首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Adipocytes from hypothyroid rats have a decreased responsiveness to agents that activate adenylate cyclase, whereas cells from hyperthyroid rats have an increased responsiveness as compared to the controls. This is reflected in cyclic AMP accumulation as well as lipolysis. Administration of pertussis toxin to rats or its in vitro addition to adipocytes increased basal lipolysis and cyclic AMP accumulation as well as the response to norepinephrine or forskolin. The effects of thyroid status was not abolished by toxin treatment. Pertussis toxin-catalyzed ADP ribosylation of Ni was increased in adipocyte membranes from hypothyroid rats as compared to those from euthyroid rats. However, no change in sensitivity to N6-(phenylisopropyl)adenosine was observed. The data suggest that the amount of Ni might not be rate-limiting for the inhibitory action of adenosine. A consistent decrease in maximal lipolysis was observed in freshly isolated adipocytes from hypothyroid animals as compared to those from the controls. Such defective maximal lipolysis was not corrected by adenosine deaminase or in vivo administration of pertussis toxin. The relationship between cyclic AMP levels and lipolysis suggests that in fat cells from hypothyroid rats either the cyclic AMP-dependent protein kinase or the lipase activity itself may limit maximal lipolysis. There appears to be multiple effects of thyroid status on lipolysis involving factors other than those affecting adenylate cyclase activation.  相似文献   

2.
The potential for cross-talk between the adenyl cyclase and phosphoinositide (PPI) lipid second messenger system was investigated in astrocytes cultured from neonatal rat brain. Glutamate-stimulated PPI turnover, measured by the formation of total inositol phosphates from myo-[3H]inositol-labeled lipids, was inhibited in a concentration-dependent manner by the elevation of intracellular cyclic AMP levels produced either by stimulation of the isoproterenol receptor linked to adenyl cyclase or by its direct activation by forskolin. N6,2'-O-Dibutyryl cyclic AMP, an analogue that can also activate cyclic AMP-dependent kinase, inhibited glutamate-stimulated PPI turnover in a concentration-dependent manner as well, a result suggesting that cyclic AMP-dependent kinase is involved in mediating the inhibition. Inclusion of an inhibitor of cyclic AMP-dependent kinase, 1-(5-isoquinolinesulfonyl)-2 methylpiperazine dihydrochloride or N-(2-guanidinoethyl)-5-isoquinolinesulfonamide hydrochloride, blocked the cyclic AMP-mediated inhibition in a concentration-dependent manner, a finding further supporting this hypothesis. The site of inhibition of the phosphoinositol lipid pathway by cyclic AMP was probed using a digitonin-permeabilized cell system. Guanosine 5'-O-(3-thiotriphosphate), a nonhydrolyzable analogue of GTP, stimulated PPI turnover and potentiated glutamate-stimulated PPI turnover, and guanosine 5'-O-(3-thiodiphosphate) inhibited glutamate-stimulated PPI turnover in these cells, results providing evidence that glutamate receptors are coupled to phospholipase C by a guanine nucleotide binding protein in astrocytes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The large increase in cyclic AMP accumulation by rat white fat cells seen in the presence of lipolytic agents plus methylxanthines and adenosine deaminase was markedly inhibited by lactate. However, lipolysis was unaffected by lactate. Octanoate, hexanoate, heptanoate, and beta-hydroxybutyrate inhibited both cyclic AMP accumulation and lipolysis by rat fat cells. The mechanism by which these acids inhibit lipolysis differs from that for long chain fatty acids such as oleate. Oleate directly inhibited triglyceride lipase activity of homogenized rat adipose tissue. In contrast, octanoate, beta-hydroxybutyrate, and lacatate had no effect on triglyceride lipase activity. Hormone-stimulated adenylate cyclase activity of rat fat cell ghosts was inhibited by oleate and 4mM octanoate but not by 1.6 mM octanoate, heptanoate, hexanoate, beta-hydroxybutyrate or lactate. None of the acids affected the soluble protein kinase activity of rat adipose tissue. There was no stimulation by lactate, butyrate, beta-hydroxybutyrate, or octanoate of the soluble or particulate cyclic AMP antilipolytic action of a short chain acid such as octanoate or hexanoate was not accompanied by any drop in total fat cell ATP. The mechanism by which lactate lowers cyclic AMP but not lipolysis remains to be established.  相似文献   

4.
Effects of pertussis toxin treatment on the metabolism of rat adipocytes   总被引:10,自引:0,他引:10  
The protein toxin present in Bordetella pertussis vaccine blocks the inhibition of adenylate cyclase by prostaglandins and adenosine which may be secondary to ADP-ribosylation of an inhibitory guanine nucleotide-binding protein. The stimulatory effects of alpha 1-catecholamine agonists on 32P uptake into phosphatidic acid and phosphatidylinositol in isolated rat adipocytes were virtually abolished by pertussis toxin treatment. In contrast, the stimulatory effects of insulin were increased in adipocytes after pertussis toxin treatment. Pertussis toxin treatment did not alter insulin stimulation of glucose oxidation and actually increased glucose conversion to lipid. Basal lipolysis was elevated in adipocytes by pertussis toxin treatment but not basal cyclic AMP. However, the increases in cyclic AMP and lipolysis due to low concentrations of catecholamines and forskolin were markedly potentiated by pertussis toxin treatment. The inhibitory effects of adenosine on cyclic AMP stimulation due to catecholamines were abolished by pertussis toxin. These data indicate that pertussis toxin selectively interferes with inhibition of cyclic AMP accumulation in rat adipocytes by adenosine, potentiates the increases in cyclic AMP due to catecholamines, increases the stimulatory effects of insulin on adipocyte metabolism, and interferes with alpha 1-catecholamine stimulation of phosphatidylinositol turnover.  相似文献   

5.
The ability of glucocorticoid-treatment to reverse the metabolic alterations caused by adrenalectomy in rat adipocytes was studied. Correction of the enhanced adenosine antilipolytic effect and of the defect in lipolysis, cyclic AMP and adenylate cyclase responsiveness to guanine nucleotides were all achieved after a 24 h dexamethasone treatment, whereas correction of the defect in beta-adrenoceptor-density required a 48 h treatment. The latter treatment, however, failed to reverse the defect in both the adenylate cyclase catalytic activity and protein content per fat cell. These different kinetics of restoration indicate that correction by dexamethasone of the defective cyclic AMP and lipolytic responses on one hand and of the guanine nucleotide control of adenylate cyclase on the other one are two related phenomenoms.  相似文献   

6.
Clofibrate (Atromid-S), nicotinic acid, and insulin are known to be potent hypolipidemic and antilipolytic agents. The present study was undertaken to define the mechanism of action of this latter effect on isolated rat and human fat cells. Sodium clofibrate (0.42 mM), nicotinic acid (0.42 mM), and insulin (100 microU/mL) were shown to inhibit norepinephrine-stimulated lipolysis in rat and human adipose cells and this inhibition was associated with a reduction in intracellular 3',5'-cyclic AMP levels. A similar cyclic AMP lowering effect was demonstrated with insulin in the presence of procaine-HCL, which uncouples the adenylate cyclase system from lipolysis. This insulin effect was attributed to inhibition of adenylate cyclase. A direct and significant inhibition of adenylate cyclase in membrane fractions obtained from isolated human adipocytes was demonstrated for all three antilipolytic agents. The common membrane site of action of these agents whereby adenylate cyclase activity is depressed, thus decreasing cyclic AMP production and free fatty acid (FFA) mobilization from adipose stores, implies a central role for the adenylate cyclase system. These findings are consistent with the view that the hypotriglyceridemic effects of clofibrate, nicotinic acid, and insulin may be partly explained by deprivation of FFA substrate for hepatic very low density lipoprotein synthesis.  相似文献   

7.
Cyclic AMP in μM concentrations increases the labeling of a membrane component of approximately 53,000 daltons as well as the labeling of a minor peptide of 18,000 daltons when isolated, intact rat fat cells are incubated with μM concentrations of (γ-32P)ATP. Controlled tryptic digestion of intact cells followed by incubation with (γ-32P)ATP results in diminution of labeling of both of these phosphopeptides indicating susceptibility, hence, access of either the catalytic site or the substrates to trypsin action. Addition of the catalytic subunit of the cyclic AMP-dependent protein kinase from beef heart to cells previously treated with trypsin results in the labeling of both phosphopeptides comparable to untreated cells. These findings indicate the catalytic subunit(s) of the cyclic AMP-dependent protein kinase(s) as well as these two phosphopeptides of the intact rat fat cell must be located on the external surface of the plasma membrane. Further, the catalytic subunit(s) of the membrane-located cyclic AMP-dependent protein kinase(s) is susceptible to trypsin action whereas the membrane peptides serving as substrates are not.  相似文献   

8.
Regulation of rat brain (Na+ +K+)-ATPase activity by cyclic AMP   总被引:3,自引:0,他引:3  
The interaction between the (Na+ +K+)-ATPase and the adenylate cyclase enzyme systems was examined. Cyclic AMP, but not 5'-AMP, cyclic GMP or 5'-GMP, could inhibit the (Na+ +K+)-ATPase enzyme present in crude rat brain plasma membranes. On the other hand, the cyclic AMP inhibition could not be observed with purified preparations of (Na+ +K+)-ATPase enzyme. Rat brain synaptosomal membranes were prepared and treated with either NaCl or cyclic AMP plus NaCl as described by Corbin, J., Sugden, P., Lincoln, T. and Keely, S. ((1977) J. Biol. Chem. 252, 3854-3861). This resulted in the dissociation and removal of the catalytic subunit of a membrane-bound cyclic AMP-dependent protein kinase. The decrease in cyclic AMP-dependent protein kinase activity was accompanied by an increase in (Na+ +K+)-ATPase activity. Exposure of synaptosomal membranes containing the cyclic AMP-dependent protein kinase holoenzyme to a specific cyclic AMP-dependent protein kinase inhibitor resulted in an increase in (Na+ +K+)-ATPase enzyme activity. Synaptosomal membranes lacking the catalytic subunit of the cyclic-AMP-dependent protein kinase did not show this effect. Reconstitution of the solubilized membrane-bound cyclic AMP-dependent protein kinase, in the presence of a neuronal membrane substrate protein for the activated protein kinase, with a purified preparation of (Na+ +K+)-ATPase, resulted in a decrease in overall (Na+ +K+)-ATPase activity in the presence of cyclic AMP. Reconstitution of the protein kinase alone or the substrate protein alone, with the (Na+ +K+)-ATPase has no effect on (Na+ +K+)-ATPase activity in the absence or presence of cyclic AMP. Preliminary experiments indicate that, when the activated protein kinase and the substrate protein were reconstituted with the (Na+ +K+)-ATPase enzyme, there appeared to be a decrease in the Na+-dependent phosphorylation of the Na+-ATPase enzyme, while the K+-dependent dephosphorylation of the (Na+ +K+)-ATPase was unaffected.  相似文献   

9.
1. A factor which modulates the activity of cyclic AMP-dependent protein kinase copurifies from rat adipocytes with an inhibitor of adenylate cyclase. Purification and stability studies suggest that both effects reside in a single factor previously referred to as a feedback regulator. 2. The magnitude and direction of the feedback regulator effect on cyclic AMP-dependent protein kinase activity was dependent on the concentration of feedback regulator and the concentration and type of protein substrate. Using histone type IIA as substrate, feedback regulator was inhibitory at low histone concentrations and stimulatory at high concentrations. Preincubation of protein kinase with feedback regulator resulted in inhibition at all histone concentrations. With some protein substrates, e.g. histone f2b and casein, inhibition was observed at all histone concentrations. 3. The stimulation of histone type IIA phosphorylation resulted from an increased V with no effect on either the apparent Ka for cyclic AMP or the Km for ATP. Time course studies suggest that feedback regulator increased the rate of phosphorylation without increasing the total number of phosphorylation sites. Increased histone phosphorylation was observed regardless of whether the cyclic AMP-dependent protein kinase was peak I or peak II (off Deae-cellulose), isolated from bovine or rabbit skeletal muscle or rat heart. A small stimulation was observed using cyclic GMP-dependent protein kinase. 4. These results indicate that feedback regulator can inhibit or stimulate protein kinase, an effect which is probably substrate directed, and depends on the reaction conditions. Whether feedback regulator modulated protein phosphorylation in vivo in addition to its inhibition of adenylate cyclase is unknown. However, stimulation of protein kinase activity in the presence of cyclic AMP is a valuable and rapid assay for monitoring feedback regulator fractions during purification procedures.  相似文献   

10.
1. Protein kinase activities in homogenates of rat islets of Langerhans were studied. 2. On incubation of homogenates with [gamma-32P]ATP, incorporation of 32P into protein occurred: this phosphorylation was neither increased by cyclic AMP nor decreased by the cyclic AMP-dependent protein kinase inhibitor described by Ashby & Walsh [(1972) J. Biol. Chem. 247, 6637--6642]. 3. On incubation of homogenates with [gamma-32P]ATP and histone as exogenous substrate for phosphorylation, incorporation of 32P into protein was stimulated by cyclic AMP (approx. 2.5-fold) and was inhibited by the cyclic AMP-dependent protein kinase inhibitor. In contrast, when casein was used as exogenous substrate, incorporation of 32P into protein was not stimulated by cyclic AMP, nor was it inhibited by the cyclic AMP-dependent protein kinase inhibitor. 4. DEAE-cellulose ion-exchange chromatography resolved four peaks of protein kinase activity. One species was the free catalytic subunit of cyclic AMP-dependent protein kinase, two species corresponded to 'Type I' and 'Type II' cyclic AMP-dependent protein kinase holoenzymes [see Corbin, Keely & Park (1975) J. Biol. Chem. 250, 218--225], and the fourth species was a cyclic AMP-independent protein kinase. 5. Determination of physical and kinetic properties of the protein kinases showed that the properties of the cyclic AMP-dependent activities were similar to those described in other tissues and were clearly distinct from those of the cyclic AMP-independent protein kinase. 6. The cyclic AMP-independent protein kinase had an s20.w of 5.2S, phosphorylated a serine residue(s) in casein and was not inhibited by the cyclic AMP-dependent protein kinase inhibitor. 7. These studies demonstrate the existence in rat islets of Langerhans of multiple forms of cyclic AMP-dependent protein kinase and also the presence of a cyclic AMP-independent protein kinase distinct from the free catalytic subunit of cyclic AMP-dependent protein kinase. The presence of the cyclic AMP-independent protein kinase may account for the observed characteristics of 32P incorporation into endogenous protein in homogenates of rat islets.  相似文献   

11.
High-resolution two-dimensional gel electrophoresis of proteins labeled with either 32Pi or [35S]methionine was used to study interactions between cyclic AMP and tetradecanoyl phorbol acetate (TPA) at the level of intracellular protein phosphorylation. Cultured S49 mouse lymphoma cells were used as a model system, and mutant sublines lacking either the catalytic subunit of cyclic AMP-dependent protein kinase or the guanyl nucleotide-binding "Ns" factor of adenylate cyclase provided tools to probe mechanisms underlying the interactions observed. Three sets of phosphoproteins responded differently to TPA treatment of wild-type and mutant cells: Phosphorylations shown previously to be responsive to activation of intracellular cyclic AMP-dependent protein kinase were stimulated by TPA in wild-type cells but not in mutant cells, a subset of phosphorylations stimulated strongly by TPA in mutant cells was inhibited in wild-type cells, and two novel phosphoprotein species appeared in response to TPA only in wild-type cells. The latter two classes of TPA-mediated responses specific to wild-type cells could be evoked in adenylate cyclase-deficient cells by treating concomitantly with TPA and either forskolin or an analog of cyclic AMP. Three conclusions are drawn from our results: 1) TPA stimulates adenylate cyclase in wild-type cells causing increased phosphorylation of endogenous substrates by cyclic AMP-dependent protein kinase, 2) activated cyclic AMP-dependent protein kinase inhibits phosphorylation (or enhances dephosphorylation) of a specific subset of TPA-dependent phosphoproteins, and 3) cyclic AMP-dependent events facilitate TPA-dependent phosphorylation of some substrate proteins.  相似文献   

12.
Rat fat cells incubated with lipolytic agents released substances to the medium which acted as feedback regulators of cyclic adenosine 3':5'-monophosphate (cyclic AMP) accumulation. The feedback regulators were not removed by adenosine deaminase. Dialyzed medium that had previously been incubated with fat cells in the presence of norepinephrine markedly inhibited cyclic AMP accumulation by fresh cells, whereas dialyzed medium from control cells did not inhibit cyclic AMP accumulation. The effects of lipolytic agents could be mimicked by adding dialyzed medium previously incubated with fat cells in the presence of oleic acid. This suggested that free fatty acids were the nondialyzable and adenosine deaminase-insensitive inhibitors of cyclic AMP accumulation released to the medium by fat cells incubated with lipolytic agents. The regulatory function of free fatty acids was related to the molar ratio of fatty acid to albumin. Profound inhibition of both lipolysis and cyclic AMP accumulation was seen as the free fatty acid/albumin ratio exceeded 3. The inhibition of cyclic AMP accumulation by oleate was seen as soon as there was a detectable increase in cyclic AMP due to lipolytic agents. Protein kinase activity (in the presence of cyclic AMP) of the infranatant obtained after centrifugation of fat cell homogenates at 48,000 x g was inhibited by medium from cells incubated with lipolytic agents or added oleate. Adenylate cyclase activity of rat fat cell ghosts was also inhibited by dialyzed or nondialyzed medium that previously had been incubated with lipolytic agents or added fatty acids. The direct addition of oleate markedly inhibited adenylate cyclase activity as the free fatty acid/albumin ratio exceeded 2. These data suggest that the prolonged drop in cyclic AMP accumulation seen during the incubation of rat fat cells with lipolytic agents is due to the inhibition of adenylate cyclase. This occurs when the free fatty acid/albumin ratio exceeds 3.  相似文献   

13.
In isolated guinea pig gastric mucous and enriched parietal cells it was tested whether or not cyclic AMP in response to histamine stimulation might reach concentrations sufficiently high to activate an intracellular cyclic AMP-dependent protein kinase and thereby mediate the acid response. Although histamine stimulated parietal cell adenylate cyclase to a greater extent than mucous cell adenylate cyclase, cyclic AMP levels in response to maximal histamine stimulation reached higher levels in mucous than in parietal cells. This had to be attributed to a five times higher phosphodiesterase activity in parietal cell than in mucous cell populations. In the absence of the phosphodiesterase inhibitor isobutylmethylxanthine exposure of the cells to histamine only in mucous cells produced an increase in cyclic AMP-dependent protein kinase activity ratio, but not in parietal cells. Dibutyryl-cyclic AMP induced cyclic AMP accumulation in parietal cell populations was compared to dibutyryl-cyclic AMP induced H+ secretion, as measured by 14C-aminopyrine uptake. A maximal acid response was associated with an intracellular cyclic AMP level of approximately 300 pmol/10(6) cells, which was never reached by maximal histamine stimulation even not in the presence of the phosphodiesterase inhibitor. It is concluded that activation of the parietal cell cyclic AMP-dependent protein kinase is one way for stimulating H+ secretion, but that the acid response elicited by histamine requires another intracellular pathway.  相似文献   

14.
Histone, protamine, poly-L-arginine, and poly-L-lysine enhance the binding of adenosine 3′,5′-monophosphate (cyclic AMP) to rat liver cyclic AMP-dependent protein kinase as determined by Millipore filtration assay. Poly-L-glutamic acid and poly-L-aspartic acid suppress cyclic AMP-binding stimulated by histone. Poly-L-glutamic acid and poly-L-aspartic acid are effective against protein kinase and result in decrease in initial reaction velocity when histone is used as a protein substrate. Incubation of cyclic AMP-dependent protein kinase with 6 μg poly-L-glutamic acid produces half-maximal inhibition of cyclic AMP-dependent protein kinase when 30 μg histone is used as substrate.  相似文献   

15.
Synaptic membrane and postsynaptic density (PSD) fractions isolated from canine cerebral cortex and cerebellum were assayed for the following proteins: adenylate cyclase and phosphodiesterase (PDE) activities against cyclic AMP and cyclic GMP, the regulatory subunit of the cyclic AMP-dependent protein kinase, and the substrate proteins for this kinase. The results were expressed on the basis of both the protein content of the fractions and the number of synapses in the synaptic membrane fractions. The number of synapses on a constant protein content basis was about three times higher in the cerebral cortex synaptic membrane fraction than in the comparable cerebellar fraction. Adenylate cyclase activity was from 3.4 to 5.6 times higher in the cerebral cortex membrane fraction than in the cerebellar membrane fraction based on protein content but only slightly higher based on synapse counts. PSD fractions had no adenylate cyclase activity. The cyclic AMP-PDE activity was from 17 to 27 times higher in the cerebral cortex membrane fraction than in the cerebellar membrane fraction based on protein content, and about five times higher based on synapse counts. By doing PDE histochemistry at the electron microscopy level it was found that all the cerebral cortex PSDs in the isolated fraction contained PDE activity, none being found associated with the broken-up material in the fraction. The amount of the regulatory subunit of the cyclic AMP-dependent protein kinase was about equal in the two fractions based on protein, but about one-third lower in cerebral cortex fraction than in cerebellar fractions. In the cerebral cortex membrane fraction the primary substrate for the cyclic AMP-dependent protein kinase is synapsin I, with much lower amounts in the cerebellar membrane fraction. The PSD fraction from the two sources also showed these differences in synapsin I content. In the cerebellar membrane fraction, the primary substrate for the enzyme is a approximately 245,000 Mr protein not found in the cerebral cortex membrane fraction. The findings that the turnover of cyclic AMP is much higher in cerebral cortex synapses than in cerebellar synapses, and that differences are found between the cerebral cortex and cerebellum with regard to the substrate proteins for the cyclic AMP-dependent protein kinase indicate a divergence in the effect of cyclic AMP between cerebral cortex and cerebellar synapses.  相似文献   

16.
Abstract— The effect of neonatal thyroidectomy on the cyclic AMP system in the developing rat brain was examined. Administration of 131I at birth led to a 16 per cent reduction in brain weight and a 70 per cent reduction in body weight by 40 days of age. The level of cyclic AMP in the brain increased 5-fold between birth and 40 days of age and this increase was partially reduced by early thyroidectomy. A similar increase in the activity of adenyl cyclase and phosphodiesterase was observed during development, but thyroidectomy produced no detectable changes in the activity of either enzyme. The activity of the cyclic AMP-dependent protein kinase was already maximal at birth and also was unaffected by thyroidectomy.
Norepinephrine increased levels of cyclic AMP 4- to 5-fold in brain slices prepared from adult rats, but was without effect on slices prepared from newborn or 3-day-old rats. The response to norepinephrine in thyroidectomized rats did not differ from that in control rats at any of the ages examined. Our findings indicate that neonatal hypothyroidism does not deleteriously affect the development of the cyclic AMP system in the rat brain.  相似文献   

17.
Fat cells isolated from the mesenteric adipose tissue of chickens (pullets) responded to glucagon with an increase in lipolysis and a sustained rise in cyclic adenosine 3':5'-monophosphate (cyclic AMP) over a 30-min incubation. The prolonged accumulation of cyclic AMP due to glucagon in chicken fat cells was primarily intracellular. In addition, there was little increase in cyclic AMP accumulation due to theophylline alone or potentiation of the increase due to glucagon. These data indicate that chicken fat cells, unlike rat fat cells, are relatively insensitive to theophylline. Neither lipolysis nor cyclic AMP accumulation by chicken fat cells was inhibited by free fatty acid to albumin ratios (3 to 7) which markedly reduced both events in rat fat cells. However, in the absence of albumin from the medium, lipolysis in chicken fat cells was reduced, but not to the same extent as in rat fat cells. Chicken fat cells did accumulate more intracellular free fatty acids in response to lipolytic agents than did rat fat cells. The uptake of oleate by rat and chicken fat cells was identical. Glucagon-induced accumulation of cyclic AMP by chicken fat cell ghosts was unaffected by added oleate. Under identical conditions glucagon-induced adenylate cyclase activity of rat fat cell ghosts was markedly inhibited by added oleate. Triglyceride lipase activity of the pH 5.2 precipitate from a 40,000 x g infranatant of homogenized fat cells from chickens was less sensitive than that from rat fat cells to the ratio of oleate to albumin. These results suggest that the maintenance of cyclic AMP levels in chicken fat cells incubated with lipolytic agents results from the relative insensitivity of chicken fat cells to free fatty acid inhibition of cyclic AMP accumulation.  相似文献   

18.
Tyrosine hydroxylase, the rate-limiting enzyme in catecholamine biosynthesis, is subject to regulation by a variety of agents. Previous workers have found that cyclic AMP-dependent protein kinase and calcium-stimulated protein kinases activate tyrosine hydroxylase. We wanted to determine whether cyclic GMP might also be involved in the regulation of tyrosine hydroxylase activity. We found that treatment of rat PC12 cells with sodium nitroprusside (an activator of guanylate cyclase), 8-bromocyclic GMP, forskolin (an activator of adenylate cyclase), and 8-bromocyclic AMP all produced an increase in tyrosine hydroxylase activity measured in vitro or an increased conversion of [14C]tyrosine to labeled catecholamine in situ. Sodium nitroprusside also increased the relative synthesis of cyclic GMP in these cells. In the presence of MgATP, both cyclic GMP and cyclic AMP increased tyrosine hydroxylase activity in PC12 cell extracts. The heat-stable cyclic AMP-dependent protein kinase inhibitor failed to attenuate the activation produced in the presence of cyclic GMP. It eliminated the activation produced in the presence of cyclic AMP. Sodium nitroprusside also increased tyrosine hydroxylase activity in vitro in rat corpus striatal synaptosomes and bovine adrenal chromaffin cells. In all cases, the cyclic AMP-dependent activation of tyrosine hydroxylase was greater than that of the cyclic GMP-dependent second messenger system. These results indicate that both cyclic GMP and cyclic AMP and their cognate protein kinases activate tyrosine hydroxylase activity in PC12 cells.  相似文献   

19.
One of the cyr 1 mutants (cyr 1-2) in yeast produced low levels of adenylate cyclase and cyclic AMP at 25 degrees and was unable to derepress acid phosphatase. Addition of cyclic AMP to the cyr1-2 cultures elevated the level of repressible acid phosphatase activity. The bcy1 mutation, which suppresses the cyr1-2 mutation by allowing activity of a cyclic AMP-independent protein kinase, also allows acid phosphatase synthesis without restoring adenylate cyclase activity. The CYR3 mutant had structurally altered cyclic AMP-dependent protein kinase and was unable to derepress acid phosphatase. The cyr1 locus was different from pho2, pho4 and pho81, which were known to regulate acid phosphatase synthesis. Mutants carrying cyr1-2 and pho80, PHO81c, PHO82 or pho85 mutations, which confer constitutive synthesis of repressible acid phosphatase, produced acid phosphatase. The cyr1-2 mutant produced significantly low levels of invertase and alpha-D-glucosidase. These results indicated that cyclic AMP-dependent protein kinase exerts its function in the synthesis of repressible acid phosphatase and other enzymes.  相似文献   

20.
Diaphragm extracts were subjected to electrophoresis on polyacrylamide gels to separate the different molecular species of th cyclic AMP-dependent protein kinase. Using cyclic [3H]AMP, three peaks of binding activity were observed. The peak closest to the origin (peak I) was associated with cyclic AMP-dependent protein kinase activity and was abolished by incubation of the extracts with cyclic AMP prior to electrophoresis. The peak farthest from the origin (peak III) was devoid of kinase activity and was increased by incubation of extracts with cyclic AMP before electrophoresis; furthermore, when extracts were incubated with cyclic [3H]AMP before electrophoresis, essentially all the radioactivity appeared in peak III. Peak II, in an intermediate position, was also abolished by preincubation of the extracts with cyclic AMP and both its binding capacity and cyclic AMP-dependent protein kinase activity were lower than in Peak I. A peak of cyclic AMP-independent protein kinase (peak 0) that migrated more slowly than peak II was also detected. From these and other data it is concluded that peaks I and II are cyclic AMP-dependent protein kinase and that peak III is the dissociated regulatory subunit, respectively. Peak 0 is cyclic AMP-independent protein kinase together with free catalytic subunits from cyclic AMP-dependent protein kinase. Incubation of rat diaphragms with epinephrine resulted in dose- and time-dependent decrease in peak I and increase in peak III. These changes correlated with the decrease of cyclic AMP-dependent protein kinase associated with peak I. No changes in Peak II were observed with epinephrine, but an increased peak 0 was noted. Changes in peak I and peak III correlated with the modification of glycogen synthase and glycogen phosphorylase activities. No regulatory subunits (peak III) were detected as phosphorylated forms in diaphragms previously equilibrated with 32P. Treatment with epinephrine produce no noticeable phosphorylation of these regulatory subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号