首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
It was demonstrated that mutations T, Fu, Ki, t6 of chromosome 17 cause preferential transmission of the acrocentric homologues to the progeny from female Rb heterozygotes. The results indicate that the effects of these mutations on segregation are restricted to the Robertsonian translocations involving chromosome 17. Substitution of the parts of chromosome 17 distal or proximal to the T-locus did not alter the effect, of this chromosome on the transmission rate of the homologue. The transmissions effects of these mutations, whether cis or trans with Rb, were the same. It was observed that mothers Rb7/T43H transmitted the chromosome with the reciprocal translocation T43H to 70.9% of their progeny. Data were obtained supporting the idea that structural changes of the chromosomes caused by mutations affect segregation of the homologues in Rb heterozygous females. The possible mechanism of this influence is discussed.  相似文献   

2.
Two new X-autosome Robertsonian (Rb) translocations, Rb(X.9)6H and Rb(X.12)7H, were found during the course of breeding the Rb(X.2)2Ad rearrangement at Harwell. The influence of these new Rbs on meiotic chromosome segregation was investigated in hemizygous males and heterozygous females and compared to that of Rb(X.2)2Ad. Screening of metaphase II spermatocytes gave incidences of sex chromosome aneuploidy of 9.2% in Rb(X.2)6H/Y and 9.6% in Rb(X.9)2Ad/Y males; no metaphase II cells were present in the testes of the Rb(X.12)7H/Y males examined and no males with this karyotype have so far proved fertile. In breeding tests, 5% of the progeny of Rb(X.2)2Ad/Y males were sex chromosome aneuploids compared to 10% of the Rb(X.9)6H/Y offspring. The difference was not significant, however. Cytogenetic analyses of metaphase II stage oocytes showed elevated rates of hyperhaploidy (n + 1) in Rb heterozygous females over chromosomally normal mice: 4.2% for Rb(X.2)2Ad/+; 2.1% for Rb(X.9)6H/+; 2.2% for Rb(X.12)7H/+ and 1.1% for normal females. There was, however, no statistically significant difference in the rates of hyperhaploidy between the three different Rb types, nor overall between Rb/+ and normal females. Karyotypic analyses of liveborn offspring of Rb heterozygous females revealed low incidences of X0 animals but no other type of sex chromosome aneuploidy. Intercrosses of heterozygous females and hemizygous males yielded 5.5% aneuploidy for Rb(X.2)2Ad and 5.4% for Rb(X.9)6H. In heterozygous females, there was evidence from the metaphase II and breeding test data for all three rearrangements, of preferential segregation of the Rb metacentric to the polar body resulting in a deficiency of cells and progeny carrying a translocation chromosome.  相似文献   

3.
Mating experiments are described for sheep with three different Robertsonian translocations in the single heterozygous t1, t2 and t3, homozygous t1t1 and t3t3 and double heterozygous t1t2 and t1t3 state. The experiments were designed to investigate several previously reported unusual chromosome segregation ratios in sheep, to test the fertility of translocation heterozygous ewes mated to rams of normal karyotype and to test both the fertility and segregation patterns of sheep which were double translocation heterozygotes. The fertility of the translocation heterozygous ewes was normal as assessed from conception to first service, numbers of non-conceiving ewes and lambing percentages. Two types of double translocation heterozygous rams mated to ewes of normal karyotype produced regular chromosome segregation patterns in their progeny and the matings were of normal fertility. Double translocation heterozygous ewes were also fertile. Four sheep were bred with 51 chromosomes. Two of these were triple heterozygotes with three different Robertsonian translocations 51,xy,t1t2t3 and 51,xx,t1t2t3 and two were homozygous for one translocation and heterozygous for the others, namely 51,xx,t1t2t3 and 51,xxt1t3t3. All sheep were phenotypically normal. It is concluded that the t1,t2 and t3 Robertsonian translocations of sheep do not affect reproductive performance significantly.  相似文献   

4.
Diandric heterozygous diploid mouse embryos were produced by standard micromanipulatory techniques using eggs from female mice with a normal chromosome constitution and fertilised by homozygous Rb(1.3)1Bnr males containing a pair of large metacentric marker chromosomes in their karyotype. The constructed diandric eggs were transferred to the oviducts of pseudopregnant recipients and subsequently autopsied midday on the eighth day of gestation. From a total of 85 eggs transferred to females that subsequently became pregnant, 30 implanted. Eighteen implantation sites were found to contain resorptions, and 12 egg cylinder stage embryos were recovered. These were cytogenetically examined. In two cases, no mitoses were observed, and in a third embryo of normal size, only a single paternally-derived marker chromosome was present in its mitoses, indicating that this embryo had a normal chromosome constitution. This presumably resulted from a technical error during the micromanipulatory procedure. The remaining nine morphologically small but normal embryos were diploid, and each had two paternally-derived marker chromosomes, thus establishing their ploidy and confirming their diandric origin. G-banding analysis revealed that all of these embryos had an XY sex chromosome constitution. Since the expected XX:XY:YY ratio of 1:2:1 was not observed, it is clear that the XX class embryos were lost at some stage during the pre- or early post-implantation period, though whether they are represented by the resorption sites is not yet established. The YY class would not be expected to be recovered in any case, as these embryos are believed to be lost during early cleavage. The cytogenetic findings reported here are therefore similar to the results of the chromosomal analyses of the human complete hydatidiform moles of dispermic origin, all of which apparently have an XY karyotype. It is unclear why, both in the human and in the mouse, the XX diandric heterozygous diploid group should develop poorly compared to similar embryos with an XY karyotype.  相似文献   

5.
The properties of the t haplotypes, specific mutant states of the proximal region of chromosomes 17 in the house mouse, are of continuing interest. One such property is increased transmission of the t haplotype by heterozygous t/+ males to offspring. Using the reciprocal translocation T(16;17)43H we have constructed males with tertiary trisomy of chromosome 17 (+T43/+ +/Rb7+) carrying the Robertsonian translocation Rb(16.17)7Bnr. Only the progeny of these males which had inherited either T43/+ or Rb7 from their male parent were viable. The segregation patterns in the offspring of t-bearing trisomics were analysed on days 16-18 of embryonic development. It was found that, when the t12 haplotype is in the normal acrocentric (males+ +T43/+ t12 + /Rb7+ +), its presence in the gamete +t12+/+ + T43 does not produce meiotic drive. However, when t6 is in Rb7, meiotic drive was observed: 80% of offspring carried the t haplotype. It is concluded that the meiotic drive is probably inhibited by the presence of a normal homologue of chromosome 17 in the same sperm. Possible mechanisms for the t haplotype effect are discussed.  相似文献   

6.
Transmission ratio distortion (TRD) is defined as a significant departure from expected Mendelian ratios of inheritance of an allele or chromosome. TRD is observed among specific regions of the mouse and human genome and is frequently associated with chromosome rearrangements such as Robertsonian (Rb) chromosomes. We intercrossed mice heterozygous for a (7.18) Rb translocation and genotyped chromosomes 7 and 18 in 1812 individuals, 47% of which were informative for chromosome segregation. We substantiated previous findings that females were less likely than expected to transmit the Rb chromosome to their offspring. Surprisingly, however, we report that heterozygous males transmitted the Rb translocation chromosome significantly more frequently than the acrocentrics. The transmission of the Rb chromosome was not significantly influenced by either the sex of the Rb grandparent or the strain of the Rb.  相似文献   

7.
Contrasting results (random segregation or cosegregation of isomorphic chromosomes) have been reported up to now on the segregation pattern of Robertsonian metacentric chromosomes of Mus musculus domesticus in multiple heterozygotes, using different approaches (karyotypical analysis of the progeny or of second meiotic metaphases). In the present contribution data are presented based on FISH (Fluorescence In Situ Hybridisation) analysis with telomeric probes, which allowed us to distinguish metacentric chromosomes from pairs of acrocentric chromosomes with their centromeric regions close to each other. Probes were hybridized to DAPI stained metaphases of spermatocytes II of mice heterozygous for two, three or four Robertsonian metacentrics in an all-acrocentric background, the karyotype of which has been reconstructed starting from laboratory strains. Isomorphic chromosomes tend to cosegregate (metacentrics with metacentrics, acrocentrics with acrocentrics); the values found for cosegregation have a clear even if moderate effect on the reproductive isolation caused by underdominant chromosomal rearrangements.  相似文献   

8.
Fedyk S  Chetnicki W 《Heredity》2007,99(5):545-552
One of the hypotheses explaining preferential transmission of metacentrics among simple Robertsonian (Rb) heterozygotes of the common shrew (Sorex araneus L.) invokes the existence of meiotic drive. Thus far, evidence that metacentrics are favoured at meiosis has been obtained indirectly, on the basis of crosses made under controlled conditions. The aim of the present work was to test the hypothesis in a direct study. We analysed products of chromosome segregation among 12 simple heterozygote male subjects from a wild population, with regard to jl, io, nr and mn Rb fusions. We were able to demonstrate significant segregation distortion in favour of all four metacentrics. The level of preferential segregation was independent either of the composition of chromosome arms or the dimensions of metacentrics. We also found that X chromosomes were favoured over Y1Y2 chromosomes during segregation. We discuss the role of meiotic drive in the evolutionary success of metacentric chromosomes in S. araneus, as well as in the emergence of post-hybridization modifications in the zones of contact between races.  相似文献   

9.
Meiosis was studied in male South American marsh rats (1) to help clarify the mechanisms that allow unusually high levels of Robertsonian (Rb) polymorphisms to be maintained in wild populations of these animals and (2) to test competing assumptions in two distinct models of chromosomal speciation. In both simple Rb heterozygotes and Rb heterozygotes with monobrachial homology, no univalency was observed in prophase I or metaphase I. Rates of nondisjunction were uniformly low (less than 10%) and did not differ significantly among any of the animals studied, regardless of karyotype and in contrast to the frequency of nondisjunction in other mammalian species. Robertsonian heterozygotes exhibited significantly more chiasmata than did homozygotes, largely owing to an increase in the number of terminally located chiasmata. There was a significant bias favoring the transmission of two acrocentrics over the single metacentric for some Rb rearrangements in the heterozygous state. In addition, the frequency of sex-chromosome univalency increased with increasing Rb heterozygosity, although the ratio of X- and Y-bearing secondary spermatocytes did not differ significantly from 1:1, and no secondary spermatocytes were observed that were nullisomic or disomic for an X or Y chromosome.  相似文献   

10.
Pea (Pisum sativum L.) satellited chromosome reconstructions were analyzed by cytologic markers to identify segregation distortion events. The presence of modified chromosomes was evaluated on the basis of additional rDNA genes, an extra and a longer satellite, all derived from chromosome 5 and chromosome 7 from P. fulvum Sibth. & Sm. The segregation of modified satellited chromosome 5 was monitored through fluorescent in situ hybridization with rDNA probe; it fitted the expected 1:2:1 ratio after self-pollination of a heterozygous genotype for modified chromosome 5. In different genotypes, which were heterozygous for both modified chromosomes 5 and 7, the combined segregation of these chromosomes showed the occurrence of seven karyotype classes instead of the expected nine. The classes with modified chromosome 7 and without modified chromosome 5, whether heterozygous or homozygous, were absent. The hypothesis of gamete selection was rejected since the expected segregation ratio of 5:3:1 was significant by chi-square test. Based on the other hypothesis of postzygotic selection, the segregation ratio did not show a significant deviation from the expected 9:3:1 ratio, thereby indicating that embryo abortion caused the segregation distortion (SD). The hypothesis of the SD system involving two loci carried by the alien satellites of modified chromosomes 5 and 7 is discussed in relation to the evolution of the P. fulvum genome.  相似文献   

11.
A Robertsonian translocation in the mouse between the X chromosome and chromosome 2 is described. The male and female carriers of the Rb(X.2)2Ad were fertile. A homozygous/hemizygous line was maintained. The influence of the X-autosomal Robertsonian translocation on anaphase I non-disjunction in male mice was studied by chromosome counts in cells at metaphase II of meiosis and by assessment of aneuploid progeny. The results conclusively show that the inclusion of Rb2Ad in the male genome induces non-disjunction at the first meoitic division. In second metaphase cells the frequency of sex-chromosomal aneuploidy was 10.8%, and secondary spermatocytes containing two or no sex chromosome were equally frequent. The Rb2Ad males sired 3.9% sex-chromosome aneuploid progeny. The difference in aneuploidy frequencies in the germ cells and among the progeny suggests that the viability of XO and XXY individuals is reduced. The pairing configurations of chromosomes 2, Rb2Ad and Y were studied during meiotic prophase by light and electron microscopy. Trivalent pairing was seen in all well spread nuclei. Complete pairing of the acrocentric autosome 2 with the corresponding segment of the Rb2Ad chromosome was only seen in 3.2% of the cells analysed in the electron microscope. The pairing between the X and Y chromosome in the Rb2Ad males corresponded to that in males with normal karyotype. Reasons for sex-chromosomal non-disjunction despite the normal pairing pattern between the sex chromosomes may be seen in the terminal chiasma location coupled with the asynchronous separation of the sex chromosomes and the autosomes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Animals with aberrant chromosome 1 carrying one or two large insertions were earlier described in natural populations of Mus musculus. In the present work, inheritance of the aberrant chromosome 1 from the Yakutsk population was investigated. It was shown that 80-85% of the progeny from heterozygous females received chromosome 1 with insertions. From chromosomal analysis of blastocytes and oocytes at the MII stage, it was concluded that the preferential distribution of the aberrant chromosome into oocytes during the first and especially, the second meiotic divisions is relevant to the segregation distortion observed. The mechanism of this powerful meiotic drive is discussed.  相似文献   

13.
Earlier we showed that Sperm adhesion molecule1 (Spam1), the best studied sperm hyaluronidase, is involved in the sperm dysfunction associated with Robertsonian translocations (Rb). The dysfunction results in reduced fertility in mice homozygous for the Rb(6.16) or the Rb(6.15) translocation and transmission ratio distortion (TRD) in heterozygous males. This conclusion was based on the finding that Spam1 in the Rbs harbors multiple point mutations and a genomic alteration at the locus [in the case of Rb(6.16)]; and is accompanied by reduced steady-state levels of the RNA and protein. Here we show that closely linked family members in the hyaluronidase gene cluster on mouse chromosome 6, Hyalp1 and Hyal5, also harbor point mutations in these Rbs, leading to nonconservative substitutions in both the encoded proteins. To test if Spam1 by itself is capable of producing TRD we analyzed the transmission of wild-type and null alleles of the gene in the progeny of carriers and show that there is no significant TRD. This lack of TRD in null carriers argues for only a contributory role of Spam1 in the TRD seen in the Rb-bearing mice, and supports the involvement of Hyalp1 and/or Hyal5 in the sperm dysfunction and the resulting TRD. It is proposed that the clustering of point mutations in all three genes results from the cumulative effect of spontaneous mutations that do not disperse in the population due to suppression of recombination that occurs at Rb junctions.  相似文献   

14.
Edmé SJ  Glynn NG  Comstock JC 《Heredity》2006,97(5):366-375
Genetic mapping techniques can be used to study the interaction between two different genomes after hybridization. This study investigated a Saccharum officinarum (Green German or GG, 2n approximately 11x approximately 110) x S. spontaneum (IND 81-146 or IND, 2n approximately 7x approximately 56) interspecific cross. Segregation of 193 microsatellite (SSR) loci was evaluated in the F(1) progeny of 169 full-sibs of the cross. Following the two-way pseudo-testcross strategy and 'cross pollination' population type, linkage groups (LG) and phases were established for each parent map, using the criteria of LOD score > or = 3.0 and a maximum recombination frequency of 0.35. Of the 193 markers analyzed, 61 were IND-specific, 106 were GG-specific, and 26 were heterozygous in both parents. About 78% of the markers segregated in a Mendelian fashion and 22% were distorted (as evaluated by chi(2)-tests, P < or = 0.01). The GG map included 91 marker loci arranged into 25 LG covering 1180 cM of the officinarum genome. The IND map consisted of 46 marker loci assembled into 10 LG, which spanned 614 cM of the spontaneum genome. A specific chromosome associated with segregation distortion was detected in the female (GG) genome only, probably as a result of double reduction. The segregation patterns of the marker loci indicated a centromere-driven distortion process with the shared allelic markers (as putative centromeres) regulating the placement and association of markers with opposite phase (coupling vs repulsion) and dosage on either side. Although incomplete, the framework maps were informative with respect to segregation distortion, chromosome fusion, rearrangements, and translocations, observed in both parental genomes as a result of their merger.  相似文献   

15.
Meiotic drive has attracted much interest because it concerns the robustness of Mendelian segregation and its genetic and evolutionary stability. We studied chromosomal meiotic drive in the common shrew (Sorex araneus, Insectivora, Mammalia), which exhibits one of the most remarkable chromosomal polymorphisms within mammalian species. The open question of the evolutionary success of metacentric chromosomes (Robertsonian fusions) versus acrocentrics in the common shrew prompted us to test whether a segregation distortion in favor of metacentrics is present in female and/or male meiosis. Performing crosses under controlled laboratory conditions with animals from natural populations, we found a clear trend toward a segregation distortion in favor of metacentrics during male meiosis, two chromosome combinations (gm and jl) being significantly preferred over their acrocentric homologs. Apart for one Robertsonian fusion (hi), this trend was absent in female meiosis. We propose a model based on recombination events between twin acrocentrics to explain the difference in transmission ratios of the same metacentric in different sexes and unequal drive of particular metacentrics in the same sex. Pooled data for female and male meiosis revealed a trend toward stronger segregation distortion for larger metacentrics. This is partially in agreement with the frequency of metacentrics occurring in natural populations of a chromosome race showing a high degree of chromosomal polymorphism.  相似文献   

16.
The properties of the t haplotypes, specific mutant states of the proximal region of chromosome 17 in the house mouse keep renewing interest. One such property is increased transmission of the t haplotype from heterozygous t/+ males to their offspring. By means of reciprocal translocation T (16; 17)43H, we have constructed males with tertiary trisomy 17 (+T43/++/RB7+) carrying Robertsonian translocation Rb(16.17)7Bnr. The offspring of these males was viable when sperm of +T43/++ and Rb7+ was used. The segregation patterns in the offspring of t-bearing trisomics were analysed on days 16-18 of embryonic development. It was found that in the case when the t haplotype is on the normal acrocentric (male male ++T43/+t12+/Rb7++), its presence in the gamete +t12+/++T43 does not produce meiotic drive. However, when t6 is on Rb7, meiotic drive was equal to 80%. It is concluded that the presence of a normal homolog and a t-bearing chromosome in sperm does not result in meiotic drive. Possible mechanisms of meiotic drive of the t haplotypes are discussed.  相似文献   

17.
A Robertsonian translocation results in a metacentric chromosome produced by the fusion of two acrocentric chromosomes. Rb heterozygous mice frequently generate aneuploid gametes and embryos, providing a good model for studying meiotic nondisjunction. We intercrossed mice heterozygous for a (7.18) Robertsonian translocation and performed molecular genotyping of 1812 embryos from 364 litters with known parental origin, strain, and age. Nondisjunction events were scored and factors influencing the frequency of nondisjunction involving chromosomes 7 and 18 were examined. We concluded the following: 1. The frequency of nondisjunction among 1784 embryos (3568 meioses) was 15.9%. 2. Nondisjunction events were distributed nonrandomly among progeny. This was inferred from the distribution of the frequency of trisomics and uniparental disomics (UPDs) among all litters. 3. There was no evidence to show an effect of maternal or paternal age on the frequency of nondisjunction. 4. Strain background did not play an appreciable role in nondisjunction frequency. 5. The frequency of nondisjunction for chromosome 18 was significantly higher than that for chromosome 7 in males. 6. The frequency of nondisjunction for chromosome 7 was significantly higher in females than in males. These results show that molecular genotyping provides a valuable tool for understanding factors influencing meiotic nondisjunction in mammals.  相似文献   

18.
The influence of Robertsonian (Rb) heterozygosity on fertility has been the subject of much study in the house mouse. However, these studies have been largely directed at single simple heterozygotes (heterozygous for a single Rb metacentric) or complex heterozygotes (heterozygous for several to many metacentrics which share common chromosome arms). In this paper we describe studies on male multiple simple heterozygotes, specifically the F(1) products of crosses between wild-stock mice homozygous for four or seven metacentrics and wild-stock mice with a standard all-acrocentric karyotype; these F(1) products were characterized by four and seven trivalents at meiosis I, respectively. Mice with the same karyotype, but two different genetic backgrounds were examined. Although a range of meiotic and fertility studies were conducted, particular emphasis was paid to analysis of chromosome pairing, previously not well-described in multiple simple heterozygous mice. The progression of spermatocytes through prophase I was followed by electron microscopy of surface spread material. As previously shown for single simple Rb heterozygotes, the trivalents that characterize multiple simple heterozygotes initially showed delayed pairing of the centromeric region and later showed side arm formation, resulting from non-homologous pairing by the centromeric ends of the acrocentric chromosomes. In the four trivalent groups of mice, 15 and 32% of trivalents showed unpairing in the centromeric region at mid pachytene; equivalent values were 29 and 39% for the seven trivalent groups. Pairing abnormalities (largely attachments and interlocks between trivalents and between a trivalent and the XY configuration) were observed in 18 and 23% of mid pachytene cells in the four trivalent groups and 36 and 49% of cells in the seven trivalent groups. The greater level of pachytene irregularity (unpairing and pairing abnormalities) in seven versus four trivalent heterozygotes was mirrored in terms of higher anaphase I nondisjunction frequency and lower germ cell counts. However, while pachytene irregularities appear to contribute to germ cell death, examples of male sterility in our material undoubtedly also involve genic incompatibilities.  相似文献   

19.
Aneuploidy results from nondisjunction of chromosomes in meiosis and is the leading cause of developmental disabilities and mental retardation in humans. Therefore, understanding aspects of chromosome segregation in a genetic model is of value. Mice heterozygous for a (2.8) Robertsonian translocation were intercrossed with chromosomally normal mice and Chromosome 2 was genotyped for number and parental origin in 836 individuals at 8.5 dpc. The frequency of nondisjunction of this Robertsonian chromosome is 1.58%. Trisomy of Chromosome 2 with two maternally derived chromosomes is the most developmentally successful aneuploid karyotype at 8.5 dpc. Trisomy of Chromosome 2 with two paternally derived chromosomes is developmentally delayed and less frequent than the converse. Individuals with maternal or paternal uniparental disomy of Chromosome 2 were not detected at 8.5 dpc. Nondisjunction events were distributed randomly across litters, i.e., no evidence for clustering was found. Transmission ratio distortion is frequently observed in Robertsonian chromosomes and a bias against the transmission of the (2.8) Chromosome was detected. Interestingly, this was observed for female and male transmitting parents.  相似文献   

20.
Karyotypic and cytogenetic characteristics of catfish Harttia carvalhoi (Paraíba do Sul River basin, S?o Paulo State, Brazil) were investigated using differential staining techniques (C-banding, Ag-staining) and fluorescent in situ hybridization (FISH) with 18S and 5S rDNA probes. The diploid chromosome number of females was 2n = 52 and their karyotype was composed of nine pairs of metacentric, nine pairs of submetacentric, four pairs of subtelocentric and four pairs of acrocentric chromosomes. The diploid chromosome number of males was invariably 2n = 53 and their karyotype consisted of one large unpaired metacentric, eight pairs of metacentric, nine pairs of submetacentric, four pairs of subtelocentric, four pairs of acrocentric plus two middle-sized acrocentric chromosomes. The differences between female and male karyotypes indicated the presence of a sex chromosome system of XX/XY1Y2 type, where the X is the largest metacentric and Y1 and Y2 are the two additional middle-sized acrocentric chromosomes of the male karyotype. The major rDNA sites as revealed by FISH with an 18S rDNA probe were located in the pericentromeric region of the largest pair of acrocentric chromosomes. FISH with a 5S rDNA probe revealed two sites: an interstitial site located in the largest pair of acrocentric chromosomes, and a pericentromeric site in a smaller metacentric pair of chromosomes. Translocations or centric fusions in the ancestral 2n = 54 karyotype is hypothesized for the origin of such multiple sex chromosome systems where females are fixed translocation homozygotes whereas males are fixed translocation heterozygotes. The available cytogenetic data for representatives of the genus Harttia examined so far indicate large kayotype diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号