首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shp2, a protein tyrosine phosphatase possessing SH2 domains, is utilized in the intracellular signaling of various growth factors. Shp2 is highly expressed in the CNS. Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, which also shows high levels of expression in the CNS, exerts neurotrophic and neuromodulatory effects in CNS neurons. We examined how BDNF utilizes Shp2 in its signaling pathway in cultured cerebral cortical neurons. We found that BDNF stimulated coprecipitation of several tyrosine-phosphorylated proteins with anti-Shp2 antibody and that Grb2 and phosphatidylinositol 3-kinase (PI3-K) were coprecipitated with anti-Shp2 antibody in response to BDNF. In addition, both anti-Grb2 and anti-PI3-K antibodies coprecipitated Shp2 in response to BDNF. The BDNF-stimulated coprecipitation of the tyrosine-phosphorylated proteins, Grb2, and PI3-K with anti-Shp2 antibody was completely inhibited by K252a, an inhibitor of TrkB receptor tyrosine kinase. This BDNF-stimulated Shp2 signaling was markedly sustained as well as BDNF-induced phosphorylation of TrkB and mitogen-activated protein kinases. In PC12 cells stably expressing TrkB, both BDNF and nerve growth factor stimulated Shp2 signaling similarly to that by BDNF in cultured cortical neurons. These results indicated that Shp2 shows cross-talk with various signaling molecules including Grb2 and PI3-K in BDNF-induced signaling and that Shp2 may be involved in the regulation of various actions of BDNF in CNS neurons.  相似文献   

2.
Abstract: A clonal cell line stably expressing trkB (TrkB/PC12) was established from rat pheochromocytoma PC12 cells. Brain-derived neurotrophic factor (BDNF), as well as nerve growth factor (NGF), stimulates neurite outgrowth in TrkB/PC12 cells. However, the morphology of BDNF-differentiated cells was clearly different from NGF-differentiated cells. BDNF treatment brought about longer and thicker neurites and induced a flattened soma and an increase in somatic size. This is not explained enough by the quantitative difference in the strength between TrkA and TrkB stimulation, because the level of BDNF-stimulated tyrosine phosphorylation of TrkB was similar to that of TrkA stimulated with NGF in PC12/TrkB cells. There was no difference in major tyrosine phosphorylated proteins induced by NGF and BDNF. Signal proteins such as phosphatidylinositol 3-kinase, phospholipase C-γ1, Shc, and mitogen-activated protein kinase seem to be involved in both TrkA- and TrkB-mediated signaling pathways. However, a tyrosine-phosphorylated 38-kDa protein (pp38) was detected in anti-pan-Trk immunoprecipitation only after NGF stimulation. Immunoprecipitation using three distinct anti-pan-Trk antibodies suggests that pp38 is not a fragment of TrkA. These data indicate that TrkA has a unique signal transduction pathway that is not stimulated through TrkB in TrkB/PC12 cells and suggest distinct functions among neurotrophin receptors.  相似文献   

3.
Effects of inhibitors of tyrosine kinases (K-252a, genistein) and of phospholipase A2 (bromophenacyl bromide) on viability of PC12 cells are studied in the presence of hydrogen peroxide and ganglioside GM1. The degree of inhibition of hydrogen peroxide cytotoxic effects by ganglioside GM1 amounted to 52.8 ± 4.2%. However, in the presence in the medium of 0.1 and 1 μM inhibitors of tyrosine kinase of Trk-receptors (K-252a) it was as low as 32.7 ± 6.5% and 11.7 ± 9.8%, respectively. GM1 prevented Na+,K+-ATPase oxidative inactivation produced by H2O2, but in the presence of 1 μM K-252a this effect was practically not pronounced. In the presence of another inhibitor of tyrosine kinases-genistein, a tendency for a decrease of the GM1 protective effect was observed at its concentrations 0.1 and 1 μM, whereas at a higher concentration 10 μM, genistein depressed statistically significantly the GM1 neuroprotective effect. It was found that inhibitor of phospholipase A2 bromophenacyl bromide did not affect the action of GM1 aimed at increasing the viability of cells under action of hydrogen peroxide on them. It seems that this enzyme is not involved in the cascade of reactions participating in realization of the ganglioside protective effect. Thus, inhibitor of tyrosine kinase of Trk-receptors K-252a decreases or practically prevents the ganglioside GM1 neuroprotective effect on PC12 cells under stress conditions; the same ability is characteristic of genistein—an inhibitor of tyrosine kinases of the wider spectrum of action.  相似文献   

4.
AMPK is known to be activated by oxidative stress. Addition of glucose oxidase to cells generates H2O2 at a constant rate that is opposed by enzymic degradation, providing a good model for physiological oxidative stress. AMPK activation by glucose oxidase correlated with increases in cellular AMP:ATP and was greatly reduced in cells expressing an AMP-insensitive AMPK mutant, although a small degree of activation remained. The effects of increased AMP were partly due to inhibition of Thr172 dephosphorylation. These results suggest that changes in adenine nucleotides, rather than direct oxidative modification, are the major drivers of AMPK activation during oxidative stress.  相似文献   

5.
We have recently shown that nerve growth factor (NGF) induces the phosphorylation of the microtubule-associated protein 1B (MAP1B) by activating the serine/threonine kinase glycogen synthase kinase 3beta (GSK3beta) in a spatio-temporal pattern in PC12 cells that correlates tightly with neurite growth. PC12 cells express two types of membrane receptor for NGF: TrkA receptors and p75NTR receptors, and it was not clear from our studies which receptor was responsible. We show here that brain-derived neurotrophic factor, which activates p75NTR but not TrkA receptors, does not stimulate GSK3beta phosphorylation of MAP1B in PC12 cells. Similarly, NGF fails to activate GSK3beta phosphorylation of MAP1B in PC12 cells that lack TrkA receptors but express p75NTR receptors (PC12 nnr). Chick ciliary ganglion neurons in culture lack TrkA receptors but express p75NTR and also fail to show NGF-dependent GSK3beta phosphorylation of MAP1B, whereas in rat superior cervical ganglion neurons in culture, NGF activation of TrkA receptors elicits GSK3beta phosphorylation of MAP1B. Finally, inhibition of TrkA receptor tyrosine kinase activity in PC12 cells and superior cervical ganglion neurons with K252a potently and dose-dependently inhibits neurite elongation while concomitantly blocking GSK3beta phosphorylation of MAP1B. These results suggest that the activation of GSK3beta by NGF is mediated through the TrkA tyrosine kinase receptor and not through p75NTR receptors.  相似文献   

6.
7.
Used in this work are PC12 cells transfected with human gene expressing amyloid-precursor protein of β-peptide and carrying the so-called “Swedish mutation” leading to the appearance of one of Alzheimer’s disease family forms. It has been shown that the PC12 cells transfected with this mutant gene, at action of various hydrogen peroxide concentrations, die to the significant greater degree than the used for comparison PC12 cells transfected with analogous human gene of the wild type or than vector-transfected cells. It has been found that ganglioside GM1 at micro-or nanomolar concentrations is able to increase viability of the PC12 cells transfected with the mutant gene causing a significant accumulation of endogenous amyloid β-peptide. The obtained data confirm an important role of oxidative stress in injury and death of brain nerve cells in Alzheimer’s disease.  相似文献   

8.
PC12h-R cell, a subclone of PC12 cells, exhibited a neuron-like phenotype, including neurite outgrowth and increased acetylcholinesterase activity, in response to epidermal growth factor (EGF) as well as nerve growth factor (NGF). We examined the mechanism by which EGF induced the neuronal differentiation in PC12h-R cells. The EGF-induced neuronal differentiation of PC12h-R cells was not blocked by K252a, whereas that induced by NGF was. EGF induced sustained tyrosine phosphorylation of the EGF receptor in PC12h-R cells, but not in the parent PC12h cells, which do not show neuronal differentiation in response to EGF. In addition, the rate of EGF-induced down-regulation of the EGF receptor in PC12h-R cells was decreased compared with that in PC12h cells. Furthermore, we found that the duration of EGF-induced tyrosine phosphorylation of the EGF receptor in PC12h-R cells was similar to that of NGF-induced tyrosine phosphorylation of p140 trkA in PC12h cells. The EGF-induced phosphorylation of the EGF receptor in PC12h cells was less sustained than that of p140 trkA by NGF in PC12h cells. These findings suggested that the EGF-induced neuronal differentiation of PC12h-R cells is due to the sustained activation of the EGF receptor, resulting from the decreased down-regulation of the EGF receptor and that the duration of the receptor tyrosine kinase activity determines the cellular responses of PC12 cells. We concluded that sustained activation of the receptor tyrosine kinase induces neuronal differentiation, although transient activation promotes proliferation of PC12 cells. Special issue dedicated to Dr. Hans Thoenen.  相似文献   

9.
An increase in the intracellular cAMP concentration induces tyrosine phosphorylation of the epidermal growth factor receptor (EGFR) followed by activation of extracellular signal-regulated kinases 1/2 (ERK1/2). In this report we demonstrate that these effects of cAMP are mediated via activation of protein kinase A (PKA). Chemical inhibition of PKA suppressed forskolin-induced EGFR tyrosine phosphorylation and ERK1/2 activation in PC12 cells. Furthermore, forskolin failed to induce significant tyrosine phosphorylation of the EGFR and ERK1/2 activation in PKA-defective PC12 cells. Forskolin-induced EGFR tyrosine phosphorylation was also observed in A431 cells and in membranes isolated from these cells. Phosphoamino acid analysis indicated that the recombinant catalytic subunit of PKA elicited phosphorylation of the EGFR on both tyrosine and serine but not threonine residues in A431 membranes. Together, our data indicate that activation of PKA mediates the effects of cAMP on the EGFR and ERK1/2. While PKA may directly phosphorylate the EGFR on serine residues, PKA-induced tyrosine phosphorylation of the EGFR occurs by an indirect mechanism.  相似文献   

10.
Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase essentially and transiently expressed during development of the central and peripheral nervous system. The nature of the cognate ligand of this receptor in Vertebrates is still a matter of debate. During synaptic transmission the release of ionic zinc found in vesicles of certain glutamatergic and gabaergic terminals may act as a neuromodulator by binding to pre- or post-synaptic receptors. Recently, zinc has been shown to activate the receptor tyrosine kinase, TrkB, independently of neurotrophins. This activation occurs via increasing the Src family kinase activity. In the present study, we investigated whether the ALK activity could be modulated by extracellular zinc. We first showed that zinc alone rapidly activates ALK. This activation is dependent of ALK tyrosine kinase activity and dimerization of the receptor but is independent of Src family kinase activity. In contrast, addition of sodium pyrithione, a zinc ionophore, led to a further activation of ALK. This stronger activation is dependent of Src family kinase but independent of ALK activity and dimerization. In conclusion, zinc could constitute an endogenous ligand of ALK in vertebrates.  相似文献   

11.
12.
The c-fes locus encodes a cytoplasmic protein-tyrosine kinase (Fes) previously shown to accelerate nerve growth factor (NGF)-induced neurite outgrowth in rat PC12 cells. Here, we investigated the role of the Rho family small GTPases Rac1 and Cdc42 in Fes-mediated neuritogenesis, which have been implicated in neuronal differentiation in other systems. Fes-induced acceleration of neurite outgrowth in response to NGF treatment was completely blocked by the expression of dominant-negative Rac1 or Cdc42. Expression of a kinase-active mutant of Fes induced constitutive relocalization of endogenous Rac1 to the cell periphery in the absence of NGF, and led to dramatic actin reorganization and spontaneous neurite extension. We also investigated the breakpoint cluster region protein (Bcr), which possesses the Dbl and PH domains characteristic of guanine nucleotide exchange factors for Rho family GTPases, as a possible link between Fes, Rac/Cdc42 activation, and neuritogenesis. Coexpression of a GFP-Bcr fusion protein containing the Fes binding and tyrosine phosphorylation sites (amino acids 162-413) completely suppressed neurite outgrowth triggered by Fes. Conversely, coexpression of full-length Bcr with wild-type Fes in PC12 cells induced NGF-independent neurite formation. Taken together, these data suggest that Fes and Bcr cooperate to activate Rho family GTPases as part of a novel pathway regulating neurite extension in PC12 cells, and provide more evidence for an emerging role for Fes in neuronal differentiation.  相似文献   

13.
14.
Impairment in nerve growth factor (NGF)-mediated support to basal forebrain cholinergic neurons may represent an initial insult to certain neural cells in Alzheimer's disease (AD). High affinity NGF receptor (TrkA) levels are decreased in AD brains as compared to age-matched control brains. One of the approaches suggested for the treatment of AD exploits the ability of small molecular substances to enhance the expression of endogenous growth factors and/or their receptors. The purpose of this study was to determine whether treatment with nicotine in both in vitro and in vivo settings would increase the neural expression of TrkA receptors. Using a differentiated PC12 neuronal-like system, chronic nicotine treatment increased cell surface TrkA receptor expression. Nicotine's action was blocked by co-treatment with either the non-competitive nicotinic acetylcholine receptor (nAChR) antagonist mecamylamine or with the alpha7 nAChR-selective antagonist methyllycaconitine. Surprisingly, certain low doses of mecamylamine alone also increased TrkA receptor levels. Rats prepared with chronic indwelling intravenous catheters were continuously infused with nicotine to deliver a total dose of 12 mg/kg over 24 hr. This treatment resulted in a significant 44% increase in TrkA receptor expression in the hippocampus. As in the cell experiments, mecamylamine also increased hippocampal TrkA receptor expression. In fact, the ratio of the maximal mecamylamine response to the maximal nicotine response that was measured in vitro, i.e., 0.43 was remarkably similar to that for the in vivo experiment, i.e., 0.47. Since in our previous studies the increase in TrkA expression produced by nicotine was shown to be related to its cytoprotective actions, these results suggest that nicotine's neuroprotective actions might also be mediated through the drug's interaction with central alpha7 nAChRs and subsequent increase in TrkA receptor expression.  相似文献   

15.
LIM kinases (LIMKs) regulate actin polymerization by phosphorylating cofilin and are predominantly expressed in neural tissue. In this study, the effect of LIMK1 overexpression in PC12 cell apoptosis was investigated. PC12 cells overexpressing the wild-type LIMK1 were more resistant to serum-withdrawal-induced cell death and the level of caspase 3 activation in these cells was lower than in the control PC12 cells or than in the PC12 cells expressing a mutant LIMK1 lacking the kinase domain. The inhibition of JNK activation was observed in the PC12 cells overexpressing the wild-type LIMK1 after serum withdrawal. These results suggest that the LIMK1 might allow resistance to apoptosis in PC12 cells by inhibiting JNK activation.  相似文献   

16.
Abstract

We developed novel methods to directly quantify cell spreading rate. By comparing our methods with traditional methods, we found that the enhancement effects of fetal calf serum (FCS) or the inhibitory effects of exogenous ganglioside GM1 occurred at different stages of cell spreading. GM1 mainly influenced the early and late stages of cell spreading of HUVECs. In the presence of 0.5% FCS, GM1 significantly impaired the area-based spreading rates (127.4 ± 35.7 μm2/h and 22.2 ± 3.8 μm2/h, respectively) on the early (0–0.5 h) and late (12–24 h) stages of cell spreading compared with the controls (238.1 ± 11.7 μm2/h and 35.4 ± 19.5 μm2/h, respectively), which was confirmed by the data on the GM1-induced changes in average length of actin filaments during cell spreading. The real-time observation and quantification of cold-induced de-spreading of GM1-free or GM1-treated HUVECs further confirmed that GM1 can influence cell de-spreading process having inhibitory (0–10 min) or enhancement (10–20 min or 40–50 min) effects on different stages. The methods can be recruited for investigating effects of other reagents on different stages of cell spreading.  相似文献   

17.
Abstract A mutant (TUH No. 9) of a porcine strain of enterotoxigenic Escherichia coli (ETEC) produces as abnormal B subunit (B') of heat-labile enterotoxin (LT), which has aspartate instead of glycine at residue 33 from the N-terminus and does not bind to the receptor, GM1 ganglioside. The antigenicities of the receptor-binding site of LT were analyzed.
The antibody, which could not bind to the B' subunit in the anti-B subunit of porcine LT(LTp)-serum, could bind to cholera toxin (CT), LTp and LT produced by a human ETEC strain (LTh), suggesting that it recognizes a common epitope of LTp, LTh and CT. Thus glycine at residue 33 from the N-terminus in the B subunit of CT, LTh and LTp may be related to the common epitope of these three toxins. The bindings of CT, LTh and LTp to the antibody were inhibited by the GM1 ganglioside.
These data indicate that the antibody recognizes a common epitope in the receptor (GM1 ganglioside)-binding site of CT, LTh and LTp.  相似文献   

18.
19.
In our previous study (A. Balogh et al, Cell. Signalling 5 (6), 795-802, 1993.), we have shown that epidermal growth factor (EGF) increased protein kinase C (PKC) activities in colon carcinoma cell line (HT29), possibly through the increased 1,2-diacylglycerol (1,2-DAG) production via phosphatidylcholine (PC). Here we investigate the effect of the well-known PKC activator 12-O-tetradecanoyl-2 phorbol-13-acetate (TPA), on the levels of 32P incorporation into EGF induced phosphatidylinositols (PI, PI4P, PI4, 5P2) and different phospholipids (PC, PA, PS) as well as on induced tyrosine kinase activity. TPA significantly decreased the effects of EGF and it had the biggest inhibitory effect on EGF induced PC level. These data support our contention that PC plays an important role in the activation of PKC via 1,2-DAG production in the EGF stimulated pathway.  相似文献   

20.
Exosomes are extracellularly released small vesicles that are derived from multivesicular bodies formed via the endocytic pathway. We treated pheochromocytoma PC12 cells with chloroquine, an acidotropic agent, which potently perturbs membrane trafficking from endosomes to lysosomes. Chloroquine treatment increased the level of GM1 ganglioside in cell media only when the cells were exposed to KCl for depolarization, which is known to enhance exosome release from neurons. In the sucrose-density-gradient fractionation of cell media, GM1 ganglioside was exclusively recovered with Alix, a specific marker of exosomes, in the fractions with the density corrresponding to that of exosomes. Notably, amyloid-β assembly was markedly accelerated when incubated with the exosome fraction prepared from the culture media of PC12 cells treated with chloroquine and KCl. Furthermore, amyloid-β assembly was significantly suppressed by the co-incubation with an antibody specific to GM1-bound amyloid-β, an endogenous seed for amyloid formation of Alzheimer's disease. Together with our previous finding that chloroquine treatment induces the accumulation of GM1 ganglioside in early endosomes, results of this study suggest that endocytic pathway abnormality accelerates the release of exosome-associated GM1 ganglioside following its accumulation in early endosomes. Furthermore, this study also suggests that extracellular amyloid fibril formation is induced by not only GM1 gangliosides accumulated on the surface of the cells but also those released in association with exosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号