首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 312 毫秒
1.
石墨烯及其衍生物氧化石墨烯因具有水溶性好、比表面积大、载药量高以及易于修饰等优势,近年来在生物医药领域尤其在肿瘤治 疗领域的应用研究发展迅速。综述石墨烯及氧化石墨烯作为新型药物载体材料所具有的特性和生物安全性、表面修饰方式以及在肿瘤靶向 递药系统中的应用,为其在生物医药领域的应用研究提供新方法和新思路。  相似文献   

2.
任文杰  滕应 《生态学杂志》2014,25(9):2723-2732
石墨烯是当前研究最热的碳纳米材料,具有独特的理化特性,在各领域具有广阔的应用前景.随着其生产和使用量的不断增大,石墨烯不可避免地会进入到环境中,从而给生态环境和人类健康带来风险.深入理解石墨烯在环境中的行为和归趋,探讨石墨烯对污染物环境行为的影响,对于科学客观评价石墨烯的环境风险具有十分重要的意义.本文对石墨烯的环境行为及其对污染物迁移归趋的影响进行了综述,主要介绍了石墨烯在水环境中的胶体特性和稳定性,以及在多孔介质中的迁移,重点探讨了石墨烯与重金属和有机物之间的相互作用,并从吸附机理、石墨烯与土壤组分之间的相互作用、石墨烯对污染物在环境中迁移及生物有效性的影响、石墨烯的定量方法等方面对该研究领域的前景和重点进行了展望,以期为该领域的深入研究提供借鉴并拓展新的思路.  相似文献   

3.
石墨烯是当前研究最热的碳纳米材料,具有独特的理化特性,在各领域广泛应用。随着石墨烯生产和使用量的不断增大,其不可避免地进入到环境中,给生态环境和人类健康带来风险。阐明石墨烯的潜在毒性效应及其作用机制对于客观评价石墨烯的生态环境健康风险具有重要意义。迄今为止,已有诸多研究报道了石墨烯的植物生理毒理效应。研究表明,石墨烯对植物的生理学响应及其生理变化过程存在影响,涉及萌芽、幼苗生长、氧化应激、光合特性、植物激素和代谢过程等,且多呈浓度效应。今后亟需构建一套被广泛认可的植物石墨烯毒性评价体系,为石墨烯的安全生产和使用提供指导。  相似文献   

4.
多溴二苯醚的环境暴露与生态毒理研究进展   总被引:22,自引:0,他引:22  
多溴二苯醚(PBDEs)是一类具有生态风险的新型环境有机污染物.作为阻燃剂,PBDEs已经被愈来愈广泛地添加到工业产品中,并因此对大气、水体、沉积物和土壤等环境介质及相关生态系统产生日益广泛的污染.鉴于这一环境新问题的产生,本文基于有限的资料,初步探讨了PBDEs的人为来源和环境暴露途径,大致给出了PBDEs在不同生物和人体不同组织器官中可能的存在及含量水平;在扼要介绍其基本性质的基础上,从甲状腺、神经系统和生殖发育毒性等三个方面分析了PBDEs对动物和人体可能产生的毒性效应与生态影响,以及PBDEs在生态系统中可能具有的生物积累和生物放大风险;并对今后研究PBDEs的环境暴露与生态效应以及人体健康影响等方面的工作重点进行了展望.  相似文献   

5.
石墨烯(graphene)作为一种新兴产物在生物医学领域的应用越来越广泛,氧化石墨烯(graphene oxide,GO)作为石墨烯的重要衍生物之一,得益于其异源的电学结构,因而在一定波长范围内可以产生荧光。正是这一性能使得GO在生物医学领域有着巨大的潜力,主要介绍了近年来GO的荧光性能在分子检测、疾病诊断、细胞成像等方面的应用,并展望了其发展前景。  相似文献   

6.
三氯生因具有良好的广谱抗菌性能而被广泛应用于各类洗护日化用品中.随着这些日用品被人类不断消耗,三氯生也会通过多种途径进入环境并引发一系列环境问题.环境中残留的三氯生及其代谢产物具有持久性、生物累积性和生态毒性,进而给生态系统带来一定的潜在风险,甚至会对人类健康产生不良影响.基于此,本文总结和分析了三氯生在环境介质中的残留特征及其可能发生的降解代谢过程和产物,并系统地介绍了三氯生及其代谢产物的生物有效性及其对生物体繁殖、遗传和基因等方面的毒性效应,综合分析了三氯生对生态系统和人类健康可能存在的风险,并对有关三氯生后续的研究工作提出了建议和展望.  相似文献   

7.
纳米材料在污染环境修复中的生态毒性研究进展   总被引:2,自引:0,他引:2  
王萌  陈世宝  马义兵 《应用生态学报》2010,21(11):2986-2991
尽管不同纳米材料 (<100 nm) 在污染环境修复研究中的应用越来越受到重视,但纳米技术在给污染环境修复带来重要突破的同时给环境和人类健康带来的风险也值得关注. 有研究表明,在污染环境修复研究中,不同的纳米颗粒对生物体的健康会造成一定的危害. 目前,在纳米材料的环境修复研究中,针对不同纳米材料的修复效果、修复过程与机理研究较多,而对纳米材料的环境安全性研究才刚刚起步. 本文对近年来国内外关于纳米材料环境毒性的研究进行综述,并对该研究领域的前景和重点进行了展望,以期为该领域的深入研究提供借鉴并拓展新的思路.  相似文献   

8.
多溴二苯醚动物毒理学研究进展及其生态毒理学展望   总被引:4,自引:0,他引:4  
多溴二苯醚(PBDEs)作为阻燃剂,已被广泛应用于工业产品和家庭用品中.近年来,在土壤、沉积物、大气和生物体中普遍检测出PBDEs.PBDEs对哺乳动物、鸟类和鱼类都存在不同程度的毒害作用,其分布的广泛性、难降解性和对人体健康的不确定性已引起人们的普遍关注.基于国外动物毒理学研究成果,综合论述了PBDEs在生物体内的累积和排泄及其对动物肝酶活性、甲状腺、生殖和发育、神经系统和免疫系统等的影响及其潜在的人体健康危害,并分析了目前PBDEs毒理学研究中的问题,展望了未来PBDEs生态毒理学的研究方向.  相似文献   

9.
徐磊  段林  陈威 《应用生态学报》2009,20(1):205-212
碳纳米材料具有广阔的应用前景,近年来已成为一大研究热点.工程碳纳米材料的大量生产和使用将不可避免地造成这些材料向环境中的释放,可能带来环境和生态风险.一方面,碳纳米材料本身具有环境毒性,另一方面碳纳米材料对环境中有毒有害污染物有较强的吸附性能,因此会影响污染物迁移转化等环境行为.目前,对碳纳米材料生态风险的研究主要集中于碳纳米材料对生物体可能的毒性,而对其自身环境行为以及影响污染物迁移归趋等方面的研究较少.本文简要概述了碳纳米材料的来源、暴露途径、环境行为以及对污染物迁移归趋的影响,阐述了这些研究对于评估碳纳米材料的环境和生态风险所具有的重要意义.  相似文献   

10.
生物医药产业一直是风险投资者重点关注的领域,资本市场也是生物技术企业的重要融资平台。我国生物医药产业面临着变革与创新,政策利好也为产业发展带来了更多的机遇。2014年是生物医药产业资本市场的丰收年,呈现出风险资本稳步增长、企业间并购加快、互联网医疗等新兴产业热点凸显三大特征。  相似文献   

11.
Cell phones and electronic appliances and devices are inseparable from most people in modern society and the electromagnetic field (EMF) from the devices is a potential health threat. Although the direct health effect of a cell phone and its radiofrequency (RF) EMF to human is still elusive, the effect to unicellular organisms is rather apparent. Human microbiota, including skin microbiota, has been linked to a very significant role in the health of a host human body. It is important to understand the response of human skin microbiota to the RF-EMF from cell phones and personal electronic devices, since this may be one of the potential mechanisms of a human health threat brought about by the disruption of the intimate and balanced host-microbiota relationship. Here, we investigated the response of both laboratory culture strains and isolates of skin bacteria under static magnetic field (SMF) and RF-EMF. The growth patterns of laboratory cultures of Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus epidermidis under SMF were variable per different species. The bacterial isolates of skin microbiota from 4 subjects with different cell phone usage history also showed inconsistent growth responses. These findings led us to hypothesize that cell phone level RF-EMF disrupts human skin microbiota. Thus, the results from the current study lay ground for more comprehensive research on the effect of RF-EMF on human health through the human-microbiota relationship.  相似文献   

12.
The influence of vacancies and substitutional defects on the structural and electronic properties of graphene, graphene oxide, hexagonal boron nitride, and boron nitride oxide two-dimensional molecular models was studied using density functional theory (DFT) at the level of local density approximation (LDA). Bond length, dipole moment, HOMO–LUMO energy gap, and binding energy were calculated for each system with and without point defects. The results obtained indicate that the formation of a point defect does not necessary lead to structural instability; nevertheless, surface distortions and reconstruction processes were observed, mainly when a vacancy-type defect is generated. For graphene, it was found that incorporation of a point defect results in a semiconductor–semimetal transition and also increases notably its polar character. As with graphene, the formation of a point defect in a hexagonal boron nitride sheet reduces its energy gap, although its influence on the resulting dipole moment is not as dramatic as in graphene. The influence of point defects on the structural and electronic properties of graphene oxide and boron nitride oxide sheets were found to be mediated by the chemisorbed species.  相似文献   

13.
Wang Y  Li Z  Wang J  Li J  Lin Y 《Trends in biotechnology》2011,29(5):205-212
Graphene is the basic building block of 0D fullerene, 1D carbon nanotubes, and 3D graphite. Graphene has a unique planar structure, as well as novel electronic properties, which have attracted great interests from scientists. This review selectively analyzes current advances in the field of graphene bioapplications. In particular, the biofunctionalization of graphene for biological applications, fluorescence-resonance-energy-transfer-based biosensor development by using graphene or graphene-based nanomaterials, and the investigation of graphene or graphene-based nanomaterials for living cell studies are summarized in more detail. Future perspectives and possible challenges in this rapidly developing area are also discussed.  相似文献   

14.
Chemical functionalization of graphene provides a promising route to improve its solubility in water and organic solvents as well as modify its electronic properties, thus significantly expanding its potential applications. In this article, by using density functional theory (DFT) methods, we have studied the effects of the chemical functionalization of graphenes via aryne cycloaddition on its properties. We found that the adsorption of an isolated aryne group on the graphene sheet is very weak with the adsorption energy of -0.204 eV, even though two new single C-C interactions are formed between the aryne group and the graphene. However, the interaction of graphene with the aryne group can be greatly strengthened by (i) substituting the H-atoms in aryne group with F-, Cl-, -NO(2) (electron-withdrawing capability), or CH(3)-group (electron-donating capability), and (ii) increasing the coverage of the adsorbed aryne groups on the graphene sheet. As expected, the strongest bonding is found on the graphene edges, in which the adsorbed aryne groups prefer to be far away from each other. Interestingly, chemical functionalization with aryne groups leads to an opening of the band gap of graphene, which is dependent on the coverage of the adsorbed aryne groups. The present work provides an insight into the modifications of graphene with aryne groups in experiment.  相似文献   

15.
Several future applications have been suggested for the nanomaterial graphene, and its production is increasing dramatically. This study is a review of risk-related information on graphene with the purpose of outlining potential environmental and health risks and guide future risk-related research. Available information is presented regarding emissions, environmental fate, and toxicity of graphene. The results from this study indicate that graphene could exert a considerable toxicity and that considerable emission of graphene from electronic devices and composites are possible in the future. It is also suggested that graphene is both persistent and hydrophobic. Although these results indicate that graphene may cause adverse environmental and health effects, the results foremost show that there are many risk-related knowledge gaps to be filled and that the emissions of graphene, the fate of graphene in the environment, and the toxicity of graphene should be further studied.  相似文献   

16.
Due to excellent electronic and optical properties as well as tunable work functions, graphene and graphene‐based materials are highly attractive for applications in enhancement of harvesting solar energy. In particular, they can be used as electron and hole transport materials, buffer layers, and window or/and counter electrodes in solar cells. This research news surveys very recent advances in this emerging field, with emphasis on fundamental understanding of their performance enhancement mechanisms for photovoltaic devices, and discusses future challenges.  相似文献   

17.
The functionalization of graphene with transition metals is of great interest due to its wide range of applications, such as hydrogen storage, spintronics, information storage, etc. Due to its magnetic property adsorption of Mn atom on graphene has a high consequence on the electronic properties of graphene. The increase in size of the graphene sheet with hydrogen termination has a high impact on the transformation of electronic properties of the graphene sheet. Hence in this work, we investigate the size as well as change in structural and electronic properties of pristine/defective graphene sheets on adsorption of Mn atom using density functional theory methods. From the results obtained a higher adsorption energy value of 3.04 eV is found for Mn adatom on the defected graphene sheet than the pristine, 1.85 eV. It is subject to the coverage effect which decreases on increasing number of carbon atoms. Moreover, a decrease in energy gap is observed in pristine and defected graphene sheets with a high number of carbon atoms. The density of states illustrates the significant effect for hydrogen termination in the conduction band of the Mn adsorbed graphene sheet with low carbon atoms.
Graphical Abstract Mn adatom on graphene at different sites
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号