3 vs beta 2m), the level of sequence homology between mammalian and avian molecules is quite different. This suggests that the structurally homologous domains have been under different selective pressures during evolution. There is a very strong G + C bias in alpha 3 and beta 2m, leading to an overall change in amino acid composition in B-F compared to class I molecules from other taxa. Many of the surface residues are quite diverged, particularly in alpha 3 and beta 2m. There are fewer changes in intra- and interdomain contact sites. Some residues with important functions are invariant, including seven residues that bind the ends of the peptide, two residues that bind CD8, and three residues that are phosphorylated. The positions of the allelic residues are conserved. There are other patches of invariant residues on alpha 1, alpha 2, and beta 2m; these might bind TCR or other molecules involved in class I function.  相似文献   

5.
NK cell recognition of targets is strongly affected by MHC class I specific receptors. The recently published structure of the inhibitory receptor Ly49A in complex with H-2Dd revealed two distinct sites of interaction in the crystal. One of these involves the alpha1, alpha2, alpha3, and beta2-microglobulin (beta2m) domains of the MHC class I complex. The data from the structure, together with discrepancies in earlier studies using MHC class I tetramers, prompted us to study the role of the beta2m subunit in MHC class I-Ly49 interactions. Here we provide, to our knowledge, the first direct evidence that residues in the beta2m subunit affect binding of MHC class I molecules to Ly49 receptors. A change from murine beta2m to human beta2m in three different MHC class I molecules, H-2Db, H-2Kb, and H-2Dd, resulted in a loss of binding to the receptors Ly49A and Ly49C. Analysis of the amino acids involved in the binding of Ly49A to H-2Dd in the published crystal structure, and differing between the mouse and the human beta2m, suggests the cluster formed by residues Lys3, Thr4, Thr28, and Gln29, as a potentially important domain for the Ly49A-H-2Dd interaction. Another possibility is that the change of beta2m indirectly affects the conformation of distal parts of the MHC class I molecule, including the alpha1 and alpha2 domains of the heavy chain.  相似文献   

6.
The crystal structures of ADP bound and nucleotide-free forms of molecular chaperone-like diol dehydratase-reactivating factor (DDR) were determined at 2.0 and 3.0 A, respectively. DDR exists as a dimer of heterodimer (alphabeta)2. The alpha subunit has four domains: ATPase domain, swiveling domain, linker domain, and insert domain. The beta subunit, composed of a single domain, has a similar fold to the beta subunit of diol dehydratase (DD). The binding of an ADP molecule to the nucleotide binding site of DDR causes a marked conformational change of the ATPase domain of the alpha subunit, which would weaken the interactions between the DDR alpha and beta subunits and make the displacement of the DDR beta subunit by DD through the beta subunit possible. The binding of the DD beta subunit to the DDR alpha subunit induces steric repulsion between the DDR alpha and DD alpha subunits that would lead to the release of a damaged cofactor from inactivated holoDD.  相似文献   

7.
We showed previously that the interaction of an alphabeta heterodimeric intermediate with GroEL/GroES is essential for efficient alpha(2)beta(2) assembly of human mitochondrial branched-chain alpha-ketoacid dehydrogenase. In the present study, we further characterized the mode of interaction between the chaperonins and the native-like alphabeta heterodimer. The alphabeta heterodimer, as an intact entity, was found to bind to GroEL at a 1:1 stoichiometry with a K(D) of 1.1 x 10(-)(7) m. The 1:1 molar ratio of the GroEL-alphabeta complex was confirmed by the ability of the complex to bind a stoichiometric amount of denatured lysozyme in the trans cavity. Surprisingly, in the presence of Mg-ADP, GroES was able to cap the GroEL-alphabeta complex in cis, despite the size of 86 kDa of the heterodimer (with a His(6) tag and a linker). Incubation of the GroEL-alphabeta complex with Mg-ATP, but not AMP-PNP, resulted in the release of alpha monomers. In the presence of Mg-ATP, the beta subunit was also released but was unable to assemble with the alpha subunit, and rebound to GroEL. The apparent differential subunit release from GroEL is explained, in part, by the significantly higher binding affinity of the beta subunit (K(D) < 4.15 x 10(-9)m) than the alpha (K(D) = 1.6 x 10(-8)m) for GroEL. Incubation of the GroEL-alphabeta complex with Mg-ATP and GroES resulted in dissociation and discharge of both the alpha and beta subunits from GroEL. The beta subunit upon binding to GroEL underwent further folding in the cis cavity sequestered by GroES. This step rendered the beta subunit competent for reassociation with the soluble alpha subunit to produce a new heterodimer. We propose that this mechanism is responsible for the iterative annealing of the kinetically trapped heterodimeric intermediate, leading to an efficient alpha(2)beta(2) assembly of human branched-chain alpha-ketoacid dehydrogenase.  相似文献   

8.
The transport protein particle (TRAPP) complexes are involved in the tethering process at different trafficking steps of vesicle transport. We here present the crystal structure of a human Bet3-Tpc6B heterodimer, which represents a core sub-complex in the assembly of TRAPP. We describe a conserved patch of Tpc6 with uncharged pockets, forming a putative interaction interface for an anchoring moiety at the Golgi. The structural and functional comparison of the two paralogs Tpc6A and Tpc6B, only found in some organisms, indicates redundancy and added complexity of TRAPP architecture and function. Both iso-complexes, Bet3-Tpc6A and Bet3-Tpc6B, are able to recruit Mum2, a further TRAPP subunit, and we identify the alpha1-alpha2 loop regions as a binding site for Mum2. Our study reveals similar stability of the iso-complexes and similar expression patterns of the tpc6 variants in different mouse organs. These findings raise the possibility that the Tpc6 paralogs might contribute to the formation of two distinct TRAPP complexes that differ in function.  相似文献   

9.
Recent publications defined requirements for inter-subunit contacts in a benzodiazepine-sensitive GABA(A) receptor (GABA(A)R alpha 1 beta 3 gamma 2). There is strong evidence that the heteropentameric receptor contains two alpha 1, two beta 3, and one gamma 2 subunit. However, the available data do not distinguish two possibilities: When viewed clockwise from an extracellular viewpoint the subunits could be arranged in either gamma 2 beta 3 alpha 1 beta 3 alpha 1 or gamma 2 alpha 1 beta 3 alpha 1 beta 3 configurations. Here we use molecular modeling to thread the relevant GABA(A)R subunit sequences onto a template of homopentameric subunits in the crystal structure of the acetylcholine binding protein (AChBP). The GABA(A) sequences are known to have 15-18% identity with the acetylcholine binding protein and nearly all residues that are conserved within the nAChR family are present in AChBP. The correctly aligned GABA(A) sequences were threaded onto the AChBP template in the gamma 2 beta 3 alpha 1 beta 3 alpha 1 or gamma 2 alpha 1 beta 3 alpha 1 beta 3 arrangements. Only the gamma 2 alpha 1 beta 3 alpha 1 beta 3 arrangement satisfied three known criteria: (1) alpha 1 His(102) binds at the gamma 2 subunit interface in proximity to gamma 2 residues Thr(142), Phe(77), and Met(130); (2) alpha 1 residues 80-100 bind near gamma 2 residues 91-104; and (3) alpha 1 residues 58-67 bind near the beta 3 subunit interface. In addition to predicting the most likely inter-subunit arrangement, the model predicts which residues form the GABA and benzodiazepine binding sites.  相似文献   

10.
BACKGROUND: One strategy that cells employ to respond to environmental stresses (temperature, oxidation, and pathogens) is to increase the expression of heat shock proteins necessary to maintain viability. Several heat shock proteins function as molecular chaperones by binding unfolded polypeptides and preventing their irreversible aggregation. Hsp33, a highly conserved bacterial heat shock protein, is a redox-regulated molecular chaperone that appears to protect cells against the lethal effects of oxidative stress. RESULTS: The 2.2 A crystal structure of a truncated E. coli Hsp33 (residues 1-255) reveals a domain-swapped dimer. The core domain of each monomer (1-178) folds with a central helix that is sandwiched between two beta sheets. The carboxyl-terminal region (179-235), which lacks the intact Zn binding domain of Hsp33, folds into three helices that pack on the other subunit. The interface between the two core domains is comprised of conserved residues, including a rare Glu-Glu hydrogen bond across the dyad axis. Two potential polypeptide binding sites that span the dimer are observed: a long groove containing pockets of conserved and hydrophobic residues, and an intersubunit 10-stranded beta sheet "saddle" with a largely uncharged or hydrophobic surface. CONCLUSIONS: Hsp33 is a dimer in the crystal structure. Solution studies confirmed that this dimer reflects the structural changes that occur upon activation of Hsp33 as a molecular chaperone. Patterns of conserved residues and surface charges suggest that two grooves might be potential binding sites for protein folding intermediates.  相似文献   

11.
The membrane proximal regions of integrin alpha and beta subunits are highly conserved in evolution. In particular, all integrin alpha subunits share the KXGFFKR sequence at the beginning of their cytoplasmic domains. Previous work has shown that this domain is important in integrin receptor assembly. Using chimeric integrin alpha and beta subunits, we show that the native cytoplasmic domains of both subunits must be present for efficient assembly. Most strikingly, chimeric alpha 1 and beta 1 subunits with reciprocally swapped intracellular domains dimerize selectively into collagen IV receptors expressed at high levels on the surface. However, these receptors, which bind ligand efficiently, are deficient in a variety of post-ligand binding events, including cytoskeletal association and induction of tyrosine phosphorylation. Furthermore, deletion of the distal alpha cytoplasmic domain in the swapped heterodimers leads to ligand-independent focal contact localization, which also occurs in wild-type subunits when the distal cytoplasmic domain is deleted. These results show that proper integrin assembly requires opposed alpha and beta cytoplasmic domains, and this opposition prevents ligand-independent focal contact localization. Our working hypothesis is that these two domains may associate during receptor assembly and provide the mechanism for integrin receptor latency.  相似文献   

12.
Actin capping protein (CP) binds barbed ends of actin filaments to regulate actin assembly. CP is an alpha/beta heterodimer. Vertebrates have conserved isoforms of each subunit. Muscle cells contain two beta isoforms. beta1 is at the Z-line; beta2 is at the intercalated disc and cell periphery in general. To investigate the functions of the isoforms, we replaced one isoform with another using expression in hearts of transgenic mice.Mice expressing beta2 had a severe phenotype with juvenile lethality. Myofibril architecture was severely disrupted. The beta2 did not localize to the Z-line. Therefore, beta1 has a distinct function that includes interactions at the Z-line. Mice expressing beta1 showed altered morphology of the intercalated disc, without the lethality or myofibril disruption of the beta2-expressing mice.The in vivo function of CP is presumed to involve binding barbed ends of actin filaments. To test this hypothesis, we expressed a beta1 mutant that poorly binds actin. These mice showed both myofibril disruption and intercalated disc remodeling, as predicted.Therefore, CPbeta1 and CPbeta2 each have a distinct function that cannot be provided by the other isoform. CPbeta1 attaches actin filaments to the Z-line, and CPbeta2 organizes the actin at the intercalated discs.  相似文献   

13.
The crystal structure of a mouse T-cell antigen receptor (TCR) Fv fragment complexed to the Fab fragment of a specific anti-clonotypic antibody has been determined to 2.6 A resolution. The polypeptide backbone of the TCR V alpha domain is very similar to those of other crystallographically determined V alphas, whereas the V beta structure is so far unique among TCR V beta domains in that it displays a switch of the c" strand from the inner to the outer beta-sheet. The beta chain variable region of this TCR antigen-binding site is characterized by a rather elongated third complementarity-determining region (CDR3beta) that packs tightly against the CDR3 loop of the alpha chain, without leaving any intervening hydrophobic pocket. Thus, the conformation of the CDR loops with the highest potential diversity distinguishes the structure of this TCR antigen-binding site from those for which crystallographic data are available. On the basis of all these results, we infer that a significant conformational change of the CDR3beta loop found in our TCR is required for binding to its cognate peptide-MHC ligand.  相似文献   

14.
The three-dimensional solution structure of reduced (CuI) plastocyanin from French bean leaves has been determined by distance geometry and restrained molecular dynamics methods using constraints obtained from 1H n.m.r. (nuclear magnetic resonance) spectroscopy. A total of 1244 experimental constraints were used, including 1120 distance constraints, 103 dihedral angle constraints and 21 hydrogen bond constraints. Stereospecific assignments were made for 26 methylene groups and the methyls of 11 valines. Additional constraints on copper co-ordination were included in the restrained dynamics calculations. The structures are well defined with average atomic root-mean-square deviations from the mean of 0.45 A for all backbone heavy atoms and 1.08 A for side-chain heavy atoms. French bean plastocyanin adopts a beta-sandwich structure in solution that is similar to the X-ray structure of reduced poplar plastocyanin; the average atomic root-mean-square difference between 16 n.m.r. structures and the X-ray structure is 0.76 A for all backbone heavy atoms. The conformations of the side-chains that constitute the hydrophobic core of French bean plastocyanin are very well defined. Of 47 conserved residues that populate a single chi 1 angle in solution, 43 have the same rotamer in the X-ray structure. Many surface side-chains adopt highly preferred conformations in solution, although the 3J alpha beta coupling constants often indicate some degree of conformational averaging. Some surface side-chains are disordered in both the solution and crystal structures of plastocyanin. There is a striking correlation between measures of side-chain disorder in solution and side-chain temperature factors in the X-ray structure. Side-chains that form a distinctive acidic surface region, believed to be important in binding other electron transfer proteins, appear to be disordered. Fifty backbone amide protons form hydrogen bonds to carbonyls in more than 60% of the n.m.r. structures; 45 of these amide protons exchange slowly with solvent deuterons. Ten hydrogen bonds are formed between side-chain and backbone atoms, eight of which are correlated with decreased proton exchange. Of the 60 hydrogen bonds formed in French bean plastocyanin, 56 occur in the X-ray structure of the poplar protein; two of the missing hydrogen bonds are absent as a result of mutations. It appears that molecular dynamics refinement of highly constrained n.m.r. structures allows accurate prediction of the pattern of hydrogen bonding.  相似文献   

15.
DNA ends are generated during double-strand-break repair and recombination. A p70-p86 heterodimer, Ku, accounts for the DNA end binding activity in eukaryotic cell extracts. When one or both subunits of Ku are missing, mammalian cells are deficient in double-strand-break repair and in specialized recombination, such as V(D)J recombination. Little is known of which regions of Ku70 and Ku86 bind to each other to form the heterodimeric complex or of which regions are important for DNA end binding. We have done genetic and biochemical studies to examine the domains within the two subunits important for protein assembly and for DNA end binding. We found that the C-terminal 20-kDa region of Ku70 and the C-terminal 32-kDa region of Ku86 are important for subunit-subunit interaction. For DNA binding, full-length individual subunits are inactive, indicating that heterodimer assembly precedes DNA binding. DNA end binding activity by the heterodimer requires the C-terminal 40-kDa region of Ku70 and the C-terminal 45-kDa region of Ku86. Leucine zipper-like motifs in both subunits that have been suggested as the Ku70-Ku86 interaction domains do not appear to be the sites of such interaction because these are dispensable for both assembly and DNA end binding. On the basis of these studies, we have organized Ku70 into nine sequence regions conserved between Saccharomyces cerevisiae, Drosophila melanogaster, mice, and humans; only the C-terminal three regions are essential for assembly (amino acids [aa] 439 to 609), and the C-terminal four regions appear to be essential for DNA end binding (aa 254 to 609). Within the minimal active fragment of Ku86 necessary for subunit interaction (aa 449 to 732) and DNA binding (aa 334 to 732), a proline-rich region is the only defined motif.  相似文献   

16.
The mouse mutants mocha and pearl are deficient in the AP-3 delta and beta3A subunits, respectively. We have used cells from these mice to investigate both the assembly of AP-3 complexes and AP-3 function. In mocha cells, the beta3 and mu3 subunits coassemble into a heterodimer, whereas the sigma3 subunit remains monomeric. In pearl cells, the delta and sigma3 subunits coassemble into a heterodimer, whereas mu3 gets destroyed. The yeast two hybrid system was used to confirm these interactions, and also to demonstrate that the A (ubiquitous) and B (neuronal-specific) isoforms of beta3 and mu3 can interact with each other. Pearl cell lines were generated that express beta3A, beta3B, a beta3Abeta2 chimera, two beta3A deletion mutants, and a beta3A point mutant lacking a functional clathrin binding site. All six constructs assembled into complexes and were recruited onto membranes. However, only beta3A, beta3B, and the point mutant gave full functional rescue, as assayed by LAMP-1 sorting. The beta3Abeta2 chimera and the beta3A short deletion mutant gave partial functional rescue, whereas the beta3A truncation mutant gave no functional rescue. These results indicate that the hinge and/or ear domains of beta3 are important for function, but the clathrin binding site is not needed.  相似文献   

17.
L Jermutus  V Guez  H Bedouelle 《Biochimie》1999,81(3):235-244
The C-terminal domain (residues 320-419) of tyrosyl-tRNA synthetase (TyrRS) from Bacillus stearothermophilus is disordered in the crystal structure and involved in the binding of the anticodon arm of tRNA(Tyr). The sequences of 11 TyrRSs of prokaryotic or mitochondrial origins were aligned and the alignment showed the existence of conserved residues in the sequences of the C-terminal domains. A consensus could be deduced from the application of five programs of secondary structure prediction to the 11 sequences of the query set. These results suggested that the sequences of the C-terminal domains determined a precise and conserved secondary structure. They predicted that the C-terminal domain would have a mixed fold (alpha/beta or alpha+beta), with the alpha-helices in the first half of the sequence and the beta-strands mainly in its second half. Several programs of fold recognition from sequence alone, by threading onto known structures, were applied but none of them identified a type of fold that would be common to the different sequences of the query set. Therefore, the fold of the C-terminal, anticodon binding domain might be novel.  相似文献   

18.
Laminin G-like (LG) modules in the extracellular matrix glycoproteins laminin, perlecan, and agrin mediate the binding to heparin and the cell surface receptor alpha-dystroglycan (alpha-DG). These interactions are crucial to basement membrane assembly, as well as muscle and nerve cell function. The crystal structure of the laminin alpha 2 chain LG5 module reveals a 14-stranded beta sandwich. A calcium ion is bound to one edge of the sandwich by conserved acidic residues and is surrounded by residues implicated in heparin and alpha-DG binding. A calcium-coordinated sulfate ion is suggested to mimic the binding of anionic oligosaccharides. The structure demonstrates a conserved function of the LG module in calcium-dependent lectin-like alpha-DG binding.  相似文献   

19.
Harper SL  Begg GE  Speicher DW 《Biochemistry》2001,40(33):9935-9943
Human erythrocyte spectrin is an antiparallel heterodimer comprised of a 280 kDa alpha subunit and a 246 kDa beta subunit which further associates into tetramers in the red cell membrane cytoskeleton. Lateral association of the flexible rodlike monomers involves a multiple-step process that is initiated by a high affinity association near the actin-binding end of the molecule (dimer nucleation site). In this study, recombinant alpha and beta proteins comprising two or four "spectrin type" motifs with and without adjacent, terminal nonhomologous domains were evaluated for their relative contributions to dimer initiation, and the thermodynamic properties of these heterodimer complexes were measured. Sedimentation equilibrium studies showed that in the absence of the heterologous subunit, individual recombinant proteins formed weak homodimers (K(d) > 0.3 mM). When 2-motif (alpha20-21 and beta1-2) and 4-motif (alpha18-21 and beta1-4) recombinants lacking the terminal nonhomologous domains were paired with the complementary protein, high affinity heterodimers were formed in sedimentation equilibrium analysis. Both the alpha20-21/beta1-2 complex and the alpha20-21EF/betaABD1-2 complex showed stoichiometric binding with similar binding affinities (K(d) approximately 10 nM) using isothermal titration calorimetry. The alpha20-21/beta1-2 complex showed an enthalpy of -10 kcal/mol, while the alpha20-21EF/betaABD1-2 complex showed an enthalpy of -13 kcal/mol. Pull-down assays using alpha spectrin GST fusion proteins showed strong associations between all heterodimer complexes in physiological buffer, but all heterodimer complexes were destabilized by the presence of Triton X-100 and other detergents. Complexes lacking the nonhomologous domains were destabilized to a greater extent than complexes that included the nonhomologous domains. The detergent effect appears to be responsible for the apparent essential role of the nonhomologous domains in prior reports. Taken together, our results indicate that the terminal nonhomologous domains do not contribute to dimer initiation nor are they required for formation of high affinity spectrin heterodimers in physiological buffers.  相似文献   

20.
Laminins are a family of large heterotrimeric glycoproteins comprising alpha, beta, and gamma chains. To determine the molecular mechanisms underlying chain assembly in vitro, we expressed human laminin-332 subunits in an insect cell-free translation system. We successfully produced the beta3-gamma2 heterodimer and the alpha3-beta3-gamma2 heterotrimer of the laminin coiled-coil (LCC) domain following co-translation of each chain. The alpha3-beta3 and the alpha3-gamma2 heterodimer were not detected, suggesting that the alpha3 chain can assemble with only beta3-gamma2 heterodimer to form a heterotrimer via disulfide bonds. These results are consistent with those of a previous report indicating that laminin chain assembly proceeds through the beta-gamma heterodimer to the alpha-beta-gamma heterotrimer in vivo. We suggest that the cell-free translation system is a valid system with which to study the mechanisms underlying laminin chain assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号