首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have identified in the DDT1 smooth muscle cell line a [3H]dihydroergocryptine-binding site having the characteristics of an alpha 1-adrenergic receptor. Specific binding of [3H]dihydroergocryptine to DDT1 cells grown either in monolayer or suspension culture was reversible, saturable, and of high affinity, and the binding site demonstrated stereoselectivity. [3H]Dihydroergocryptine dissociation constants of 1.4 +/- 0.2 nM and 1.4 +/- 0.3 nM were observed for suspension and monolayer cells, respectively. However, the concentration of binding sites in suspension-cultured cells (65,100 +/- 8,300 sites/cell) was significantly greater (p less than 0.001) than that found in monolayer cells (27,900 +/- 4,300 sites/cell). The order of agonist competition for the binding site was epinephrine (Ki = 0.92 +/- 0.32 microM) greater than or equal to norepinephrine (Ki = 2.2 +/- 1.0 microM) greater than isoproterenol (Ki = 137 +/- 17 microM), consistent with an alpha-adrenergic interaction. Results of competition experiments with specific antagonists prazosin (alpha 1-selective) or yohimbine (alpha 2-selective) and a computer modeling technique indicated that the alpha-adrenergic receptor of the DDT1 cell was predominantly (greater than 95%) the alpha 1-subtype.  相似文献   

2.
Regulation of Rat Pineal α1-Adrenoceptors   总被引:2,自引:2,他引:0  
Some aspects of the physiological regulation of the pineal alpha 1-adrenoceptor have been studied using the selective, high-affinity ligand [125I] iodo-2-[beta-(4-hydroxyphenyl)ethylaminomethyl]tetralone ([125I]HEAT). Pineal glands taken from rats housed in a diurnal lighting cycle showed no circadian rhythm in the number of specific [125I]HEAT binding sites, although a characteristic rhythm in pineal melatonin was seen. It was established that the pineal alpha 1-adrenoceptor is under neural control because interruption of neural stimulation of the pineal by bilateral superior cervical ganglionectomy (SCGX) or by exposing rats to constant light for 3 weeks doubled receptor density but did not change affinity for [125I]HEAT. Administration of various alpha 1-adrenoceptor agonists either acutely (i.p. injection) or chronically (s.c. infusion) did not alter the number of specific [125I]HEAT binding sites. Together these results indicate that the pineal alpha 1-adrenoceptor, like the pineal beta-adrenoceptor, is regulated by sympathetic nerve activity, probably through the physiological release of the neurotransmitter norepinephrine. However the absence of a circadian rhythm in alpha 1-adrenoceptor number and lack of down-regulation by adrenergic agonists imply different mechanisms of regulation.  相似文献   

3.
Alpha-adrenergic receptors may play an important role in regulating vascular tone and reactivity. To study alpha-adrenergic receptors in blood vessels, we have developed a method to characterize and quantitate alpha-adrenergic receptors in a particulate fraction of individual rabbit aortas using the high specific activity alpha antagonist [125I] BE2254. [125I] BE2254 specifically labels a single class of binding sites with a dissociation constant of 286 pM and a maximal binding capacity of 16.7 fmoles/mg protein. Catecholamines compete for [125I] BE2254 binding stereospecifically and with the characteristic alpha-adrenergic potency series of (-)epinephrine greater than or equal to (-)norepinephrine much greater than (-)isoproterenol. The alpha 1-selective antagonist prazosin (KD = 0.7 nM) is much more potent in competing for [125I] BE2254 binding than is the alpha 2-selective antagonist yohimbine (KD = 1000 nM), which suggests that the alpha adrenergic receptor identified is predominantly of the alpha 1 subtype. Also, the dissociation constants from these binding studies were in good agreement with those reported in rabbit aorta from classical pharmacological experiments where contraction was found to be mediated via alpha 1 receptors. This extension of radioligand binding techniques to individual rabbit aortas should simplify the study of vascular alpha adrenergic receptor regulation, and provide a basis for broadening the understanding of vascular alpha adrenergic receptors.  相似文献   

4.
[3H]yohimbine, a potent and selective alpha 2-adrenergic antagonist was used to label alpha-adrenoceptors in intact human lymphocytes. Binding of [3H]yohimbine was rapid (t1/2 1.5 -2.0 min) and readily reversed by 10 microM phentolamine (t1/2 = 5 - 6 min) and of high affinity (Kd = 3.7 +/- 0.86 nM). At saturation, the total number of binding sites was 19.9 +/- 5.3 fmol/10(7) lymphocytes. Adrenergic agonists competed for [3H]yohimbine binding sites with an order of potency: clonidine greater than (-) epinephrine greater than (-) norepinephrine greater than (+) epinephrine much greater than (-) isoproterenol; adrenergic antagonists with a potency order of yohimbine greater than phentolamine greater than prazosin. These results indicate the presence of alpha 2-adrenoceptors in human lymphocytes.  相似文献   

5.
Neuronal cells in primary culture from 1-day-old brains of normotensive, Wistar-Kyoto strain (WKY) and spontaneously hypertensive (SH) rats have been utilized to study the expression of alpha 1-adrenergic receptors. Binding of a selective alpha 1 antagonist, [125I]2-[beta-(4-hydroxy-3-iodophenyl)-ethylaminomethyl]-tetralone ([125I]HEAT) to neuronal membranes prepared from primary brain cultures of WKY and SH rats was 75-80% specific, rapid, and time-dependent although the binding was 1.5-2 times higher in neuronal membranes from SH rat brain cultures. Kinetic analysis of the association and dissociation data demonstrated no significant differences between rat strains. Competition-inhibition experiments provided IC50 values for various antagonists and agonists in the following order: prazosin less than phentolamine less than yohimbine less than phenylephrine less than norepinephrine less than propranolol, suggesting that [125I]HEAT bound selectively to alpha 1-adrenergic receptors. Scatchard analysis of the binding data provided straight lines for both strains of rats, indicating the presence of a homogeneous population of binding sites. It also showed that the increase in the binding in neuronal cells from SH rat brains over those from normotensive WKY controls was a result of an increase in the number of alpha 1-adrenergic receptors. Incubation of neuronal cultures from both strains of rats with phenylephrine, an alpha 1-adrenergic agonist, caused a time- and dose-dependent decrease in the binding of [125I]HEAT. This decrease was due to a decrease in the number of alpha 1-adrenergic receptors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
[3H]Yohimbine, a potent alpha 2-adrenergic antagonist, was used to label the alpha-adrenergic receptors in membranes isolated from human platelets. Binding of [3H]yohimbine to platelet membranes appears to have all the characteristics of binding to alpha-adrenergic receptors. Binding reached a steady state in 2-3 min at 37 degrees C and was completely reversible upon the addition of excess phentolamine or yohimbine (both at 10(-5) M; t1/2 = 2.37 min). [3H]Yohimbine bound to a single class of noncooperative sites with a dissociation constant of 1.74 nM. At saturation, the total number of binding sites was calculated to be 191 fmol/mg protein. [3H]Yohimbine binding was stereo-specifically inhibited by epinephrine: the (-) isomer was 11-times more potent that the (+) isomer. Catecholamine agonists competed for the occupancy of the [3H]yohimbine-binding sites with an order of potency: clonidine greater than (-)-epinephrine greater than (-)-norepinephrine much greater than (-)-isoproterenol. The potent alpha-adrenergic antagonist, phentolamine, competed for the sites whereas the beta-antagonist, (+/-)-propranolol, was very weak inhibitor. 0.1 mM GTP reduced the binding affinity of the agonists, while producing no change in antagonist-binding affinity. Dopamine and serotonin competed only at very high concentrations. Similarly, muscarinic cholinergic ligands were also poor inhibitors of [3H]yohimbine binding. These results suggest that [3H]yohimbine binding to hunan platelet membranes is specific, rapid, saturable, reversible and, therefore, can be successfully used to label alpha 2-adrenergic receptors.  相似文献   

7.
Clonidine and several analogues of clonidine are shown to be useful probes for alpha 2-adrenergic receptors in a comparative study of ligand binding and inhibition of adenylate cyclase. The alpha-adrenergic properties of a new potential probe, N-(4-hydroxyphenacetyl)-4-aminoclonidine hydrochloride, are described. [3H]Clonidine binds to alpha-receptors of NG108-15 neuroblastoma X glioma hybrid cell membranes with Kd values of 1.7 and 33 nM for putative high-affinity and low-affinity sites, respectively. p-Aminoclonidine and hydroxyphenacetyl aminoclonidine displace [3H]clonidine from the high-affinity sites with Kd values of 2.3 and 5.8 nM, respectively. Rat brain alpha 2-receptors also exhibit high affinity toward clonidine, p-aminoclonidine, and hydroxyphenacetyl aminoclonidine, as determined by displacement of specifically bound [3H]clonidine. Clonidine, p-amino-clonidine, and hydroxyphenacetyl aminoclonidine elicit modest inhibition (up to 24%) of NG108-125 adenylate cyclase by interaction with alpha 2-receptors (Kd,app 300, 30, and 130 nM, respectively); these compounds also partially reverse the inhibition elicited by (--)-norepinephrine. Components of the adenylate cyclase assay mixture, particularly ATP, GTP, sodium ions, and a nucleoside-triphosphate-regenerating system, decrease the high-affinity [3H]clonidine binding to NG108-15 membranes; in the presence of these components, alpha-receptors possess only low affinity (Kd 43 nM) for [3H]clonidine. The results are consistent with the concept that certain components required for the receptor-mediated inhibition of adenylate cyclase convert alpha 2-receptors from a high-affinity inactive state to a low-affinity active state.  相似文献   

8.
The endogenous role of the alpha-adrenergic system in the maintenance of mean arterial pressure (MAP), total peripheral resistance (TPR), cardiac output (CO) and its distribution, and plasma norepinephrine and epinephrine release was investigated by the administration of selective alpha-adrenoceptor antagonists to halothane-anesthetized rats. The blockade of alpha 1-, alpha 2-, and both alpha 1- and alpha 2-receptors was accomplished by i.v. infusions of prazosin, rauwolscine, and phentolamine, respectively. The microsphere technique was used for the determination of CO and its distribution. Since the infusions of the three antagonists caused similar decreases of MAP and heart rate, the results suggest that postjunctional alpha 1- and alpha 2-receptors are both important in the control of MAP. During the infusion of prazosin, TPR was decreased but CO was not changed. In contrast, CO was decreased but TPR was not changed during the infusions of rauwolscine and phentolamine. Thus, CO was reduced after the blockade of alpha 2- but not alpha 1-receptors. All three antagonists caused an increase in percent distribution of CO to the lungs and muscle, suggesting that the sympathetic nervous system plays the greatest vasoconstrictor influence in the lungs and muscle via stimulations of both subtypes of alpha-adrenoceptors. The administration of either prazosin or rauwolscine caused little change in plasma catecholamine levels. In contrast, phentolamine caused large increases in both epinephrine and norepinephrine levels. Therefore catecholamine release was only increased after concurrent blockade of both alpha 1- and alpha 2-adrenoceptors.  相似文献   

9.
[3H]Dihydroalprenolol was used to study beta-adrenergic binding sites in plasma membranes isolated from rabbit liver. Specific binding was measured at 25 degrees C as the difference between total binding and binding in the presence of 2 microM dl-propranolol or 10 microM l-isoproterenol. Binding was saturable and stereoselective. The maximum number of binding sites (Bmax) was 434 +/- 41 fmol/mg of protein. The Kd for this binding as determined by Scatchard analysis was 1.39 +/- 0.09 nM. This value agreed well with the Kd value (1.27 +/- 0.12 nM) determined by kinetic analysis. The potency order for the displacement of bound [3H]dihydroalprenolol was isoproterenol greater than epinephrine greater than norepinephrine, indicative of beta 2-receptors. Use of beta 1- and beta 2-subtype-selective inhibitors also supported the interpretation that the binding characteristics are those of beta 2-receptors. Computer-aided analysis of this inhibition indicated that the beta-receptors in this membrane are predominantly, if not exclusively, of the beta 2-subtype. That these receptors are responsible for mediating catecholamine stimulation of hepatic glycogenolysis was deduced from the inhibition of agonist-stimulated glycogenolysis, in isolated hepatocytes, by beta-receptor subtype-selective antagonists. Thus, the hydrochloride of (t-butylamino-3-ol-2-propyl)oximino-9 fluorene, a beta-antagonist which has higher affinity at beta 2-sites than at beta 1-sites, was 3 orders of magnitude more potent in inhibiting isoproterenol-stimulated glycogenolysis than either atenolol or practolol, both of which are beta 1-selective antagonists. These results resemble the inhibition of [3H]dihydroalprenolol binding in plasma membranes. The glycogenolytic effects of catecholamines occurred with the potency order isoproterenol greater than epinephrine greater than norepinephrine. Thus, both by radioligand binding studies and by metabolic studies, the functional adrenergic receptor in the rabbit liver is shown to be of the beta 2-subtype.  相似文献   

10.
Receptors for galanin in membranes from the rat gastric and jejunal smooth muscle were studied using [125I] radioiodinated synthetic porcine galanin. Specific binding was time and temperature dependent. At 32 degrees C radioligand was degraded in the presence of smooth muscle membranes in a time-dependent manner. At optimal experimental conditions, the equilibrium binding analyses showed the presence of a single population of high affinity binding sites in both the rat stomach and jejunum (Kd value of 2.77 +/- 0.78 nM and 4.93 +/- 1.74 nM for stomach and jejunal smooth muscle membranes, respectively). The concentration of the high affinity binding sites was 58.19 +/- 11.04 and 32.36 +/- 5.68 fmol/mg protein, for gastric and jejunal preparations, respectively. Specific binding was completely inhibited by 10(-6) M of nonradioactive galanin; was 75% blocked by 1 microM of galanin(9-29); it was 10% blocked by 1 microM of galanin(15-29). Galanin(1-15) at a concentration of 1 microM was ineffective for inhibiting [125I]galanin binding. Deletion of four C-terminal amino acid residues from galanin(9-29) to give galanin(9-25) also resulted in almost complete loss of affinity. Radioiodinated galanin and N-terminally deleted fragments had receptor binding potency in the following order: galanin(1-29) greater than galanin(9-29) greater than galanin(15-29). We conclude that the C-terminal part of the galanin chain is important for the rat gastric and jejunal smooth muscle membrane receptor recognition and binding and that N-terminal amino acid sequences are probably not so important, since galanin(1-15) was not active but galanin(9-29) retained most of the receptor binding activity.  相似文献   

11.
[125I]-HEAT has proven useful for in vitro autoradiography as a specific alpha 1-adrenergic radioligand. We compared the binding of [125I]-HEAT to membranes from ten brain regions with the densitometric readings of these regions in autoradiographs. There was an excellent correlation between receptor numbers from membrane binding and relative optical densities from the autoradiography. The affinity of HEAT for binding to membranes from various regions was similar. The results of this direct comparison are further evidence that HEAT binds to alpha 1-adrenergic receptors in lightly fixed tissue sections. A further interesting observation is that in regions with a heterogeneous distribution of binding sites, membrane binding may not reflect the presence of a dense local population of receptors.  相似文献   

12.
Several new clonidine analogs were synthesized and their ability to inhibit [3H]phentolamine binding to human platelet alpha 2-adrenergic receptors was tested. The order of potency and calculated dissociation constants for clonidine and its analogs were as follows: clonidine (0.020 +/- 0.005 microM) greater than p-aminoclonidine (0.100 +/- 0.010 microM) greater than hydroxy-phenacetyl-aminoclonidine (0.20 +/- 0.03 microM) greater than p-dansyl clonidine (1.00 +/- 0.20 microM) greater than t-boc-tyrosine clonidine (1.80 +/- 0.60 microM). Thus, p-amino substitution reduces alpha 2-adrenergic affinity in the platelet system. The effects of clonidine and its p-amino analogs on platelet adenylate cyclase were also evaluated. This enzyme is inhibited by epinephrine acting via alpha 2-adrenergic receptors. Both clonidine and p-aminoclonidine cause slight inhibition of basal adenylate cyclase and reverse the inhibition induced by epinephrine. These observations indicate that clonidine is a partial agonist for platelet alpha 2-adrenergic receptors.  相似文献   

13.
Smooth muscle cells of the rabbit aorta, when grown in vitro, express distinguishable forms of phenotypes (contractile and synthetic). On contractile cells, ET-1 specifically bound to a single class of high affinity (KD = 128 pM) and high capacity (Bmax = 66,000 sites/cell) binding sites. But, whereas affinity of [125I]-ET-1 was not significantly affected by phenotypic modulation, synthetic cells displayed a 10-fold lower [125I]-ET-1 binding capacity than contractile smooth muscle cells. Similarly, the mitogenic effect of ET-1 on smooth muscle cells was considerably lower for synthetic than for contractile cells. The ET-1 receptor on primary cells was recognized by sarafotoxin S6b and the different ET-related peptides with an order of potency [ET-1 greater than S6b greater than ET-3 greater than Big ET-1 much greater than ET(16-21)] identical to that inducing smooth muscle cell growth. Therefore, these data indicate that the binding and the mitogenic effects of ET-1 on smooth muscle cells might be of different magnitudes depending on the phenotypic state of these cells.  相似文献   

14.
Short-term receptor regulation by agonists is a well-known phenomenon for a number of receptors, including beta-adrenergic receptors, and has been associated with receptor changes revealed by radioligand binding. In the present study, we investigated the rapid changes in alpha 1-adrenergic receptors induced by agonists. alpha 1-receptors were studied on DDT1 MF-2 smooth muscle cells (DDT1-MF-2 cells) by specific [3H]prazosin binding. In competition binding on membranes and on intact cells at 4 degrees C or at 37 degrees C in 1-min assays, agonists competed for a single class of sites with relatively high affinity. By contrast, in equilibrium binding at 37 degrees C on intact cells agonists competed with two receptor forms (high- and low-affinity). We quantified the receptors in the high-affinity form by measuring the [3H]prazosin binding inhibited by 20 microM norepinephrine (this concentration selectively saturated the high-affinity sites). The low-affinity sites were measured by subtracting the binding of [3H]prazosin to the high-affinity sites from the total specific binding. High-affinity receptors were 85% of the total sites in binding experiments at 4 degrees C, but only 30% at 37 degrees C. On DDT1-MF-2 cells preequilibrated with [3H]prazosin at 4 degrees C, and then shifted to 37 degrees C for a few minutes, norepinephrine selectively reduced the high-affinity sites by 30%. We suggest that at 4 degrees C it is the native form of alpha 1-receptors that is measured, with most of the sites in the high-affinity form, while during incubation at 37 degrees C the norepinephrine present in the binding assay converts most of the receptors to an apparent low-affinity form, so that they are no longer recognized by 20 microM norepinephrine. The nature of this low-affinity form was further investigated. On DDT1-MF-2 cells preincubated with the agonist and then extensively washed at 4 degrees C (to maintain the receptor changes induced by the agonist) the number of receptors recognized by [3H]prazosin at 4 degrees C was reduced by 38%. After fragmentation of the cells, the number of receptors measured at 4 degrees C was the same in control and norepinephrine-treated cells, suggesting that the disruption of cellular integrity might expose the receptors which are probably sequestered after agonist treatment. In conclusion, the appearance of the low affinity for agonists at 37 degrees C may be due to the agonist-induced sequestration of alpha 1-adrenergic receptors, resulting in a limited accessibility to hydrophilic ligands.  相似文献   

15.
The adrenergic receptor subtypes involved in cyclic AMP responses to norepinephrine (NE) were compared between slices of rat cerebral cortex and primary neuronal and glial cultures from rat brain. In neuronal cultures, NE and the beta-adrenergic receptor agonist isoproterenol (ISO) caused similar increases in cyclic AMP, which were not altered by the alpha-adrenergic receptor antagonist phentolamine. In glial cultures, NE caused a much smaller cyclic AMP response than did ISO, and this difference was reversed by alpha-adrenergic receptor antagonists (phentolamine greater than yohimbine greater than prazosin). alpha 2-Adrenergic receptor agonists partially inhibited the ISO response in glial cultures to a level similar to that observed with NE alone (clonidine = UK 14,304 greater than NE greater than 6-fluoro-NE greater than epinephrine). In slices from cerebral cortex, NE caused a much larger increase in cyclic AMP than did ISO, and this difference was reversed by alpha-adrenergic receptor antagonists with a different order of potency (prazosin greater than phentolamine greater than yohimbine). alpha 1-Adrenergic receptor agonists potentiated the response to ISO to a level similar to that observed with NE alone (epinephrine = NE greater than phenylephrine greater than 6-fluoro-NE greater than methoxamine). In all three tissue preparations, large responses to both alpha 1-receptor activation (increases in inositol phosphate accumulation) and alpha 2-receptor activation (decreases in forskolin-stimulated cyclic AMP accumulation) were observed. These data indicate that all of the major adrenergic receptor subtypes (beta, alpha 1, alpha 2) are present in each tissue preparation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The effects of hypothyroidism on the hepatic alpha 1-receptor system were studied in isolated rat liver cells. Phenylephrine and vasopressin caused concentration-dependent activation of glycogen phosphorylase and release of 45Ca from 45Ca-loaded cells in either normal or thyroidectomized rats. However, the magnitude of both responses to phenylephrine was markedly suppressed after thyroidectomy and could be restored to near normal levels by in vivo treatment with 1-triiodothyronine (0.25 mg/kg/day) for 4 days. The potency of vasopressin to induce phosphorylase activation and 45Ca release was only slightly reduced by thyroidectomy. Binding of [3H]prazosin to putative alpha 1-receptors in purified liver plasma membranes revealed that the above changes were accompanied by a decrease in the density of binding sites from 567 +/- 51 fmol/mg of protein in controls to 326 +/- 51 fmol/mg in thyroidectomized rats and a return to 498 +/- 23 fmol/mg in thyroidectomized rats treated with 1-triiodothyronine. The affinity of binding sites for [3H]prazosin or for alpha-receptor agonists was the same in the three groups of rats and affinity for epinephrine was unaffected by the presence of guanyl-5'-yl imidodiphosphate (30-100 microM). From these findings, it appears that a reduction in the number of hepatic alpha 1-receptors is responsible for the selective decrease in alpha-adrenergic responses in the hypothyroid rat liver. These changes are opposite to those previously reported for hepatic beta-receptors.  相似文献   

17.
Alpha adrenoceptor subtypes have been investigated by radioligand binding study in guinea-pig stomach using 3H-prazosin and 3H-yohimbine. The specific 3H-prazosin binding to guinea-pig stomach was saturable and of high affinity (KD = 1.4 nM) with a Bmax of 33 fmol/mg protein. Specific 3H-yohimbine binding to the tissue was also saturable and of high affinity (KD = 25.5 nM) with a Bmax of 150 fmol/mg protein. Adrenergic drugs competed for 3H-prazosin binding in order of prazosin greater than phentolamine greater than methoxamine greater than norepinephrine greater than clonidine greater than epinephrine greater than yohimbine. These drugs competed for 3H-yohimbine binding in order of yohimbine greater than phentolamine greater than clonidine greater than epinephrine greater than norepinephrine greater than prazosin greater than greater than prazosin greater than methoxamine. We also examined whether dopamine receptors exist in guinea-pig stomach, using radioligand binding study. Specific binding of 3H-spiperone, 3H-apomorphine, 3H-dopamine and 3H-domperidone was not detectable in the stomach. Dopaminergic drugs such as dopamine, haloperidol, domperidone and sulpiride competed for 3H-prazosin binding in order of haloperidol greater than domperidone greater than dopamine greater than sulpiride. Metoclopramide, sulpiride and dopamine competed for 3H-yohimbine binding in order of metoclopramide greater than sulpiride greater than dopamine. These results suggest that guinea-pig stomach has alpha 1 and alpha 2 adrenoceptors and has no specific dopamine receptors. It is also suggested that some dopamine receptor antagonists such as domperidone, haloperidol, sulpiride and metoclopramide have antagonistic actions on alpha adrenoceptors.  相似文献   

18.
The effects of guanine nucleotides on the hepatic alpha 1-adrenergic receptor were studied using norepinephrine (NE) displacement of [3H]prazosin binding to rat liver plasma membranes. Nonhydrolyzable GTP analogues caused large rightward shifts of norepinephrine displacement curves of [3H]prazosin binding in EGTA-treated membranes, but only small shifts in membranes prepared with Ca2+. The effect of a brief Ca2+ exposure on NE displacement curves was not reversed by adding excess EGTA prior to binding experiments. Analysis of the curves showed that the EGTA membranes had an increased number of high affinity agonist sites (Kd, 42 nM) and that guanyl-5'-yl imidodiphosphate (GppNHp) converted these to low affinity sites (Kd, 1039 nM). When binding was carried out at 2 degrees C, the norepinephrine displacement curves were shifted to the left, and GppNHp was without effect. Neither EGTA, Ca2+, nor 2 degrees C treatment altered [3H]prazosin binding per se. Attempts were made to differentiate the potency order of GTP analogues which alter glucagon receptor binding (presumably mediated by the stimulatory GTP-binding protein, Na, of the adenylate cyclase system) from the potency order of GTP analogues which alter alpha 1-receptor agonist binding (presumably mediated by a yet uncharacterized GTP-binding protein which some have speculated may be distinct from Ns). However, the potency series of GTP analogues to alter norepinephrine binding was GTP gamma S greater than GppNHp greater than or equal to GTP greater than or equal to GDP greater than or equal to GppCHp greater than GMP (where GTP gamma S represents guanosine 5'-O-(thiotriphosphate) and GppCHp represents guanyl-5'-yl (beta, gamma-methylene)diphosphonate) and was identical to that for inhibition of [125I]iodoglucagon binding. The ability of GppNHp to alter norepinephrine displacement of [3H]prazosin binding increased with the age of the rat from which membranes were prepared. This was due to the fact that juvenile rats (50-75 g) had few alpha 1-receptors in the high affinity state, whereas in old rats (430-490 g) more of the receptors were in this form. Age has previously been shown to increase alpha 1-adrenergic stimulation of cAMP in isolated hepatocytes (Morgan, N.G., Blackmore, P. F., and Exton, J. H. (1983) J. Biol. Chem. 258, 5103-5109) but did not affect the dose-response curves for norepinephrine-induced Ca2+ mobilization and phosphorylase activation in these cells. These data suggest that alpha 1-adrenergic receptors can become coupled to a guanine nucleotide-responsive moiety in hepatic plasma membranes and that this may be similar to Ns.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Amitriptyline was found to compete with (3H) dihydroergocryptine (3H-DHE), a potent alpha adrenergic antagonist, for specific alpha-adrenergic binding sites in rabbit uterine membranes preparation. Amitriptyline and adrenergic agonists compete for (3H) DHE binding sites in the following order of potency : (?) epinephrine > (?) nor-epinephrine > amitriptyline > ethylphenylephrine. Amitriptyline and alpha and beta antagonists compete in the order : phentolamine ? phenoxybenzamine > amitriptyline > propranolol. Based on 50 per cent inhibition values from binding competition curves, the affinity of amitriptyline for alpha-adrenergic sites was 83-fold lower than phentolamine, but only ten fold lower than epinephrine. These data are consistent with the hypothesis that the hypotensive action of amitriptyline results at least in part from alpha-adrenergic blockade.  相似文献   

20.
Binding of [3H] dihydroergocryptine (DHE) to myometrium was studied in cyclic and pregnant gilts. The binding was saturable and of high affinity (Kd = 2-4 nM). DHE binding was inhibited by phentolamine, phenoxybenzamine, epinephrine and norepinephrine, but almost not at all by propranolol or isoproterenol. DHE appears to be bound to an alpha 2-adrenergic receptor because yohimbine had a much greater ability to compete for DHE binding sites than did prazosin. The concentration of DHE binding sites in the myometrium was greatest during the luteal phase of the estrous cycle as has been previously reported for sheep. The decrease at estrus did not appear to be associated with a change in the alpha 2-adrenergic receptor dominance in myometrial membranes. Embryo migration to the site of implantation may be associated with reduced concentration of DHE binding sites on Days 10 to 12 of pregnancy in pigs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号