首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three biologically active isoforms of platelet-derived growth factor (PDGF) exist: PDGF-AB, the predominant form in human platelets; PDGF-BB, the product of the c-sis protooncogene; and PDGF-AA. PDGF-BB and PDGF-AB interact with two distinct PDGF receptors (termed alpha and beta) of similar size, whereas PDGF-AA binds alpha receptors only. To dissect alpha and beta receptor-mediated signals, we compared the biological activities of PDGF-AA and PDGF-BB in density-arrested BALB/c-3T3 cells, which possess a 4:1 ratio of beta to alpha receptors, and assessed the contribution of alpha receptors to PDGF-BB- and PDGF-AB-induced responses. In addition, we describe a convenient method for resolving alpha and beta receptors on one-dimensional protein gels. This protocol involves treatment of cells with neuraminidase, a desialylating agent, and subsequent in vitro autophosphorylation of solubilized cells, and was used to monitor the presence or absence of alpha and beta receptors under various experimental conditions. Our data show that although higher concentrations were required, PDGF-AA stimulated DNA synthesis to the same extent as did PDGF-BB. Both isoforms induced inositol phosphate formation, epidermal growth factor transmodulation, and PDGF receptor autophosphorylation; PDGF-AA, however, was less effective than was PDGF-BB even at doses causing maximal mitogenesis. Pretreatment of cells with PDGF-AA for 30-60 min at 37 degrees C effectively down-regulated alpha receptors as verified by the absence of desialylated alpha receptor phosphorylation. Depletion of alpha receptors did not affect the capacity of PDGF-BB or PDGF-AB to activate the beta receptor tyrosine kinase, as assessed by tyrosine phosphorylation of an endogenous substrate, or stimulate the formation of inositol phosphates. We suggest that alpha and beta receptors independently mediate similar biological responses in BALB/c-3T3 cells, and that alpha receptors are not required for responses induced by PDGF-BB or PDGF-AB.  相似文献   

2.
The beta receptor for platelet-derived growth factor (beta PDGFR) is activated by binding of PDGF and undergoes phosphorylation at multiple tyrosine residues. The tyrosine-phosphorylated receptor associates with numerous SH2-domain-containing proteins which include phospholipase C-gamma 1 (PLC gamma), the GTPase-activating protein of Ras (GAP), the p85 subunit of phosphatidylinositol 3 kinase (PI3K), the phosphotyrosine phosphatase Syp, and several other proteins. Our previous studies indicated that PI3K and PLC gamma were required for relay of the mitogenic signal of beta PDGFR, whereas GAP and Syp did not appear to be required for this response. In this study, we further investigated the role of GAP and Syp in mitogenic signaling by beta PDGFR. Focusing on the PLC gamma-dependent branch of beta PDGFR signaling, we constructed a series of mutant beta PDGFRs that contained the binding sites for pairs of the receptor-associated proteins: PLC gamma and PI3K, PLC gamma and GAP, or PLC gamma and Syp. Characterization of these mutants showed that while all receptors were catalytically active and bound similar amounts of PLC gamma, they differed dramatically in their ability to initiate DNA synthesis. This signaling deficiency related to an inability to efficiently tyrosine phosphorylate and activate PLC gamma. Surprisingly, the crippled receptor was the one that recruited PLC gamma and GAP. Thus, GAP functions to suppress signal relay by the beta PDGFR, and it does so by silencing PLC gamma. These findings demonstrate that the biological response to PDGF depends not only on the ability of the beta PDGFR to recruit signal relay enzymes but also on the blend of these receptor-associated proteins.  相似文献   

3.
We have characterized platelet-derived growth factor (PDGF) C, a novel growth factor belonging to the PDGF family. PDGF-C is a multidomain protein with the N-terminal region homologous to the extracellular CUB domain of neuropilin-1, and the C-terminal region consists of a growth factor domain (GFD) with homology to vascular endothelial growth factor (25%) and PDGF A-chain (23%). A serum-sensitive cleavage site between the two domains allows release of the GFD from the CUB domain. Competition binding and immunoprecipitation studies on cells bearing both PDGF alpha and beta receptors reveal a high affinity binding of recombinant GFD (PDGF-CC) to PDGF receptor-alpha homodimers and PDGF receptor-alpha/beta heterodimers. PDGF-CC exhibits greater mitogenic potency than PDGF-AA and comparable or greater mitogenic activity than PDGF-AB and PDGF-BB on several mesenchymal cell types. Analysis of PDGF-CC in vivo in a diabetic mouse model of delayed wound healing showed that PDGF-CC significantly enhanced repair of a full-thickness skin excision. Together, these studies describe a third member of the PDGF family (PDGF-C) as a potent mitogen for cells of mesenchymal origin in in vitro and in vivo systems with a binding pattern similar to PDGF-AB.  相似文献   

4.
The beta subunit of the platelet derived growth factor receptor (PDGFR) coprecipitates with a phosphatidyl-inositol 3 kinase activity (PI3K) following stimulation of cells by PDGF. Mutagenesis of a tyrosine (Y) phosphorylation site, Y751, in the PDGFR, greatly reduces PI3K, consistent with the possibility that phosphorylation of Y751 signals association of PI3K. To test this we have reconstituted the binding of the PDGFR beta subunit and PI3K in vitro. Binding is rapid, saturable and requires phosphorylation of the PDGFR at Y751, but does not require PDGF-dependent phosphorylation of PI3K. To test which portions of the PDGFR are important for binding, we used an antibody to a small region of the receptor that includes Y751. This antibody blocked in vitro binding of PI3K to the receptor, while an antiserum to the C-terminus of the receptor had no effect on binding of PI3K. In addition, we found that PDGF stimulation of a cell results in the association of essentially all the PI3K activity with cellular PDGFRs. These data suggest that PI3K is a specific ligand for PDGF receptors that are phosphorylated at Y751.  相似文献   

5.
The E5 polypeptide of bovine papillomavirus type 1 is a small membrane-bound protein which induces the transformation of immortalized fibroblasts, apparently via the formation of a ternary complex with the platelet-derived growth factor receptor (PDGFR) and the 16-kDa V-ATPase protein. This interaction seems to be mediated, at least in part, by their respective transmembrane domains. E5 also cooperates with transfected beta PDGFR to induce interleukin-3 (IL-3)-independent growth of a mouse myeloid precursor cell line (32D) which normally lacks expression of most known tyrosine kinase growth factor receptors. Cell proliferation induced by beta PDGFR and E5 is also highly specific, since the highly conserved alpha PDGFR and other related receptors did not physically or functionally interact with E5 in these cells. In the current study, analysis of chimeric alpha and beta PDGFRs confirmed that a short region encompassing the beta PDGFR transmembrane domain was sufficient for complex formation with E5, receptor autophosphorylation, and sustained proliferation of 32D cells in the absence of IL-3. Furthermore, a deletion mutant lacking the entire extracellular domain efficiently bound E5 and induced IL-3-independent growth. These data provide direct evidence that the interaction between E5 and the beta PDGFR involves amino acids 531 to 556 of the receptor transmembrane region and that this specific interaction is critical for activation of the PDGFR signaling complex.  相似文献   

6.
A phosphatidylinositol-3 (PI-3) kinase activity of unknown biological function associates with tyrosine kinase-containing proteins, including a number of growth factor receptors after ligand stimulation. In the beta platelet-derived growth factor (beta PDGF) receptor, phosphorylation of a specific tyrosine residue within the kinase insert domain was required for its interaction with this enzyme. We show that substitutions of phenylalanine for tyrosine residue 731 or 742 within the kinase insert domain of the alpha PDGF receptor do not impair PDGF-induced tyrosine phosphorylation of the receptor or of an in vivo substrate, phospholipase C-gamma. Moreover, phosphatidylinositol turnover in response to ligand stimulation is unaffected. However, both lesions markedly impair receptor association with PI-3 kinase. Antiphosphotyrosine antibody-recoverable PI-3 kinase was also dramatically reduced in PDGF-stimulated cells expressing either mutant receptor. Since neither mutation abolished PDGF-induced mitogenesis or chemotaxis, we conclude that alpha PDGF receptor-associated PI-3 kinase activity is not required for either of these major PDGF signalling functions.  相似文献   

7.
The 44-amino-acid E5 protein of bovine papillomavirus type 1 is a highly hydrophobic protein which appears to transform cells through the activation of growth factor receptors. To investigate the specificity of E5-growth factor receptor interactions required for mitogenic signaling, we utilized a nontumorigenic, murine myeloid cell line (32D) which is strictly dependent on interleukin-3 (IL-3) for sustained proliferation in culture. This IL-3 dependence can be functionally substituted by the expression of a variety of surrogate growth factor receptors and the addition of the corresponding ligand. Several receptor cDNAs for the alpha- and beta-type platelet-derived growth factor receptors [alpha PDGFR and beta PDGFR], the epidermal growth factor receptor, and the colony-stimulating factor 1 receptor) were transfected into 32D cells constitutively expressing the E5 protein to test for IL-3-independent growth. Only beta PDGFR was capable of abrogating the IL-3 dependence of 32D cells. The proliferative signal induced by the coexpression of beta PDGFR and E5 was accompanied by stable complex formation between these proteins, constitutive tyrosine phosphorylation of the receptor, and tumorigenicity in nude mice. The lack of cooperative interaction between E5 and the epidermal growth factor receptor, the colony-stimulating factor 1 receptor, and the highly related alpha PDGFR was paralleled by the inability of E5 to bind to these receptors and failure to increase receptor tyrosine phosphorylation. Thus, these data indicate that the ability of E5 to induce sustained proliferation and transformation of 32D cells is a direct consequence of specific interaction between the E5 protein and the beta PDGFR signaling complex and the subsequent stimulation of receptor tyrosine phosphorylation.  相似文献   

8.
Here we provide evidence to show that the platelet-derived growth factor beta receptor is tethered to endogenous G-protein-coupled receptor(s) in human embryonic kidney 293 cells. The tethered receptor complex provides a platform on which receptor tyrosine kinase and G-protein-coupled receptor signals can be integrated to produce more efficient stimulation of the p42/p44 mitogen-activated protein kinase pathway. This was based on several lines of evidence. First, we have shown that pertussis toxin (which uncouples G-protein-coupled receptors from inhibitory G-proteins) reduced the platelet-derived growth factor stimulation of p42/p44 mitogen-activated protein kinase. Second, transfection of cells with inhibitory G-protein alpha subunit increased the activation of p42/p44 mitogen-activated protein kinase by platelet-derived growth factor. Third, platelet-derived growth factor stimulated the tyrosine phosphorylation of the inhibitory G-protein alpha subunit, which was blocked by the platelet-derived growth factor kinase inhibitor, tyrphostin AG 1296. We have also shown that the platelet-derived growth factor beta receptor forms a tethered complex with Myc-tagged endothelial differentiation gene 1 (a G-protein-coupled receptor whose agonist is sphingosine 1-phosphate) in cells co-transfected with these receptors. This facilitates platelet-derived growth factor-stimulated tyrosine phosphorylation of the inhibitory G-protein alpha subunit and increases p42/p44 mitogen-activated protein kinase activation. In addition, we found that G-protein-coupled receptor kinase 2 and beta-arrestin I can associate with the platelet-derived growth factor beta receptor. These proteins play an important role in regulating endocytosis of G-protein-coupled receptor signal complexes, which is required for activation of p42/p44 mitogen-activated protein kinase. Thus, platelet-derived growth factor beta receptor signaling may be initiated by G-protein-coupled receptor kinase 2/beta-arrestin I that has been recruited to the platelet-derived growth factor beta receptor by its tethering to a G-protein-coupled receptor(s). These results provide a model that may account for the co-mitogenic effect of certain G-protein-coupled receptor agonists with platelet-derived growth factor on DNA synthesis.  相似文献   

9.
Integrin-mediated cell attachment and growth factor stimulation often act synergistically on cell proliferation, differentiation, migration, and survival. Some of these synergistic effects depend on the physical interaction of integrins with growth factor receptors. Here we examine the nature of the physical interaction between the alpha(v)beta(3) integrin and two receptor tyrosine kinases (RTKs), the platelet-derived growth factor receptor beta (PDGF-Rbeta) and the vascular endothelial growth factor receptor 2 (VEGF-R2, also known as KDR and flk-1). Both of these RTKs associate with the alpha(v)beta(3) integrin but do not associate with beta(1) integrins. Furthermore, growth factor stimulation of these RTKs promotes increased cell proliferation and migration when cells are attached to the alpha(v)beta(3) ligand, vitronectin. We show that alpha(v)beta(3) in which the beta(3) cytoplasmic domain is deleted or replaced with the beta(1) cytoplasmic domain coimmunoprecipitates with PDGF-Rbeta and VEGF-R2. The beta(3) extracellular domain alone was sufficient for the PDGF-Rbeta association whereas the VEGF-R2 association required the presence of the alpha(v) subunit. Activation of the RTKs by their ligands was not required for them to associate with the integrin. Cell migration to PDGF was enhanced in the cells transfected with the chimeric subunit containing the beta(3) extracellular domain but not when that domain came from the beta(1) subunit. These results show that the interactions that lead to the association of the alpha(v)beta(3) integrin with PDGF-Rbeta and VEGF-R2 and enhancement of RTK activity take place outside the cell.  相似文献   

10.
血小板源生长因子受体与肿瘤   总被引:4,自引:0,他引:4  
张秀华  林莉萍  丁健 《生命科学》2006,18(3):220-226
血小板源生长因子(platelet-derived growth factor,PDGF)经由其受体(platelet-derived growth fac tor receptor,PDGFR)表现细胞效应。PDGF和PDGFR涉及多种肿瘤的发病机制并在血管生成中起重要作用。PDGF在肿瘤中的自分泌刺激、PDGFR的过表达或过度活化或者刺激肿瘤内血管生成都会促进肿瘤生长;PDGFR的阻断可以降低实体瘤中组织间质液压而增强药物传送。这些机制可能提示在肿瘤治疗中PDGFR抑制剂单用、与化疗药物或者和其他靶点药物联合用药的可能性和可行性。随着PDGFR拮抗剂,如imatinib的上市,PDGFR作为抗肿瘤药物的靶点备受瞩目。  相似文献   

11.
The recruitment of mesenchymal progenitor cells (MPCs) and their subsequent differentiation to osteoblasts is mandatory for bone development, remodeling, and repair. To study the possible involvement of platelet-derived growth factor (PDGF) isoforms, primary human MPCs and osteogenic differentiated progenitor cells (dOB) were examined for chemotaxic response to homodimeric human platelet-derived growth factor AA, -BB, and heterodimeric PDGF-AB. The role of PDGF receptors was addressed by preincubation with PDGF receptor alpha and beta chain specific antibodies. Migration of MPCs, dOB, and primary osteoblasts (OB) was stimulated by the addition of rhPDGF-AA, rhPDGF-BB, and rhPDGF-AB. The effect was highest in MPCs and for rhPDGF-BB, and declining with osteogenic differentiation. Preincubation with the receptor alpha specific antibody decreased the CI to borderline values while pretreatment with the receptor beta specific antibody led to a complete loss of chemotactic response to PDGF isoforms. In control experiments, basal migration values and rhBMP-2 as well as rxBMP-4 induced chemotaxis of MPC were not influenced by the addition of receptor alpha or beta antibodies. Interestingly, without preincubation the parallel exposure of MPC to rhTGF-beta1 instantaneously leads to a selective loss of migratory stimulation by rhPDGF-AA. The chemotactic effect of PDGF isoforms for primary human MPCs and the influence of osteogenic differentiation suggest a functional role for recruitment of MPCs during bone development and remodeling. Moreover, these observations may be useful for novel approaches towards guided tissue regeneration or tissue engineering of bone.  相似文献   

12.
The tyrosine kinase domains of the platelet-derived growth factor (PDGF) and colony-stimulating factor-1 (CSF-1)/c-fms receptors are interrupted by kinase inserts (ki) which vary in length and amino acid sequence. To define the role of the ki in the human alpha PDGF receptor (alpha PDGFR), we generated deletion mutants, designated alpha R delta ki-1 and alpha R delta ki-2, which lacked 80 (710 to 789) and 95 (695 to 789) amino acids of the 104-amino-acid ki region, respectively. Their functional characteristics were compared with those of the wild-type alpha PDGFR following introduction into a naive hematopoietic cell line, 32D. Biochemical responses, including PDGF-stimulated PDGFR tyrosine phosphorylation, phosphatidylinositol (PI) turnover, and receptor-associated PI-3 kinase activity, were differentially impaired by the deletions. Despite a lack of any detectable receptor-associated PI-3 kinase activity, 32D cells expressing alpha R delta ki-1 showed only partially impaired chemotactic and mitogenic responses and were capable of sustained proliferation in vitro and in vivo under conditions of autocrine stimulation by the c-sis product. 32D transfectants expressing the larger ki deletion (alpha R delta ki-2) showed markedly decreased or abolished biochemical and biological responses. However, insertion of the highly unrelated smaller c-fms (685 to 750) ki domain into alpha R delta ki-2 restored each of these activities to wild-type alpha PDGFR levels. Since the CSF-1R does not normally induce PI turnover, the ability of the c-fms ki domain to reconstitute PI turnover in the alpha R delta ki-2 transfectant provides evidence that the ki domain of the alpha PDGFR does not directly couple with this pathway. Taken together, all od these bindings imply that their ki domains have evolved to play very similar roles in the known signaling functions PDGF and CSF-1 receptors.  相似文献   

13.
The v-sis oncogene product p28v-sis and the platelet-derived growth factor (PDGF) B chain share 92% homology with each other and over 50% homology with the PDGF A chain. Exogenously added homodimers of PDGF A and PDGF B and of p28v-sis are potent mitogens but only PDGF B and p28v-sis induce transformation when endogenously expressed with a strong promoter. Because exogenous PDGF AA and PDGF BB both initiate a full mitogenic response, understanding the mechanisms underlying the difference in their transforming potential may clarify how growth factor genes act as oncogenes. In this work, we compared cells expressing high levels of PDGF A and v-sis. We observed that transformation by v-sis correlated directly with the rapid degradation (t1/2 approximately 20 min) of the alpha and beta PDGF receptors, with a failure of either the alpha or beta receptor to be fully processed and with the association of high levels of phosphatidylinositol (PI) 3-kinase with immunoprecipitates of the PDGF receptors. In contrast, in cells expressing essentially equal levels of PDGF A, transformation was not detected, alpha and beta PDGF receptor processing was normal, and association of PI 3-kinase with receptors in immunoprecipitates was not found above control values. The ability of v-sis to autoactivate PDGF receptors within processing compartments and to initiate activation of the PI 3-kinase signaling pathway coupled with the failure of PDGF A to activate its receptor intracellularly and to induce transformation when endogenously expressed at high levels suggests that the internal autoactivation of PDGF receptors may be essential for transformation by v-sis.  相似文献   

14.
15.
The c-Abl nonreceptor tyrosine kinase is activated by growth factor signals such as the platelet-derived growth factor (PDGF) and functions downstream of the PDGF-beta receptor (PDGFR) to mediate biological processes such as membrane ruffling, mitogenesis, and chemotaxis. Here, we show that the related kinase Arg is activated downstream of PDGFRs in a manner dependent on Src family kinases and phospholipase C gamma1 (PLC-gamma1)-mediated phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis, as we showed previously for c-Abl. PIP2, a highly abundant phosphoinositide known to regulate cytoskeletal and membrane proteins, inhibits the tyrosine kinase activities of both Arg and c-Abl in vitro and in cells. We now demonstrate that c-Abl and Arg form inducible complexes with and are phosphorylated by the PDGFR tyrosine kinase in vitro and in vivo. Moreover, c-Abl and Arg, in turn, phosphorylate the PDGFR. We show that c-Abl and Arg exhibit nonredundant functions downstream of the activated PDGFR. Reintroduction of c-Abl into Arg-Abl double-null fibroblasts rescues the ability of PLC-gamma1 to increase PDGF-mediated chemotaxis, while reexpression of Arg fails to rescue the chemotaxis defect. These data show that, although both kinases are activated and form complexes with proteins in the PDGFR signaling pathway, only c-Abl functions downstream of PLC-gamma1 to mediate chemotaxis.  相似文献   

16.
Platelet-derived growth factor (PDGF) B-chain and PDGF receptor beta (PDGFR beta) are essential for glomerulogenesis. Mice deficient in PDGF B-chain or PDGFR beta exhibit an abnormal glomerular phenotype characterized by total lack of mesangial cells. In this study, we localized PDGFR beta in the developing rat kidney and explored the biological effects of PDGF in metanephric mesenchymal cells in an attempt to determine the mechanism by which PDGF regulates mesangial cell development. Immunohistochemical and in situ hybridization studies of rat embryonic kidneys reveal that PDGFR beta localizes to undifferentiated metanephric mesenchyme and is later expressed in the cleft of the comma-shaped and S-shaped bodies and in more mature glomeruli in a mesangial distribution. We also isolated and characterized cells from rat metanephric mesenchyme. Metanephric mesenchymal cells express vimentin and alpha-smooth muscle actin but not cytokeratin. These cells also express functional PDGFR beta, as demonstrated by autophosphorylation of the receptor as well as activation of phosphatidylinositol 3 kinase in response to PDGF B-chain homodimer. PDGF B-chain also induces migration and proliferation of metanephric mesenchymal cells. Taken together with the fact that PDGF B-chain is expressed in the glomerular epithelium and mesangial area, as demonstrated in the human embryonic kidney, we suggest that PDGF B-chain acts in a paracrine fashion to stimulate the migration and proliferation of mesangial cell precursors from undifferentiated metanephric mesenchyme to the mesangial area. PDGF B-chain also likely stimulates proliferation of mesangial cell precursors in an autocrine fashion once these cells migrate to the glomerular tuft.  相似文献   

17.
Platelet-derived growth factors (PDGFs) regulate embryonic development, tissue regeneration, and wound healing through their binding to PDGF receptors, PDGFRα and PDGFRβ. However, the role of PDGF signaling in regulating muscle development and regeneration remains elusive, and the cellular and molecular responses of myogenic cells are understudied. Here, we explore the PDGF-PDGFR gene expression changes and their involvement in skeletal muscle myogenesis and myogenic fate. By surveying bulk RNA sequencing and single-cell profiling data of skeletal muscle stem cells, we show that myogenic progenitors and muscle stem cells differentially express PDGF ligands and PDGF receptors during myogenesis. Quiescent adult muscle stem cells and myoblasts preferentially express PDGFRβ over PDGFRα. Remarkably, cell culture- and injury-induced muscle stem cell activation altered PDGF family gene expression. In myoblasts, PDGF-AB and PDGF-BB treatments activate two pro-chemotactic and pro-mitogenic downstream transducers, RAS-ERK1/2 and PI3K-AKT. PDGFRs inhibitor AG1296 inhibited ERK1/2 and AKT activation, myoblast migration, proliferation, and cell cycle progression induced by PDGF-AB and PDGF-BB. We also found that AG1296 causes myoblast G0/G1 cell cycle arrest. Remarkably, PDGF-AA did not promote a noticeable ERK1/2 or AKT activation, myoblast migration, or expansion. Also, myogenic differentiation reduced the expression of both PDGFRα and PDGFRβ, whereas forced PDGFRα expression impaired myogenesis. Thus, our data highlight PDGF signaling pathway to stimulate satellite cell proliferation aiming to enhance skeletal muscle regeneration and provide a deeper understanding of the role of PDGF signaling in non-fibroblastic cells.  相似文献   

18.
The four types of platelet-derived growth factors (PDGFs) and the two types of PDGF receptors (PDGFRs, which belong to class III receptor tyrosine kinases) have important functions in the development of connective tissue cells. Recent structural studies have revealed novel mechanisms of PDGFs in propeptide loading and receptor recognition/activation. The detailed structural understanding of PDGF–PDGFR signaling has provided a template that can aid therapeutic intervention to counteract the aberrant signaling of this normally silent pathway, especially in proliferative diseases such as cancer. This review summarizes the advances in the PDGF system with a focus on relating the structural and functional understandings, and discusses the basic aspects of PDGFs and PDGFRs, the mechanisms of activation, and the insights into the therapeutic antagonism of PDGFRs. This article is part of a Special Issue entitled: Emerging recognition and activation mechanisms of receptor tyrosine kinases.  相似文献   

19.
High affinity binding of platelet-derived growth factor (PDGF) has been proposed to involve the interaction of the dimeric PDGF ligand with two receptor subunits, designated alpha and beta. We have cloned and expressed a human PDGF receptor cDNA which differs in sequence from the beta-subunit and which has the PDGF binding properties and monoclonal antibody recognition, predicted for the alpha-subunit. Scatchard analysis indicated that PDGF-AA and PDGF-AB bound to transfected alpha-subunits with affinities of Kd = 0.06 and 0.05 nM, respectively. PDGF-BB bound with a significantly lower affinity (Kd = 0.4 nM). Nevertheless, this affinity is still great enough to mediate substantial PDGF-BB binding at physiological concentrations and would be considered to be "high affinity." We have used wild-type and kinase-inactive human beta-subunits to show that PDGF binding promotes receptor subunit dimerization in intact cells. In addition, we found that PDGF stimulates tyrosine phosphorylation of the kinase-inactive beta-subunit when it is expressed with alpha-subunits. The kinase-inactive beta-subunits were phosphorylated at tyrosine 857 and 751, the major phosphorylation sites of the wild-type beta-subunit, indicating either that intra- and intermolecular phosphorylation occurs on the same sites, or that a significant fraction of receptor tyrosine phosphorylation is intermolecular.  相似文献   

20.
Two tyrosine phosphorylation sites in the human platelet-derived growth factor receptor (PDGFR) beta subunit have been mapped previously to tyrosine (Y)751, in the kinase insert, and Y857, in the kinase domain. Y857 is the major site of tyrosine phosphorylation in PDGF-stimulated cells. To evaluate the importance of these phosphorylations, we have characterized the wild-type (WT) and mutant human PDGF receptor beta subunits in dog kidney epithelial cells. Replacement of either Y751 or Y857 with phenylalanine (F) reduced PDGF-stimulated DNA synthesis to approximately 50% of the WT level. A mutant receptor with both tyrosines mutated was unable to initiate DNA synthesis, as was a kinase-inactive mutant receptor. Transmodulation of the epidermal growth factor receptor required Y857 but not Y751. We also tested the effects of phosphorylation site mutations on PDGF-stimulated receptor kinase activity. PDGF-induced tyrosine phosphorylation of two cellular proteins, phospholipase C gamma 1 (PLC gamma 1) and the GTPase activating protein of Ras (GAP), was assayed in epithelial cells expressing each of the mutant receptors. Tyrosine phosphorylation of GAP and PLC gamma 1 was reduced markedly by the F857 mutation but not significantly by the F751 mutation. Reduced kinase activity of F857 receptors was also evident in vitro. Immunoprecipitated WT receptors showed a two- to fourfold increase in specific kinase activity if immunoprecipitated from PDGF-stimulated cells. The F751 receptors showed a similar increase in activity, but F857 receptors did not. Our data suggest that phosphorylation of Y857 may be important for stimulation of kinase activity of the receptors and for downstream actions such as epidermal growth factor receptor transmodulation and mitogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号