首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Bacteriophage P22 which are incapable of making functional tail protein can be propagated by the addition of purified mature tail protein trimers to either liquid or solidified medium. This unique in vitro complementation condition has allowed us to isolate 74 absolute lethal tail protein mutants of P22 after hydroxylamine mutagenesis. These phage mutants have an absolute requirement for purified P22 tail protein to be present in a soft agar overlay in order to form plaques and do not grow on any nonsense suppressing strains of Salmonella typhimurium. In order to genetically map and physically locate these mutations we have constructed two complementary sets of fine structure deletion mapping strains using a collection of Tn1 insertions in gene 9, the structural gene for the tail protein. Fourteen bacteriophage P22 strains carrying unique Tn1 transposon insertions (Ap phage) in gene 9 have been crossed with Ap phage carrying Tn1 insertions in gene 20. Phage carrying deletions that arose from homologous recombination between the Tn1 elements were isolated as P22 lysogens. The deletion prophage were shown to be missing all genetic information bracketed by the parental Tn1 elements and thus form a set of deletions into gene 9 from the 5' end of the gene. From the frequency of production of these deletion phage the orientation of the Tn1 insertions in gene 9 could be deduced. The genetic end points of the deletions in gene 9 and thus the order of Tn1 insertions were determined by marker rescue experiments using the original Ap phage. The genetic end points of the deletions in gene 20 were determined in similar experiments using nonsense mutations in gene 20. To locate the physical end points of these deletions in gene 9, DNA containing the Tn1 element has been cloned from each of the original Ap phage into plasmids. The precise point of insertion of Tn1 into gene 9 was determined by restriction enzyme mapping and DNA sequencing of the relevant portions of each of these plasmids. In vitro deletion of different 3' gene 9 sequences in the plasmid clones was accomplished through the use of unique restriction endonuclease sites in Tn1. The resulting plasmids form a set of deletions extending into the 3' end of the gene which are complementary compared to the deletion lysogens.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
C J Michel  B Jacq  D G Arquès  T A Bickle 《Gene》1986,44(1):147-150
We have found that the amino acid (aa) sequence of the tip of phage T4 tail fibre (gene 37) shows more than 50% homology with the aa sequence predicted from an open reading frame (ORF314) in the phage lambda genome. ORF314 is near the 3' end of the late morphogenetic operon, beyond gene J coding for the lambda tail fibre. The homologous sequences are for the most part composed of repeated aa, the most remarkable of which is a Gly-X-His-Y-His motif where X and Y are small, uncharged aa, found six times in the T4 protein and seven times in the lambda ORF314 sequence.  相似文献   

4.
Lysozymes have proved useful for analyzing the relation between protein structure and function and evolution. In bacteriophage T4, the major soluble lysozyme is the product of the e gene, gpe (gene product = gp). This lysozyme destroys the wall of its host, Escherichia coli, at the end of infection to release progeny particles. Phage T4 contains two additional lysozymes that facilitate penetration of the baseplates into host cell walls during adsorption. At least one of these, a 44-kD protein, is encoded by gene 5. We show here that a segment of the gp5 lysozyme amino acid sequence, deduced from the DNA sequence of gene 5, is remarkably similar to that of the T4 gene e lysozyme. Both T4 lysozymes are somewhat similar to the lysozyme of the Salmonella phage P22, but there is little significant DNA sequence homology among the two T4 lysozyme genes and the P22 lysozyme gene. We speculate that these lysozymes are adapted to differences in the composition of the cell walls of E. coli and S. typhimurium. The cloned gene 5 of the phage T4 directs synthesis of a 63-kD precursor protein that is approximately 19 kD larger than the gene 5 protein isolated from baseplates. Gp5 first associates with gp26 to form the central hub of this structure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
6.
The portal vertex structure of the phage P22 is a 2.8 MDa molecular machine that mediates attachment and injection of the viral genome into the host Salmonella enterica serovar Typhimurium. Five proteins form this molecular machine: the portal protein, gp1; the tail-spike, gp9; the tail-needle, gp26, and the tail accessory factors, gp4 and gp10. In order to understand the assembly of the portal vertex structure, we have isolated the gene encoding tail accessory factor gp10 and defined its structural composition and assembly within the portal vertex structure. In solution, monomeric gp10 is a beta-sheet-rich protein with a stable conformational structure, which spontaneously assembles into hexamers, likely via a dimeric intermediate. This oligomerization enhances the structural stability of the protein, which then becomes competent for assembly to a preformed portal protein:gp4 complex, and acts as a structural adaptor bridging the nascent phage tail to gp26 and gp9. Notably, in vitro purified tail accessory factors gp4, gp10, and gp26 do not significantly interact with each other in solution, but their assembly takes place efficiently when these factors are added sequentially onto an immobilized portal protein. This suggests that the assembly of the P22 tail is a highly sequential and cooperative process, likely mediated by structural rearrangements in the assembly components. The assembled portal vertex structure represents both a membrane-binding and penetrating device as well as a plug that retains the pressurized phage DNA inside the capsid.  相似文献   

7.
A new Salmonella enterica phage, Det7, was isolated from sewage and shown by electron microscopy to belong to the Myoviridae morphogroup of bacteriophages. Det7 contains a 75-kDa protein with 50% overall sequence identity to the tail spike endorhamnosidase of podovirus P22. Adsorption of myoviruses to their bacterial hosts is normally mediated by long and short tail fibers attached to a contractile tail, whereas podoviruses do not contain fibers but attach to host cells through stubby tail spikes attached to a very short, noncontractile tail. The amino-terminal 150 residues of the Det7 protein lack homology to the P22 tail spike and are probably responsible for binding to the base plate of the myoviral tail. Det7 tail spike lacking this putative particle-binding domain was purified from Escherichia coli, and well-diffracting crystals of the protein were obtained. The structure, determined by molecular replacement and refined at a 1.6-Å resolution, is very similar to that of bacteriophage P22 tail spike. Fluorescence titrations with an octasaccharide suggest Det7 tail spike to bind its receptor lipopolysaccharide somewhat less tightly than the P22 tail spike. The Det7 tail spike is even more resistant to thermal unfolding than the already exceptionally stable homologue from P22. Folding and assembly of both trimeric proteins are equally temperature sensitive and equally slow. Despite the close structural, biochemical, and sequence similarities between both proteins, the Det7 tail spike lacks both carboxy-terminal cysteines previously proposed to form a transient disulfide during P22 tail spike assembly. Our data suggest receptor-binding module exchange between podoviruses and myoviruses in the course of bacteriophage evolution.  相似文献   

8.
The repressor protein of bacteriophage P22 binds to DNA as a homodimer. This dimerization is absolutely required for DNA binding. Dimerization is mediated by interactions between amino acids in the carboxyl (C)-terminal domain. We have constructed a plasmid, p22CT-1, which directs the overproduction of just the C-terminal domain of the P22 repressor (P22CT-1). Addition of P22CT-1 to DNA-bound P22 repressor causes the dissociation of the complex. Cross-linking experiments show that P22CT-1 forms specific heterodimers with the intact P22 repressor protein, indicating that inhibition of P22 repressor DNA binding by P22CT-1 is mediated by the formation of DNA binding-inactive P22 repressor:P22CT-1 heterodimers. We have taken advantage of the highly conserved amino acid sequences within the C-terminal domains of the P22 and 434 repressors and have created chimeric proteins to help identify amino acid regions required for dimerization specificity. Our results indicate that the dimerization specificity region of these proteins is concentrated in three segments of amino acid sequence that are spread across the C-terminal domain of each of the two phage repressors. We also show that the set of amino acids that forms the cooperativity interface of the P22 repressor may be distinct from those that form its dimer interface. Furthermore, cooperativity studies of the wild-type and chimeric proteins suggest that the location of cooperativity interface in the 434 repressor may also be distinct from that of its dimerization interface. Interestingly, changes in the dimer interface decreases the ability of the 434 repressor to discriminate between its wild-type binding sites, O(R)1, O(R)2, and O(R)3. Since 434 repressor discrimination between these sites depends in large part on the ability of this protein to recognize sequence-specific differences in DNA structure and flexibility, this result indicates that the C-terminal domain is intimately involved in the recognition of sequence-dependent differences in DNA structure and flexibility.  相似文献   

9.
The wac gene product (gpwac) or fibritin of bacteriophage T4 forms the six fibers that radiate from the phage neck. During phage morphogenesis these whiskers bind the long tail fibers (LTFs) and facilitate their attachment to the phage baseplate. After the cell lysis, the gpwac fibers function as part of an environmental sensing device that retains the LTFs in a retracted configuration and thus prevents phage adsorption in unfavorable conditions. A comparative analysis of the sequences of 5 wac gene orthologs from various T4-type phages reveals that the approximately 50-amino-acid N-terminal domain is the only highly conserved segment of the protein. This sequence conservation is probably a direct consequence of the domain's strong and specific interactions with the neck proteins. The sequence of the central fibrous region of gpwac is highly plastic, with only the heptad periodicity of the coiled-coil structure being conserved. In the various gpwac sequences, the small C-terminal domain essential for initiation of the folding of T4 gpwac is replaced by unrelated sequences of unknown origin. When a distant T4-type phage has a novel C-terminal gpwac sequence, the phage's gp36 sequence that is located at the knee joint of the LTF invariably has a novel domain in its C terminus as well. The covariance of these two sequences is compatible with genetic data suggesting that the C termini of gpwac and gp36 engage in a protein-protein interaction that controls phage infectivity. These results add to the limited evidence for domain swapping in the evolution of phage structural proteins.  相似文献   

10.
The opdA gene of Salmonella typhimurium encodes an endoprotease, oligopeptidase A (OpdA). Strains carrying opdA mutations were deficient as hosts for phage P22. P22 and the closely related phages L and A3 formed tiny plaques on an opdA host. Salmonella phages 9NA, KB1, and ES18.h1 were not affected by opdA mutations. Although opdA strains displayed normal doubling times and were infected by P22 as efficiently as opdA+ strains, the burst size of infectious particles from an opdA host was less than 1/10 of that from an opdA+ host. This decrease resulted from a reduced efficiency of plating of particles from an opdA infection. In the absence of a functional opdA gene, most of the P22 particles are defective. To identify the target of OpdA action, P22 mutants which formed plaques larger than wild-type plaques on an opdA mutant lawn were isolated. Marker rescue experiments using cloned fragments of P22 DNA localized these mutations to a 1-kb fragment. The nucleotide sequence of this fragment and a contiguous region (including all of both P22 gene 7 and gene 14) was determined. The mutations leading to opdA independence affected the region of gene 7 coding for the amino terminus of gp7, a protein required for DNA injection by the phage. Comparison of the nucleotide sequence with the N-terminal amino acid sequence of gp7 suggested that a 20-amino-acid peptide is removed from gp7 during phage development. Further experiments showed that this processing was opdA dependent and rapid (half-life, less than 2 min) and occurred in the absence of other phage proteins. The opdA-independent mutations lead to mutant forms of gp7 which function without processing.  相似文献   

11.
Zayas M  Villafane R 《Gene》2007,386(1-2):211-217
To understand the interaction between lipopolysaccharide (LPS) and proteins in molecular detail, a molecular genetic approach has been employed, using phage as a model system. The phage epsilon(34) is a Salmonella phage whose tailspike protein (TSP) uses the host LPS as its initial host cell receptor. Previous studies indicated that there was a similarity between the well-studied tail protein of Salmonella phage P22 and the epsilon(34). This study reports the identification of the gene for the epsilon(34) TSP as well as its initial characterization. In addition, some aspects of the structure of the epsilon(34) TSP have been deduced.  相似文献   

12.
13.
The gene for the lytic enzyme of the lipid-containing, broad-host-range bacteriophage PRD1 codes for a protein of 149 amino acids (17271 Da). The sequence of the protein is unique when compared to other lytic enzymes sequenced. However, three regions of weak similarity with other phage lytic enzymes were observed. The C-terminal region shared seven amino acids in common with phage P22 lysozyme at a site which is conserved in phage-type lysozymes.  相似文献   

14.
P22 is a well characterized tailed bacteriophage that infects Salmonella enterica serovar Typhimurium. It is characterized by a "short" tail, which is formed by five proteins: the dodecameric portal protein (gp1), three tail accessory factors (gp4, gp10, gp26), and six trimeric copies of the tail-spike protein (gp9). We have isolated the gene encoding tail accessory factor gp26, which is responsible for stabilization of viral DNA within the mature phage, and using a variety of biochemical and biophysical techniques we show that gp26 is very likely a triple stranded coiled-coil protein. Electron microscopic examination of purified gp26 indicates that the protein adopts a rod-like structure approximately 210 angstroms in length. This trimeric rod displays an exceedingly high intrinsic thermostability (T(m) approximately 85 degrees C), which suggests a potentially important structural role within the phage tail apparatus. We propose that gp26 forms the thin needle-like fiber emanating from the base of the P22 neck that has been observed by electron microscopy of negatively stained P22 virions. By analogy with viral trimeric coiled-coil class I membrane fusion proteins, gp26 may represent the membrane-penetrating device used by the phage to pierce the host outer membrane.  相似文献   

15.
E Kenny  T Atkinson  B S Hartley 《Gene》1985,34(2-3):335-342
The thyP3 gene, encoding thymidylate synthetase, from the Bacillus subtilis phage phi 3T has been cloned and the nucleotide sequence determined. The derived amino acid sequence indicates a subunit Mr of 32 748. The primary amino acid sequence is compared with the sequences of the analogous proteins specified by Escherichia coli (thyA), Lactobacillus casei, (thyA) and phage T4 (td). Extensive conservation exists in all four sequences implying a shared tertiary structure.  相似文献   

16.
To enhance bacterial wilt resistance in tobacco expressing a foreign protein, we isolated the bacteriolytic gene from a bacteriophage that infects Ralstonia solanacearum. The bacteriolytic protein of phage P4282 isolated in Tochigi Prefecture was purified from a lysate of R. solanacearum M4S cells infected with the phage, and its bacteriolytic activity was assayed by following the decrease in the turbidity of suspensions of R. solancacearum M4S cells. The molecular weight of the bacteriolytic protein was approximately 71 kDa, and the sequence of the N-terminal 13 amino acids was determined. We used oligonucleotide probes based on this amino acid sequence to isolate the bacteriolytic gene from phage P4282 DNA. This gene of 2061 bp encodes a product of 687 amino acids, whose calaculated molecular weight was 70.12 kDa. The bacteriolytic gene was placed under the control of an inducible promoter. and the plasmid was transformed into Escherichia coli NM522. The soluble proteins extracted from E.coli NM522 cells harboring the plasmid with the bacteriolytic gene showed obvious bacteriolytic activities against several strains of R. solanacearum isolated in various districts in Japan. DNA fragments from five phages, isolated in Niigata, Aomori, Okinawa, Fukushima and Yamaguchi Prefectures, hybridized to the bacteriolytic gene of phage P4282. These observations indicate that the bacteriolytic protein shows nonspecific activity against R. solanacearum strains, and a sequence similar to that of the bacteriolytic gene is conserved in the DNA of other bacteriophages. These results indicate that the generation of transgenic (tobacco) plants expressing the bacteriolytic gene of phage P4282 might result in enhanced resistance to bacterial wilt in tobacco.  相似文献   

17.
The nucleotide sequence of a 869 bp segment of phage 434 DNA including the regulatory genes cro and cII is presented and compared with the corresponding part of the phage lambda DNA sequence. The 434 cro protein as deduced from the DNA sequence is a highly basic protein of 71 amino acid residues with a calculated molecular weight of 8089. While the cro gene sequences of phage 434 and lambda DNA are very different, the nuleotide sequences to the right of the lambda imm434 boundary show differences only at 11 out of 512 positions. Nucleotide substitutions in the cII gene occur with one exception in the third positions of the respective codons and only one out of several DNA regulatory signals located in this region of the phage genomes is affected by these nucleotide substitutions.  相似文献   

18.
Salmonella typhimurium bacteriophage P22 transduced plasmids having P22 sequences inserted in the vector pBR322 with high frequency. Analysis of the structure of the transducing particle DNA and the transduced plasmids indicates that this plasmid transduction involves two homologous recombination events. In the donor cell, a single recombination between the phage and the homologous sequences on the plasmid inserted the plasmid into the phage chromosome, which was then packaged by headfuls into P22 particles. The transducing particle DNA contained duplications of the region of homology flanking the integrated plasmid vector sequences and lacked some phage genes. When these defective phage genomes containing the inserted plasmid infected a recipient cell, recombination between the duplicated regions regenerated the plasmid. A useful consequence of this sequence of events was that genetic markers in the region of homology were readily transferred from phage to plasmid. Plasmid transduction required homology between the phage and the plasmid, but did not depend on the presence of any specific P22 sequence in the plasmid. When the infecting P22 carried a DNA sequence homologous to the ampicillin resistance region of pBR322, the vector plasmid having no P22 insert could be transduced. P22-mediated transduction is a useful way to transfer chimeric plasmids, since most S. typhimurium strains are poorly transformed by plasmid DNA.  相似文献   

19.
The nucleotide sequence of the O gene in bacteriophage lambda DNA is presented. According to two possible initiator codons, the primary structure of the O protein deduced from the DNA sequence consists of 278 or 299 amino acid residues. Structure and function of the O protein--one of the two phage initiator proteins for lambda DNA replication--are discussed in the light of a secondary structure model for the O protein. The central part of the O gene contains a cluster of symmetrical sequences extending over 160 base pairs. The point mutation of the cis-dominant replication mutant ti12 is located in this region.  相似文献   

20.
SPP1 is a siphophage infecting the gram‐positive bacterium Bacillus subtilis. It is constituted by an icosahedric head and a long non‐contractile tail formed by gene products (gp) 17–21. A group of 5 small genes (gp 22–24.1) follows in the genome those coding for the main tail components. However, the belonging of the corresponding gp to the tail or to other parts of the phage is not documented. Among these, gp22 lacks sequence identity to any known protein. We report here the gp22 structure solved by X‐ray crystallography at 2.35 Å resolution. We found that gp22 is a monomer in solution and possesses a significant structural similarity with lactococcal phage p2 ORF 18 N‐terminal “shoulder” domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号