首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A systematic procedure for the kinetic study of irreversible inhibition, when the enzymatic activity is measured in the presence of a coupled enzyme system, has been developed and analyzed. Simultaneous variation of the enzyme and inhibitor concentrations, maintaining a constant ratio between them, is recommended. The methodology is established to estimate the kinetic constants corresponding to the irreversible inhibitor. This approach is illustrated by the study of the inhibition of fluorescein isothiocyanate on the Ca2+-ATPase activity from sarcoplasmic reticulum measured in the presence of pyruvate kinase and lactate dehydrogenase as auxiliary enzymes. Treatment of the experimental data has been carried out by non-linear regression.  相似文献   

3.
Autocatalytic zymogen activation is a phenomenon of great importance for understanding some fundamental physiological processes involved in the enzyme regulation of gastrointestinal-tract enzymes, blood coagulation, fibrinolysis and the complement system. Examples of such processes are the activation of prekallikrein, trypsinogen and pepsinogen, all of which are controlled by natural proteinase inhibitors. This work studies the kinetics of a general autocatalytic zymogen activation process overlapped by two two-step irreversible inhibitions, i.e. a linear mixed irreversible inhibition. The kinetic equations for the whole course of the reaction are derived for this mechanism. In addition, we determine the corresponding kinetics for a number of particular cases of the general model analyzed, i.e. for reversible and irreversible non-competitive, competitive and uncompetitive inhibition systems which are considered particular cases of the general mechanism studied. The kinetic behavior of the system is related to a parameter, a dimensionless quantity, which shows whether the inhibition or the activation route prevails, in a similar way to that which we have previously carried out for other mechanisms. Finally, based on the kinetic equations obtained, a procedure for discriminating between the different mechanisms considered is suggested. The results of this contribution can be directly applied to most physiological autocatalytic zymogen activations in the presence of an inhibitor, allowing their complete kinetic characterization and suggesting procedures for varying the relative weight of the catalytic and inhibition routes or for changing the predominant route.  相似文献   

4.
A combined method for determining inhibition type, kinetic parameters, and inhibition coefficients is developed and presented. The method was validated by applying it to data obtained from batch kinetics of the aerobic cometabolism of 1,1,1-trichloroethane (1,1,1-TCA) by a butane-grown mixed culture. The maximum degradation rates (k(max)) and half-saturation coefficients (K(s)) were independently determined in single compound tests, and compared with those obtained from inhibition tests. The inhibition type was determined using direct linear plots at various substrate and inhibitor concentrations. Kinetic parameters (k(max) and K(s)) and inhibition coefficients (K(ic) and K(iu)) were determined by nonlinear least squares regression (NLSR) fits of the inhibition model determined from the direct linear plots. Initial guesses of the kinetic parameters for NLSR were determined from linearized inhibition equations that were derived from the correlations between apparent maximum degradation rates (k(app)(max)) and/or the apparent half-saturation coefficient (K(app)(s)) and the k(max), K(s), and inhibitor concentration (I(L)) for each inhibition equation. Two different inhibition types were indicated from the direct linear plots: competitive inhibition of 1,1,1-TCA on butane degradation, and mixed inhibition of 1,1,1-TCA transformation by butane. Good agreement was achieved between independently measured k(max) and K(s) values and those obtained from both NLSR and the linearized inhibition equations. The initial guesses of all the kinetic parameters determined from linear plots were in the range of the values estimated from NLSR analysis. Overall the results show that use of the direct linear plot method to identify the inhibition type, coupled with initial guesses from linearized plots for NLSR analysis, results in an accurate method for determining inhibition types and coefficients. Detailed studies with pure cultures and purified enzymes are needed to further demonstrate the utility of this method.  相似文献   

5.
Laccases produced by white rot fungi have been extensively evaluated for their potential to decolorize textile wastewaters which contain salts like sodium chloride and sodium sulfate. The effect of sodium chloride and sodium sulfate on Trametes versicolor laccase during the decolorization of an anthraquinone dye (Reactive Blue 19) and the oxidation of 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) were evaluated by steady-state kinetic analysis. The results showed that, while sodium sulfate did not affect laccase activity, sodium chloride inhibited both ABTS oxidation and dye decolorization. However, the type of inhibition was substrate-dependent: it was hyperbolic, noncompetitive with ABTS and parabolic, noncompetitive with Reactive Blue 19. Furthermore, the results suggested that two chlorides may bind to laccase in the presence of the dye unlike recent inhibition models which suggest that there is only one inhibition site. This investigation is the first to provide evidence for and to propose a two-site model of laccase inhibition, providing new insight into NaCl inhibition of laccase. The proposed model is also useful to predict decolorization rates in the presence of sodium chloride and to determine operating conditions that will minimize inhibition.  相似文献   

6.
Purified human renal dipeptidase was shown to exhibit no detectable activity against substrates that are characteristic for other known mammalian peptidases. The enzymic activities that were assayed were: aminopeptidase A, aminopeptidase B, aminopeptidase M, aminopeptidase P, and tripeptidase. A quantitative assay for renal dipeptidase was developed which measures the rate of release of glycine from glycylpeptides by pre-column derivatization of the amino acid with phenylisothiocyanate followed by high-performance liquid chromatography. The ratio of Vmax/Km for a series of dipeptides was used as an index of the enzyme's preference for substrates. According to the data obtained, the enzyme prefers that a bulky, hydrophobic group of the dipeptide be located at the N-terminal position. This suggests that the substrate-binding site of the enzyme may provide a hydrophobic pocket to accommodate the hydrophobic moiety at the N-terminus of the dipeptide. The unsaturated dipeptide substrate, glycyldehydrophenylalanine, was employed in spectrophotometric assays to provide kinetic analyses of enzymic inhibition. The inhibitory effect of dithiothreitol was immediate, and the kinetic data indicated reversible, competitive inhibition. These results suggest that the inhibitor competes with substrate for a coordination site of zinc within the active site of the enzyme. The reaction of renal dipeptidase with the transition-state peptide analog, bestatin, was time dependent, and velocity measurements were made after the inhibitor had been incubated with the enzyme until constant rates were observed. These steady-state rate measurements, made following preincubation of enzyme with inhibitor, were employed to show that bestatin caused apparent non-competitive inhibition of the enzyme. The inhibitory effect of the beta-lactam inhibitor, cilastatin, upon the oligomeric dipeptidase was shown to be competitive. Graphical analysis of this inhibition indicated that the subunits of the enzyme react independently during enzymic catalysis and that the catalytic event is not influenced by cooperativity between sites on the subunits. The conversion of leukotriene D4 to leukotriene E4 in the presence of human renal dipeptidase was demonstrated by HPLC procedures. This bioconversion reaction was quantitated by derivatizing the glycine produced by cleavage of the cysteinylglycine bond and isolating this derivative as a function of time. The relationship between the purified enzyme concentration and enzyme activity against leukotriene D4 was shown to be linear over the enzyme concentration range of 1 ng through 69 ng in this assay.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
The effects of tyramine, serotonin and benzalkonium on the esterase and aryl acylamidase activities of wild-type human butyrylcholinesterase and its peripheral anionic site mutant, D70G, were investigated. The kinetic study was carried out under steady-state conditions with neutral and positively charged aryl acylamides [o-nitrophenylacetanilide, o-nitrotrifluorophenylacetanilide and m-(acetamido) N,N,N-trimethylanilinium] and homologous esters (o-nitrophenyl acetate and acetylthiocholine). Tyramine was an activator of hydrolysis for neutral substrates and an inhibitor of hydrolysis for positively charged substrates. The affinity of D70G for tyramine was lower than that of the wild-type enzyme. Tyramine activation of hydrolysis for neutral substrates by D70G was linear. Tyramine was found to be a pure competitive inhibitor of hydrolysis for positively charged substrates with both wild-type butyrylcholinesterase and D70G. Serotonin inhibited both esterase and aryl acylamidase activities for both positively charged and neutral substrates. Inhibition of wild-type butyrylcholinesterase was hyperbolic (i.e. partial) with neutral substrates and linear with positively charged substrates. Inhibition of D70G was linear with all substrates. A comparison of the effects of tyramine and serotonin on D70G versus the wild-type enzyme indicated that: (a) the peripheral anionic site is involved in the nonlinear activation and inhibition of the wild-type enzyme; and (b) in the presence of charged substrates, the ligand does not bind to the peripheral anionic site, so that ligand effects are linear, reflecting their sole interaction with the active site binding locus. Benzalkonium acted as an activator at low concentrations with neutral substrates. High concentrations of benzalkonium caused parabolic inhibition of the activity with neutral substrates for both wild-type butyrylcholinesterase and D70G, suggesting multiple binding sites. Benzalkonium caused linear, noncompetitive inhibition of the positively charged aryl acetanilide m-(acetamido) N,N,N-trimethylanilinium for D70G, and an unusual mixed-type inhibition/activation (alpha > beta > 1) for wild-type butyrylcholinesterase with this substrate. No fundamental difference was observed between the effects of ligands on the butyrylcholinesterase-catalysed hydrolysis of esters and amides. Thus, butyrylcholinesterase uses the same machinery, i.e. the catalytic triad S198/H448/E325, for the hydrolysis of both types of substrate. The differences in response to ligand binding depend on whether the substrates are neutral or positively charged, i.e. the differences depend on the function of the peripheral site in wild-type butyrylcholinesterase, or the absence of its function in the D70G mutant. The complex inhibition/activation effects of effectors, depending on the integrity of the peripheral anionic site, reflect the allosteric 'cross-talk' between the peripheral anionic site and the catalytic centre.  相似文献   

8.
Liu HY  Wang Z  Regni C  Zou X  Tipton PA 《Biochemistry》2004,43(27):8662-8669
Phosphomannomutase/phosphoglucomutase occupies a central position in the pathways by which several virulence factors are synthesized in Pseudomonas aeruginosa. Virtual screening was used to identify potential inhibitors of phosphomannomutase/ phosphoglucomutase, and one compound, the anthraquinone-based dye Disperse Blue 56, showed potent inhibition in vitro. The kinetics of inhibition was complex; the time courses for reactions in the presence of the inhibitor were biphasic, suggestive of slow-binding inhibition. Quantitative analysis of the progress curves and preincubation experiments demonstrated that slow-binding inhibition was not occurring, however. Initial velocity kinetic studies indicated that Disperse Blue 56 was a parabolic, noncompetitve inhibitor. Progress curves for reactions in the presence of Disperse Blue 56 could be fitted very well by a model in which 2 equiv of the inhibitor bound to free enzyme or the enzyme-substrate complex. The inhibition was largely relieved by the inclusion of 0.01% Triton X-100 in the assay solutions, which has been suggested to be the hallmark for inhibition by compounds that exert their effect through aggregates [McGovern, S. L., Caselli, E., Grigorieff, N., and Shiochet, B. K. (2002) J. Med. Chem. 45, 1712-1722]. Our kinetic data appear to be consistent with either inhibition by a dimer of Disperse Blue 56 or inhibition by a Disperse Blue 56 aggregate, but the latter appears much more likely. We present a detailed analysis of the system to provide further information that may help in the recognition of inhibition through aggregation.  相似文献   

9.
In this paper we present a general kinetic study of slow-binding inhibition processes, i.e. enzyme reactions that do not respond instantly to the presence of a competitive inhibitor. The analysis that we present is based on the equation that describes the formation of products with time in each case on the experimental progress curve. It is carried out under the condition of limiting enzyme concentration and allows the discrimination between the different cases of slow-binding inhibition. The mechanism in which the formation of complex enzyme-inhibitor is a single or two slow steps or follow a rapid equilibrium, has been considered. The corresponding explicit equations of each case have been obtained and checked by numerical integration. A kinetic data analysis to evaluate the corresponding kinetic parameters is suggested. We illustrate the method, numerically by computer simulation, of the reaction and present some numerical examples that demonstrate the applicability of our procedure.  相似文献   

10.
Ordinary tight-binding inhibition in steady-state enzyme systems is conveniently evaluated by means of the Henderson plot. This is a linear plotting form that has an ordinate intercept equal to the total enzyme concentration. However, there are two experimental situations that yield deviations from the common Henderson plot form. These are inhibitor binding in a separate, noninhibitory mode that depletes the concentration of free inhibitor, and partial inhibition, i.e., the retention of partial activity by the enzyme-inhibitor complex. Noninhibitory depletion results in Henderson plots with elevated ordinate intercepts. Competitive partial inhibition yields a characteristic pattern of parabolic Henderson plots.  相似文献   

11.
Steady-state electron flow through and electron delivery into isolated dimeric bc1 complex (ubiquinol--cytochrome c oxidoreductase) from Neurospora crassa and beef heart mitochondria were studied in the presence of increasing concentrations of antimycin A, funiculosin and/or myxothiazol. Parabolic or linear inhibition curves were obtained, depending upon the different quinols and inhibitors that were used. Linear curves occur when the inhibitor directly affects the rate-determining step. The most reasonable explanation for the parabolic curves is given by a fast intradimeric exchange of the hydrophobic inhibitors antimycin A, funiculosin (rate less than 500 s-1) and of myxothiazol (rate greater than 1 s-1). Using mitochondria from beef heart, the shape of the inhibition curve with antimycin A is parabolic if the quinol--O2 oxidoreductase turns over at about 300 s-1, but hyperbolic if the rate is 5 times less. The hyperbolic titration curve may be the result of both intradimeric and an additional interdimeric redistribution (rate approximately 100 s-1) of inhibitors between enzymes incorporated in a continuous phospholipid membrane. This explanation is supported by experiments with chromatophores obtained from Rhodobacter capsulatus. As recently described [Fernandez-Velasco, J. & Crofts, A. R. (1992) Biophys. J. 2, A153], cytochrome b becomes fully reoxidized within 1 s after a flash at substoichiometric concentrations of antimycin A. This kinetic of the slow reoxidation can be expressed in terms of the intradimeric and interdimeric redistribution with rate constants of about 10 s-1 and 2 x 10(6) M-1 s-1, respectively. It seems that rapid inhibitor redistribution may be a widespread phenomenon for hydrophobic inhibitors of enzymes incorporated in lipid membranes.  相似文献   

12.
A graphical method for analyzing enzyme data to obtain kinetic parameters, and to identify the types of inhibition and the enzyme mechanisms, is described. The method consists of plotting experimental data as nu/(V0 - nu) vs 1/(I) at different substrate concentrations. I is the inhibitor concentration; V0 and nu are the rates of enzyme reaction attained by the system in the presence of a fixed amount of substrate, and in the absence and presence of inhibitor, respectively. Complete inhibition gives straight lines that go through the origin; partial inhibition gives straight lines that converge on the 1-I axis, at a point away from the origin. For competitive inhibition, the slopes of the lines increase with increasing-substrate concentration; with noncompetitive inhibition, the slopes are independent of substrate concentration; with uncompetitive inhibition, the slopes of the lines decrease with increasing substrate concentrations. The kinetic parameters, Km, Ki, Ki', and beta (degree of partiality) can best be determined from respective secondary plots of slope and intercept vs substrate concentration, for competitive and noncompetitive inhibition mechanism or slope and intercept vs reciprocal substrate concentration for uncompetitive inhibition mechanism. Functional consequencs of these analyses are represented in terms of specific enzyme-inhibitor systems.  相似文献   

13.
A graphical method for analysing enzyme data to obtain kinetic parameters, to identify the types of inhibition and the enzyme mechanisms is described. The method consists of plotting experimental data as v/(V(0)-v) versus 1/(I) at different substrate concentrations. I is the inhibitor concentration; V(0) and v are the initial rates of enzyme reaction attained by the system in the presence of a fixed amount of substrate and in the absence and presence of inhibitor respectively. Complete inhibition gives straight lines that pass through the origin while partial inhibition gives straight lines that converge on the 1/I-axis at a point away from the origin. With uncompetitive inhibition the slopes of the lines decrease with increasing substrate concentration. The kinetic parameters K(m), K'(i) and beta (degree of partiality) can best be determined from respective secondary plots of slope and intercept versus reciprocal of substrate concentration.  相似文献   

14.
The possible preferential action exerted by an inhibitor on the transformation of one of two agonist substrates catalyzed by the same enzyme has recently been reported in studies on aldose reductase inhibition. This event was defined as “intra-site differential inhibition” and the molecules able to exert this action as “differential inhibitors”. This work presents some basic kinetic models describing differential inhibition. Using a simple analytic approach, the results show that differential inhibition can occur through either competitive or mixed type inhibition in which the inhibitor prevalently targets the free enzyme. The results may help in selecting molecules whose differential inhibitory action could be advantageous in controlling the activity of enzymes acting on more than one substrate.  相似文献   

15.
Glutathione derivatives inhibit glutathione S-transferase A [cf. Biochem. J. (1975) 147, 513--522]. The steady-state kinetics of this inhibition have been investigated in detail by using S-octyglutathione, glutathione disulphide and S-(2-chloro-4-nitrophenyl)glutathione: the last compound is a product of the enzyme-catalused reaction. Interpreted in terms of generalized denotations of inhibition patterns, the compounds were found to be competitive with the substrate glutathione. Double-inhibition experiments involving simultaneous use of two inhibitors indicated exclusive binding of the inhibitors to the enzyme. The discrimination between alternative rate equations has been based on the results of weighted non-linear regression analysis. The experimental error was determined by replicate measurements and was found to increase with velocity. The established error structure was used as a basis for weighting in the regression and to construct confidence levels for the judgement of goodness-of-fit of rate equations fitted to experimental data. The results obtained support a steady-state random model for the mechanism of action of glutathione S-transferase A and exclude a number of simple kinetic models.  相似文献   

16.
A kinetic study of the inhibition of several alkaline phosphatase (AP isoenzyme activities by phenobarbital was carried out using p-nitrophenylphosphate (10 mM) as a substrate at pH 9.8 in a 300-mM Hepes buffer. AP from bovine kidney, calf intestine, bovine liver, and rat bone was used. Over a phenobarbital concentration range of 20-400 mM, all these isoenzymes were inhibited in an uncompetitive manner with a Ki of 200 mM for intestinal AP, and in a linear mixed-type manner for all the other isoenzymes tested. The Ki values were 10, 40 and 55 mM for kidney, bone and liver AP, respectively. The use of 15 mM carbonate-bicarbonate or 400 mM diethanolamine buffer did not modify the degree of inhibition of intestinal AP activity. Dixon plots of the reciprocal of reaction velocity versus inhibitor concentration either at different substrate concentration or at different DEA concentration indicate uncompetitive inhibition for the intestinal enzyme. This in vitro inhibitory effect of phenobarbital is in contrast to its in vivo stimulating action on AP. However, in the whole animal, the effects of phenobarbital administration probably represent the sum of multiple effects.  相似文献   

17.
Spin-echo NMR spectroscopy was used to record the cleavage of a gamma-glutamyl--amino-acid by (5-L-glutamyl)-L-amino-acid 5-glutamyltransferase (cyclizing) (gamma-glutamylcyclotransferase) in human erythrocyte hemolysates. The Michaelis-Menten steady-state kinetic parameters were obtained by fitting the integrated Michaelis-Menten equation to the reaction time curves. The product, L-5-oxoproline, was shown to be an inhibitor of the reaction. The active site of the enzyme was probed by studies of the inhibition by D- and L-beta-aminoglutaryl-L-alanine which are the beta-amino-acid isomers of D- and L-gamma-glutamyl-L-alanine (the latter being a natural substrate of the enzyme); the D-isomer was the more potent inhibitor (Ki = 0.30 +/- 0.02 mmol/l water). When the alanyl alpha-carboxyl of the inhibitor was reduced to a hydroxyl (i.e. to give D-beta-aminoglutaryl-L-alaninol) the potency of inhibition was reduced. The previously reported kinetic isotope effect of solvent 2H2O on the enzyme-catalyzed reaction has been further studied using a proton inventory. We propose that the solvent kinetic isotope effect is due to an intramolecular proton transfer between the glutamyl amino group and the peptide bond nitrogen.  相似文献   

18.
The mechanism of the inhibitory effect of high concentrations of pyruvate on human erythrocyte lactate dehydrogenase has been studied by the use of a new parameter, delta, defined as the difference between the reciprocals of initial reaction rates obtained from experimental measurements and hypothetical linear Lineweaver-Burk plots. This parameter served as a method for differentiating between the competitive and umcompetitive substrate inhibition. Results of this study indicate that pyruvate is a competitive substrate inhibitor. It is suggested that the inhibitory effect of pyruvate is due to its competition with NADH for binding to the free enzyme and formation of an inactive enzyme-pyruvate binary complex. The competitive nature of pyruvate inhibition is further supported by the results of a kinetic study with NADH as the variable substrate. The dissociation constnat of the inactive enzyme-pyruvate binary complex was determined to be 101 micrometer. The physiological significance of the inhibitory effect could be to preserve a level of NADH concentration necessary for other vital enzymic reactions of living cells despite the presence of a high concentration of pyruvate.  相似文献   

19.
The inhibition mechanisms of the firefly luciferase (Luc) by the two major products of the reactions catalysed by Luc, oxyluciferin and dehydroluciferyl-adenylate (L-AMP), were investigated. Light production in the presence and absence of these inhibitors (0.5 to 2 muM oxyluciferin; 0.0025 to 1.25 muM L-AMP) has been measured in 50 mM Hepes buffer (pH = 7.5), 10 nM Luc, 250 muM ATP and d-Luciferin (from 3.75 up to 120 muM). Nonlinear regression analysis with the appropriate kinetic models (Henri-Michaelis-Menten and William-Morrison equations) reveals that oxyluciferin is a competitive inhibitor of luciferase (K(i) = 0.50 +/- 0.03 muM) while L-AMP act as a tight-binding competitive inhibitor (K(i) = 3.8 +/- 0.7 nM). The K(m) values obtained both for oxyluciferin and L-AMP were 14.7 +/- 0.7 and 14.9 +/- 0.2 muM, respectively. L-AMP is a stronger inhibitor of Luc than oxyluciferin and the major responsible for the characteristic flash profile of in vitro Luc bioluminescence.  相似文献   

20.
A statistical treatment of steady-state enzyme kinetic measurements is described that allows for depletion of free substrate or free inhibitor concentrations owing to significant binding to the enzyme. V(max.), K(m) or K(i), enzyme concentration, the concentration of substrate or inhibitor required for a half-maximal effect and standard errors of these parameters can be calculated from dose-response measurements; the concentration of each component of the system may be estimated also. The statistically best values of the parameters are used to convert dose-response curves into convenient linear forms. The method is applied to dose-response measurements of hydroxyquinoline N-oxide inhibition of bacterial respiration and aminopterin inhibition of dihydrofolate reductase. Two FORTRAN programs for this method have been deposited as Supplementary Publication no. SUP 50019 at the National Lending Library for Science and Technology, Boston Spa, Yorks. LS23 7BQ, U.K., from whom copies may be obtained on the terms indicated in Biochem. J. (1973) 131, 5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号