首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hepatic microsomal fatty acid chain elongation system can utilize either NADPH or NADH. Elongation activity, measured as the rate of malonyl CoA incorporation into palmitoyl CoA, was enhanced by a fat-free diet and by bovine serum albumin (BSA) when either cofactor was employed. When the intermediate products were determined, it was observed that in the presence of BSA and NADPH, the predominant product was the saturated elongated fatty acid, whereas in the presence of BSA and NADH, the major intermediate was the beta-ketoacyl derivative. Employing beta-ketostearoyl CoA as substrate, BSA markedly inhibited NADH-supported beta-ketoacyl CoA reductase activity and stimulated NADPH-supported activity. Furthermore, the sum of the NADH-dependent and NADPH-dependent beta-ketoreductase activities approximated the activity obtained when both cofactors were present in the incubation medium, suggesting the existence of two beta-ketoacyl CoA reductases, one using NADH and the other, NADPH.  相似文献   

2.
Using long-chain fatty acyl CoAs (arachidoyl CoA and behenoyl CoA), a decrease in overall fatty acid chain elongation activity was observed in the quaking and jimpy mouse brain microsomes relative to controls. Arachidoyl CoA (20:0) and behenoyl CoA (22:0) elongation activities were depressed to about 50% and 80% of control values in quaking and jimpy mice, respectively. Measurement of the individual enzymatic activities of the elongation system revealed a single deficiency in enzyme activity; only the condensation activity was reduced to the same extent as total elongation in both quaking and jimpy mice. The activities of the other three enzymes, beta-ketoacyl CoA reductase, beta-hydroxyacyl CoA dehydrase, and trans-2-enoyl CoA reductase, in both mutants were similar to the activities present in the control mouse. In addition, the activities of these three enzymes were more than two to three orders of magnitude greater than the condensing enzyme activity in all three groups, establishing that the condensing enzyme catalyzes the rate-limiting reaction step of total elongation. When the elongation of palmitoyl CoA was measured, only a 25% decrease in total elongation occurred in both mutants; a similar percent decrease in the condensation of palmitoyl CoA also was observed. The activities of the other three enzymes were unaffected. These results support the concept of either multiple elongation pathways or multiple condensing enzymes.  相似文献   

3.
The present study examines the effect of the acetylenic thioester dec-2-ynoyl-CoA (delta 2 10 identical to 1-CoA) on the microsomal fatty acid chain elongation pathway in rat liver. When the individual reactions of the elongation system were measured in the presence of delta 2 10 identical to 1-CoA, the trans-2-enoyl-CoA reductase activity was markedly inhibited (Ki = 2.5 microM), whereas the activities of the condensing enzyme, the beta-ketoacyl-CoA reductase, and the beta-hydroxyacyl-CoA dehydrase were not affected. The absence of inhibition of total microsomal fatty acid elongation was attributed to the significant accumulation of the intermediates, beta-hydroxyacyl-CoA and trans-2-enoyl-CoA, without formation of the saturated elongated product, indicating that the trans-2-enoyl-CoA reductase-catalyzed reaction was the only site affected by the inhibitor. The nature of the inhibition was noncompetitive. In contrast to the delta 2 10 identical to 1-CoA, delta 3 10 identical to 1-CoA did not inhibit trans-2-enoyl-CoA reductase activity, suggesting that the mode of inhibition was not via formation of the 2,3-allene derivative. Based on the observation (a) that p-chloromercuribenzoate markedly inhibits reductase activity, (b) that dithiothreitol protects the enzyme against inactivation by delta 2 10 identical to 1-CoA, (c) of the spectral manifestation of the interaction between thiol reagents and delta 2 10 identical to 1-CoA depicting an absorbance peak similar to that of the beta-ketoacyl thioester-Mg2+ enolate complex, (d) of a similar absorbance spectrum formed by the interaction between delta 2 10 identical to 1-CoA and liver microsomes, and (e) of the absence of formation of a similar spectrum by delta 3 10 identical to 1-CoA, trans-2-10:1-CoA, or delta 2 10 identical to 1 free acid with liver microsomes, we propose that delta 2 10 identical to 1-CoA inactivates trans-2-enoyl-CoA reductase by covalently binding to a critical sulfhydryl group at or in close proximity to the active site of the enzyme.  相似文献   

4.
The present study was designed to determine the action of the 2-acetylenic acid thioester on mitochondrial fatty acid chain elongation and beta-oxidation. Addition of 2-decynoyl CoA to a rat liver mitochondrial suspension resulted in a significant stimulation of the rate of oxidation of NADPH and NADH. This enhanced oxidation rate was not due to the mitochondrial trans-2-enoyl CoA reductase-catalyzed conversion of the 2-acetylenic acid thioester to the saturated product, decanoate, as measured by gas-liquid chromatography. On the contrary, the mitochondrial trans-2-enoyl CoA reductase activity was markedly inhibited by the 2-acetylenic acid derivative, as evidenced by the decrease in the reduction of trans-2-decenoyl CoA to decanoic acid. Incubation of the mitochondrial fraction with either NADPH or NADH and 2-decynol CoA resulted in the gas chromatographic identification of three products: beta-ketodecanoate, beta-hydroxydecanoate, and trans-2-decenoate. In the absence of reduced pyridine nucleotide, a single product was formed and identified as beta-ketodecanoate. Confirmation of the identity of this product was obtained by the observation of the formation of the Mg2+-enolate complex (303-nm absorbance peak). These results suggest that, although the 2-decynoyl CoA is an inhibitor of mitochondrial trans-2-enoyl CoA reductase activity, it is a substrate for the mitochondrial trans-2-enoyl CoA hydratase (crotonase). This was confirmed by incubation of 2-decynoyl CoA with commercially purified liver mitochondrial crotonase. The beta-ketodecanoate is formed in a two-step process: hydration of the 2-decynoyl CoA to an unstable enol intermediate which undergoes rearrangement to the beta-ketodecanoyl CoA. Interestingly, although the mitochondrial crotonase can utilize the 2-acetylenic acid thioesters, this was not the case for the peroxisomal bifunctional hydratase which was markedly inhibited by varying concentrations of 2-decynoyl CoA.  相似文献   

5.
A new assay for 3-hydroxy-3-methylglutaryl CoA reductase (mevalonate:NADP oxidoreductase [acylating CoA], EC 1.1.1.34) is based upon the measurement of released coenzyme A (SH) during the reduction of 3-hydroxy-3-methylglutaryl CoA to mevalonate. Coenzyme A was measured in the presence of dithiothreitol, required for activity, by reaction with 5,5'-dithiobis(2-nitrobenzoic acid). Sodium arsenite forms a complex with the dithiol, but not with monothiols. Thus, reduced coenzyme A reacts instantaneously with the reagent and dithiothreitol reacts slowly. The absorbance due to the coenzyme A-5,5'-dithiobis(2-nitrobenzoic acid) reaction is determined by extrapolating the linear (dithiol) absorbance-time curve to the time of addition of the reagent. After subtraction of control absorbance (deletion of NADPH), the concentration of CoA-SH is calculated from epsilon(max) = 1.36 x 10(4) at 412 nm. The method of protein removal and reduction of sulfhydryl groups on the enzyme are critical. This method provides an immediate assay. Recovery of reduced coenzyme A was 98.7%. The assay is applicable for microsomes or purified enzyme and has an effective range of 0.5-50 nmoles of coenzyme A. It was applied to kinetic measurement of the pigeon liver microsomal enzyme reaction. The apparent K(m) value for 3-hydroxy-3-methylglutaryl CoA was 1.75 x 10(-5) M, and for NADPH the value was 6.81 x 10(-4) M. This method was compared with the dual-label method at high and low levels of activity. The data were not statistically different.  相似文献   

6.
In the previous study, the organoselenium-containing anti-inflammatory agent, Ebselen, was found to disrupt both hepatic microsomal NADH- and NADPH-dependent electron transport chains. In the current investigation, we focus on the action of Ebselen on three separate metabolic reactions, namely, fatty acid chain elongation, desaturation, and drug biotransformation, which utilize reducing equivalents via these microsomal electron transport pathways. Both NADH-dependent and NADPH-dependent chain elongation reactions showed (i) that the condensation step was inhibited by Ebselen; all three substrates, palmitoyl CoA (16:0), palmitoleoyl CoA (16:1), and gamma-linolenyl CoA (18:3), were differentially affected by Ebselen; for example, the apparent Ki's of Ebselen for the condensation of 16:0, 16:1, and 18:3 in the absence of bovine serum albumin (BSA) preincubation were 7, 14, and 34 microM, and those in the presence of BSA preincubation were 35, 62, and 150 microM, respectively, supporting earlier data for multiple condensing enzymes; (ii) that the beta-ketoacyl CoA reductase-catalyzed reaction step which appears to receive electrons, at least in part, from the cytochrome b5 system, was also markedly inhibited by varying Ebselen concentrations; and (iii) that similar results were obtained with the dehydrase and the enoyl CoA reductase. Hence, each of the four component steps was significantly inhibited by Ebselen. Another important fatty acid biotransformation reaction, delta 9 desaturation of stearoyl CoA to oleoyl CoA, was significantly inhibited (90%) by 30 microM Ebselen. This effect appeared to be directly related to the NADH-dependent electron transport chain rather than to a direct action on the desaturase enzyme. Last, Ebselen also inhibited both aminopyrine and benzphetamine N-demethylations, two cytochrome P450-catalyzed reactions, in untreated rats, in rats on a high carbohydrate diet, and in phenobarbital-treated rats.  相似文献   

7.
The orientation of the condensing enzyme, the beta-hydroxyacyl-CoA dehydrase, and the trans-2-enoyl CoA reductase within the rat liver microsomal membrane was investigated by the use of impermeant inhibitors of enzyme activity: trypsin, chymotrypsin, subtilisin, mercury-dextran, and anti-beta-hydroxyacyl-CoA dehydrase IgG. The activity of the condensing enzyme was inhibited more than 70% by various proteases and was completely inhibited by 80 microM mercury-dextran. Similar results were obtained for the trans-2-enoyl-CoA reductase activity. On the other hand, in the absence of detergent, proteases inhibited beta-hydroxyacyl-CoA dehydrase activity by 25-40%, while in the presence of detergent the inhibition increased to 65-90%. Furthermore, anti-beta-hydroxyacyl-CoA dehydrase IgG, which in the absence of detergent produced no inhibition, in the presence of detergent inhibited beta-hydroxyacyl-CoA dehydrase activity by more than 80%; under identical conditions, preimmune IgG caused a 13% inhibition. Microsomes used throughout this study displayed greater than 90% latency with respect to mannose-6-phosphatase activity, indicating that the microsomes were intact. Latency was not affected by the proteases, by mercury-dextran, or by the presence of the enzyme assay components. These results suggest that both the condensing enzyme and the reductase are present on the cytoplasmic surface of the membrane, whereas the beta-hydroxyacyl-CoA dehydrase is embedded in the microsomal membrane.  相似文献   

8.
Studies were performed on methods of storage of rat jejunal tissue that would preserve activities of the lipid reesterifying enzymes, acyl CoA:monoglyceride acyltransferase and fatty acid CoA ligase. Storage at -80 degrees C of microsomes prepared from jejunal mucosa or storage of lyophilized microsomes at -20 degrees C was shown to preserve acyl CoA:monoglyceride acyltransferase very well for a matter of weeks. Preservation of fatty acid CoA ligase activity was adequate with either method, but results were not as good as for the transacylase enzyme.  相似文献   

9.
The NADH-dependent stearoyl CoA desaturase of hepatic microsomes (EC 1.14.99.5) is an enzyme system consisting of cytochrome b5 reductase (EC 1.6.2.2), cytochrome b5, and the terminal desaturase. We have developed a simple method for routine assay of the terminal enzyme based on complementation of the enzyme with chick embryo liver microsomes lacking desaturase activity. Desaturation of [1-14C]stearoyl CoA by the enzyme-microsome mixture is then assayed by thin-layer chromatography of the reaction products and determination of the amount of oleate formed. Microsomes from the livers of starved-refed rats were used as the source of the stearoyl CoA desaturase. The enzyme alone, solubilized and free from cytocrome b5 reductase and cytochrome b5, was unable to catalyze the desaturation of stearoyl CoA. However, after preincubation with chick embryo liver microsomes in the presence of 1% Triton X-100, the enzyme was active. The enzyme activity was linear with time and desaturase protein under the conditions described and depended on the concentrations of Triton X-100 present in the preincubation and the assay. The optimum concentrations of Triton X-100 were 1% for the preincubation and 0.1-0.15% in the assay. The desaturation activity was dependent on NADH and O2, and was inhibited 95% by 1 mM KCN. The use of chick embryo liver microsomes in this method eliminates the need to use purified cytochrome b5 reductase, cytochrome b5, and liposomes for routine assays and greatly reduces the complexities of timing and order of addition encountered in the existing assays.  相似文献   

10.
The present study demonstrates unequivocally the existence of short-chain trans-2-enoyl coenzyme A (CoA) hydratase and beta-ketoacyl CoA reductase activities in the endoplasmic reticulum of rat liver. Subcellular fractionation indicated that all four fractions, namely, mitochondrial, peroxisomal, microsomal, and cytosolic contained significant hydratase activity when crotonyl CoA was employed as the substrate. In the untreated rat, based on marker enzymes and heat treatment, the hydratase activity, expressed as mumol/min/g liver, wet weight, in each fraction was: mitochondria, 684; peroxisomes, 108; microsomes, 36; and cytosol, 60. Following di-(2-ethylhexyl)phthalate (DEHP) treatment (2% (v/w) for 8 days), there was only a 20% increase in mitochondrial activity; in contrast, peroxisomal hydratase activity was stimulated 33-fold, while microsomal and cytosolic activities were enhanced 58- and 14-fold respectively. A portion of the cytosolic hydratase activity can be attributed to the component of the fatty acid synthase complex. Although more than 70% of the total hydratase activity was associated with the mitochondrial fraction in the untreated rat, DEHP treatment markedly altered this pattern; only 11% of the total hydratase activity was present in the mitochondrial fraction, while 49 and 29% resided in the peroxisomal and microsomal fractions, respectively. In addition, all four subcellular fractions contained the short-chain NADH-specific beta-ketoacyl CoA (acetoacetyl CoA) reductase activity. Again, in the untreated animal, reductase activity was predominant in the mitochondrial fraction; following DEHP treatment, there was marked stimulation in the peroxisomal, microsomal, and cytosolic fractions, while the activity in the mitochondrial fraction increased by only 39%. Hence, it can be concluded that both reductase and hydratase activities exist in the endoplasmic reticulum in addition to mitochondria, peroxisomes, and soluble cytoplasm.  相似文献   

11.
Incubation of pure bacterial D-amino acid transaminase with D-serine or erythro-beta-hydroxy-DL-aspartic acid, which are relatively poor substrates, leads to generation of a new absorbance band at 493 nm that is probably the quinonoid intermediate. The 420-nm absorbance band (due to the pyridoxal phosphate coenzyme) decreases, and the 338-nm absorbance band (due to the pyridoxamine phosphate or some other form of the coenzyme) increases. A negative Cotton effect at 493 nm in the circular dichroism spectra is also generated. Closely related D amino acids do not lead to generation of this new absorption band, which has a half-life of the order of several hours. Treatment of the enzyme with the good substrate D-alanine leads to a small but detectable amount of the same absorbance band. D-Serine but not erythro-beta-hydroxyaspartate leads to inactivation of D-amino acid transaminase, and D-alanine affords partial protection. The results indicate that D-serine is a unique type of inhibitor in which the initial steps of the half-reaction of transamination are so slow that a quinonoid intermediate with a 493-nm absorption band accumulates. A derivative formed from this intermediate inactivates the enzyme.  相似文献   

12.
A sensitive radioactive assay of acyl CoA:sn-glycerol-3-phosphate-O-acyltransferase (EC 2.3.1.15) was developed to study the properties and subcellular distribution of this enzyme in rat epididymal adipose tissue. The esterification of sn-glycerol-3-phosphate was measured in the presence of palmitoyl CoA or palmitate, ATP, CoA, and Mg(2+) at pH 7.5. The presence of glycerophosphate acyltransferase was detected in both mitochondria and microsomes. The product of this reaction was identified as phosphatidate by thin-layer chromatography and dual isotope incorporation studies. Several divalent cations reduced the activity of this enzyme. Although Mg(2+) was not required for the activity of glycerophosphate acyltransferase, its addition to the incubation mixture resulted in an increased formation of neutral lipids at the expense of phosphatidate. This result is explained by an activation of microsomal phosphatidate phosphatase (EC 3.1.3.4). The effect of Mg(2+) was completely abolished by Ni(2+), Co(2+), Mn(2+), and Zn(2+). These studies suggest that the balance between Mg(2+) and several other divalent ions may be important in the regulation of neutral lipid synthesis in adipose tissue.  相似文献   

13.
The pyruvate-to-ethanol pathway in Entamoeba histolytica is unusual when compared with most investigated organisms. Pyruvate decarboxylase (EC 4.1.1.1), a key enzyme for ethanol production, is not found. Pyruvate is converted into acetyl-CoA and CO2 by the enzyme pyruvate synthase (EC 1.2.7.1), which has been demonstrated previously in this parasitic amoeba. Acetyl-CoA is reduced to acetaldehyde and CoA by the enzyme aldehyde dehydrogenase (acylating) (EC 1.2.1.10) at an enzyme activity of 9 units per g of fresh cells with NADH as a reductant. Acetaldehyde is further reduced by either a previously identified NADP+-linked alcohol dehydrogenase or by a newly found NAD+-linked alcohol dehydrogenase at an enzyme activity of 136 units per g of fresh cells. Ethanol is identified as the product of soluble enzymes of amoeba acting on pyruvate or acetyl-CoA. This result is confirmed by radioactive isotopic, spectrophotometric and gas-chromatographic methods.  相似文献   

14.
Denaturation of fructose-1,6-bisphosphatase (Fru-P2-ase, EC 3.1.3.11) by urea and renaturation of denatured enzyme has been investigated. Denaturation lowers the specific activity of the enzyme but even at 8 M urea concentration in the presence of sucrose the activity of the enzyme is detectable. Centrifugation of the enzyme in a sucrose density gradient at 4 M urea reveals one peak of protein corresponding to a dimer. Denaturation increases intensity of intrinsic fluorescence of Fru-P2-ase and causes a red shift of fluorescence peak of the thioisoindole derivative of the enzyme. Renaturation of the denatured enzyme followed as the reappearance of enzymatic activity in the presence and absence of bovine serum albumin (BSA) is characterised by first order kinetics, k = 1.78 X 10(-3) s-1. The presence of BSA does not affect the rate of renaturation but perceptibly increases the recovery of enzymatic activity. A 100% recovery of Fru-P2-ase activity is observed at 0.5 micrograms/mL concentration of the enzyme and 2 mg/mL of BSA.  相似文献   

15.
Unconjugated bile acids must be activated to their CoA thioesters before conjugation to taurine or glycine can occur. A human homolog of very long-chain acyl-CoA synthetase, hVLCS-H2, has two requisite properties of a bile acid:CoA ligase, liver specificity and an endoplasmic reticulum subcellular localization. We investigated the ability of this enzyme to activate the primary bile acid, cholic acid, to its CoA derivative. When expressed in COS-1 cells, hVLCS-H2 exhibited cholate:CoA ligase (choloyl-CoA synthetase) activity with both non-isotopic and radioactive assays. Other long- and very long-chain acyl-CoA synthetases were incapable of activating cholate. Endogenous choloyl-CoA synthetase activity was also detected in liver-derived HepG2 cells but not in kidney-derived COS-1 cells. Our results are consistent with a role for hVLCS-H2 in the re-activation and re-conjugation of bile acids entering liver from the enterohepatic circulation rather than in de novo bile acid synthesis.  相似文献   

16.
Mitochondria, peroxisomes, and microsomes were isolated from rat liver homogenates, and stearic acid and lignoceric acid beta-oxidation, as well as stearoyl CoA synthetase and lignoceroyl CoA synthetase activities in the three organelles, were compared. Stearic acid beta-oxidation in peroxisomes was sixfold greater compared to the oxidation in mitochondria. Lignoceric acid beta-oxidation, observed only in peroxisomes, was fivefold lower compared to stearic acid beta-oxidation. Stearoyl CoA synthetase was present whereas lignoceroyl CoA synthetase was absent in mitochondria. Stearoyl CoA synthetase and lignoceroyl CoA synthetase activities were present in microsomes and peroxisomes, but the activity of stearoyl CoA synthetase was several-fold greater compared to lignoceroyl CoA synthetase in both organelles. The differing responses to detergents and phospholipids of stearoyl CoA and lignoceroyl CoA synthetase activities in microsomes as well as peroxisomes indicated that each activity was catalyzed by a separate enzyme. Differences in detergent and phospholipid response were also noted when either stearoyl CoA or lignoceroyl CoA synthetase activity in one organelle was compared with the corresponding activity in the other organelle, suggesting that the same activity in different organelles may be catalyzed by separate enzyme proteins.  相似文献   

17.
A three-dimensional model of the Streptomyces coelicolor actinorhodin beta-ketoacyl synthase (Act KS) was constructed based on the X-ray crystal structure of the related Escherichia coli fatty acid synthase condensing enzyme beta-ketoacyl synthase II, revealing a similar catalytic active site organization in these two enzymes. The model was assessed by site-directed mutagenesis of five conserved amino acid residues in Act KS that are in close proximity to the Cys169 active site. Three substitutions completely abrogated polyketide biosynthesis, while two replacements resulted in significant reduction in polyketide production. (3)H-cerulenin labeling of the various Act KS mutant proteins demonstrated that none of the amino acid replacements affected the formation of the active site nucleophile.  相似文献   

18.
This study describes the biochemical properties of the rat hepatic microsomal NADPH-specific short-chain enoyl CoA reductase and NAD(P)H-dependent long-chain enoyl CoA reductase. Of the substrates tested, crotonyl CoA and trans-2-hexenoyl CoA are reduced by the short-chain reductase only in the presence of NADPH. The trans-2-octenoyl CoA and trans-2-decenoyl CoA appear to undergo reduction to octanoate and decanoate, respectively, catalyzed by both enzymes; 64% conversion of the C8:1 is catalyzed by the short-chain reductase, while 36% conversion is catalyzed by the long-chain enzyme. For the C10:1 substrate, 45% is converted by the short-chain reductase, while 55% is reduced by the long-chain reductase. trans-2-Hexadecenoyl CoA is a substrate for the long-chain enoyl CoA reductase only. Reduction of C4 and C6 enoyl CoA's was unaffected by bovine serum albumin (BSA), whereas BSA markedly stimulated the conversion of C10 and C16 enoyl CoA's to their respective saturated product. Reduction rates as a function of microsomal protein concentration, incubation time, pH, and cofactors are reported including the apparent Km and Vmax for substrates and cofactors. In general, the apparent Km's for the substrates ranged from 19 to 125 microM. The apparent Vmax for the short-chain enoyl CoA reductase was greatest with trans-2-hexenoyl CoA, having a turnover of 65 nmol/min/mg microsomal protein, while the apparent Vmax for the long-chain enzyme was greatest with trans-2-hexadecenoyl CoA, having a turnover of 55 nmol/min/mg microsomal protein. With respect to electron input, NADPH-cytochrome P-450 reductase, either alone, mixed with phospholipid, or incorporated into phospholipid vesicles, possessed no enoyl CoA reductase activity. Cytochrome c did not affect the NADPH-dependent conversion of the trans-2-enoyl CoA. In addition, anti-NADPH-cytochrome P-450 reductase IgG did not inhibit the reduction of trans-2-hexadecenoyl CoA in hepatic microsomes. Finally, the NADPH-specific short-chain and NAD(P)H-dependent long-chain enoyl CoA reductases were solubilized and completely separated from NADPH-cytochrome P-450 reductase by employing DE-52 column chromatography. These studies demonstrate the noninvolvement of NADPH-cytochrome P-450 reductase in either the short-chain (13) or long-chain enoyl CoA reductase system. Thus, the role of NADPH-cytochrome P-450 reductase in the microsomal elongation of fatty acids appears to be at the level of the first reduction step.  相似文献   

19.
Investigations on the cholic acid CoA ligase activity of rat liver microsomes were made possible by the development of a rapid, sensitive radiochemical assay based on the conversion of [3H]choloyl-CoA. More than 70% of the rat liver cholic acid CoA ligase activity was associated with the microsomal subcellular fraction. The dependencies of cholic acid CoA ligase activity on pH, ATP, CoA, Triton WR-1339, acetone, ethanol, magnesium, and salts were investigated. The hypothesis that the long chain fatty acid CoA ligase activity and the cholic acid CoA ligase activity are catalyzed by a single microsomal enzyme was investigated. The ATP, CoA, and cholic (palmitic) acid kinetics neither supported nor negated the hypothesis. Cholic acid was not an inhibitor of the fatty acid CoA ligase and palmitic acid was not a competitive inhibitor of the cholic acid CoA ligase. The cholic acid CoA ligase activity utilized dATP as a substrate more effectively than did the fatty acid CoA ligase activity. The cholic acid and fatty acid CoA ligase activities appeared to have different pH dependencies, differed in thermolability at 41 degrees, and were differentially inactivated by phospholipase C. Moreover, fatty acid CoA ligase activity was present in microsomal fractions from all rat organs tested while cholic acid CoA ligase activity was detected only in liver microsomes. The data suggest that separate microsomal enzymes are responsible for the cholic acid and the fatty acid CoA ligase activities in liver.  相似文献   

20.
These studies were carried out to determine whether bovine serum albumin (BSA), which is usually included in the incubation mixture for the in vitro determination of bilirubin-UDP-glucuronyl transferase (GT) activity, affects GT activity. Using bilirubin as substrate, addition of BSA to the enzyme reaction mixture at concentrations varying from 2 to 30 mg/ml resulted in a dose-related inhibition of "native" GT activity of rat liver microsomes. When detergent-activated enzyme was employed, increasing concentrations of BSA also required higher concentrations of deoxycholate, digitonin, or Triton X-100 to produce maximal bilirubin conjugation. Low BSA concentrations (2 mg/ml) prevented enzyme activation by both detergents and UDP-N-acetyl glucosamine. When BSA was omitted and bilirubin dissolved in dimethyl sulfoxide, UDP-N-acetyl glucosamine failed to enhance GT activity, and activation by detergents was only 15-25% of that observed in the presence of optimal concentrations of BSA. When rat albumin was substituted for BSA, a similar dose-related inhibition of in vitro bilirubin conjugation by untreated microsomes was observed, although at any given albumin concentration, GT activity was lower with rat than with bovine albumin. Additionally, both detergents and UDP-N-acetyl glucosamine produced similar GT activation regardless of the rat albumin concentration. Finally, these effects of BSA and rat albumin could not be reproduced when beta-lactoglobulin was employed and/or when p-nitrophenol was the acceptor substrate of GT. These findings indicate that albumin, in particular BSA, profoundly and selectively influences the in vitro activity of microsomal GT toward bilirubin as the acceptor substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号