首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Earlier results are reviewed suggesting that transient pronounced, incomplete cerebral ischemia could be more deleterious for the recovery of brain tissue energy state than a complete interruption of the blood flow. Measurements of respiratory function of brain mitochondria, isolated after 30 min of either complete or incomplete ischemia, demonstrated a similar inhibition of respiratory activity and maximal phosphorylation rates in both situations. This inhibition was totally normalized during recirculation after complete ischemia while a further deterioration was found after incomplete ischemia. The in vivo alterations of the cortical tissue distribution of redox states during transient, incomplete ischemia (15--60 min) were measured using a flying spot fluorometer, which gives a real-time and on-line display of the tissue distribution of NADH and oxidized flavoprotein. A reoxidation in both systems was demonstrated during the recirculation period and the distribution of redox states showed no further heterogeneity in the postischemic period as compared to the preischemic distribution. It is concluded that reoxygenation of the brain tissue is possible even after long periods of incomplete ischemia. The normal distribution of redox states during recirculation suggests that mechanisms other than an impaired or inhomogeneous oxygen delivery during the postischemic period are responsible for the failure in recovery of mitochondrial function and tissue energy state.  相似文献   

2.
3.
In order to investigate changes in energy metabolism, neurotransmitters, and membrane disorder accompanying incomplete cerebral ischemia, a bilateral common carotid artery occlusion model of spontaneously hypertensive rats was utilized. We measured concentrations of ATP, phosphocreatine (PCr), lactate (Lac), glucose (Glu), acetylcholine (ACh), choline (Ch), and -aminobutyric acid (GABA) in both the cerebral cortex and the subcortical regions after 1 h ischemia, 2 h ischemia, and 2 h reflow following 2 h ischemia, and then examined changes in concentrations of these substances during and after incomplete cerebral ischemia. Also examined were interrelations of changes in these substance levels during ischemia. In the cerebral cortex, levels of ATP, PCr, Glu, and ACh decreased, and levels of Lac, Ch, and GABA increased during ischemia. After recirculation, levels of ATP, PCr, Ch, and GABA tended to return to the normal range. On the other hand, the Lac level remained in the ischemic range and the Glu level rose and greatly exceeded the normal range. With regard to ACh, most animals showed normal levels but some exceeded the normal range. Changes in the subcortical regions were qualitatively the same as those in the cerebral cortex during and after ischemia (except with Glu), but only smaller in degrees. Glu levels remained unchanged during ischemia. Correlation of the levels of these substances in the cerebral cortex was examined using normal and ischemic values. A high correlation was generally observed between ATP and other substance levels. The relations between ATP and either PCr or Glu levels were linear. The relation between ATP and ACh levels was logarithmic. The relations between ATP and either Lac, Ch, or GABA levels were exponential. Namely, ACh, Lac, Ch, and GABA levels stayed constant until ATP fell to some fixed low level, suggesting the existence of a threshold. High correlations were also observed among Lac, Ch, and GABA levels.  相似文献   

4.
5.
Reduction of aerobic exercise performance observed under hypoxic conditions is mainly attributed to altered muscle metabolism due to impaired O(2) delivery. It has been recently proposed that hypoxia-induced cerebral perturbations may also contribute to exercise performance limitation. A significant reduction in cerebral oxygenation during whole body exercise has been reported in hypoxia compared with normoxia, while changes in cerebral perfusion may depend on the brain region, the level of arterial oxygenation and hyperventilation induced alterations in arterial CO(2). With the use of transcranial magnetic stimulation, inconsistent changes in cortical excitability have been reported in hypoxia, whereas a greater impairment in maximal voluntary activation following a fatiguing exercise has been suggested when arterial O(2) content is reduced. Electromyographic recordings during exercise showed an accelerated rise in central motor drive in hypoxia, probably to compensate for greater muscle contractile fatigue. This accelerated development of muscle fatigue in moderate hypoxia may be responsible for increased inhibitory afferent signals to the central nervous system leading to impaired central drive. In severe hypoxia (arterial O(2) saturation <70-75%), cerebral hypoxia per se may become an important contributor to impaired performance and reduced motor drive during prolonged exercise. This review examines the effects of acute and chronic reduction in arterial O(2) (and CO(2)) on cerebral blood flow and cerebral oxygenation, neuronal function, and central drive to the muscles. Direct and indirect influences of arterial deoxygenation on central command are separated. Methodological concerns as well as future research avenues are also considered.  相似文献   

6.
Cerebral carbohydrate metabolism during acute hypoxia and recovery   总被引:29,自引:20,他引:9  
Abstract— The levels of ATP, ADP, AMP and phosphocreatine, of four amino acids, and of 11 intermediates of carbohydrate metabolism in mouse brain were determined after: (1) various degrees of hypoxia; (2) hypoxia combined with anaesthesia; and (3) recovery from severe hypoxia. Glycogen decreased and lactate rose markedly in hypoxia, but levels of ATP and phosphocreatine were normal or near normal even when convulsions and respiratory collapse appeared imminent. During 30 s of complete ischaemia (decapitation) the decline in cerebral ATP and phosphocreatine and the increase in AMP was less in mice previously rendered hypoxic than in control mice. From the changes we calculated that the metabolic rate had decreased by 15 per cent or more during 30 min of hypoxia. Hypoxia was also associated with decreases of cerebral 6-phosphogluconate and aspartate, and increases in alanine, γ-aminobutyrate, α-ketoglutarate, malate, pyruvate, and the lactate :pyruvate ratio. Following recovery in air (10 min), increases were observed in glucose (200 per cent), glucose-6-phosphate, phosphocreatine and citrate, and there was a fall in fructose-1, 6-diphosphale. Similar measurements were made in samples from cerebral cortex, cerebellum, midbrain and medulla. Severe hypoxia produced significant increases in lactate and decreases in glycogen in all areas; γ-aminobutyrate levels increased in cerebral cortex and brain stem, but not in cerebellum. No significant changes occurred in ATP and only in cerebral cortex was there a significant fall in phosphocreatine. Phosphocreatine, ATP and glycogen were determined by quantitative histochemical methods in four areas of medulla oblongata, including the physiological respiratory centre of the ventromedial portion. After hypoxia, ATP was unchanged throughout and the changes (decreases) in phosphocreatine and glycogen were principally confined to dorsal medulla, notably the lateral zone. Thus there is no evidence that respiratory failure is caused by a ‘power’ failure in the respiratory centre. It is suggested that in extremis a protective mechanism may cause neurons to cease firing before high-energy phosphate stores have been exhausted.  相似文献   

7.
脑缺血后的脑微血管变化   总被引:2,自引:0,他引:2  
Tang MK  Feng WH  Xu QP 《生理科学进展》2006,37(3):236-238
大脑微血管具有独特的组织结构,这种结构对脑组织起到了保护性屏障作用,局部脑缺血可以引起这种屏障功能破坏,导致血液成分渗出,以及与炎症反应密切相关的整合素表达明显增加,促使炎性细胞以及血小板等向缺血局部聚集和迁移,从而造成局部微血管阻塞。同时,血管内皮细胞基质金属蛋白酶表达明显增加,内皮细胞和星形胶质细胞表面的结构整合素以及对应的基质配体丢失,使微血管细胞间的紧密联系破坏。以上这些变化伴随着神经细胞的损伤,同时,与血管生成和神经发生相关的受体上调,缺血局部区域出现血管生成和神经发生现象,这些过程可能与缺血后期脑功能的恢复相关。本文主要就脑缺血以后脑微血管的变化进行了综述,并对其中的问题以及今后脑血管病研究的发展进行了探讨。  相似文献   

8.
Calcium and pH homeostasis in neurons during hypoxia and ischemia   总被引:5,自引:0,他引:5  
Yao H  Haddad GG 《Cell calcium》2004,36(3-4):247-255
One of the important events during hypoxia or ischemia in the brain (or other organs for that matter, including the myocardium) is the accumulation of Ca2+ ions intracellularly. Although various studies have shown various sources of and routes for Ca2+ entry and accumulation, it is clear now that it is likely that there is a multitude rather than a single mechanism for this accumulation. In this review, we highlight this Ca2+ accumulation during low O2 states and discuss some of the mechanisms leading to accumulation for two main reasons: (a) an accumulation of Ca2+ in the cytosol has been proven to be deleterious for cell function although this accumulation of Ca2+ and consequences represent only a limited view of events that can lead to cell injury during such stress and (b) developing therapeutic strategies involving the reduction or elimination of this accumulation depends, by and large, on the mechanism of entry. In addition to reviewing some of these Ca2+ events, we will also review the relation between pH (H+) and Ca2+ since these two ions and their regulation are tied to each other in a major way. For example, extracellular acidosis, which can occur during ischemia, has a remarkable effect on the function of some of the Ca2+ entry routes.  相似文献   

9.
Early palatal development in various complete and incomplete forms of cleft lip and/or palate (CLP) was studied from birth to 3 months of age by means of dental casts. Palatal morphology (shape) and dimensions--based on reproducible reference points--were determined in a group of 128 CLP children and 68 normal children who served as controls. Substantial normal palatal growth during the first 3 months of life was observed. Round arch forms changed into oval arch forms. Growth mainly takes place in the sagittal direction (+4 mm) (transverse: +1 mm). Palates of CLP children differed significantly dependent on the type of cleft and whether the cleft was complete or incomplete. Cleft lip and alveolus children and bilateral cleft lip and palate children had more elongated palatal arches, whereas unilateral cleft lip and palate children and cleft palate children had wider palatal arches than the control group. Incomplete clefts differed from the control group in the same direction as their complete cleft forms, though less distinctly. Preoperative orthopedics used in CLP patients does not stimulate growth. On the contrary, it even restricts growth.  相似文献   

10.
11.
The relationship of neurotransmitters and neuroeffectors to the energy state of the brain was examined in the gerbil model of ischemia after 5 and 15 min of bilateral common carotid artery occlusion only or with 1 hr of reperfusion. The gerbil brains were fixed by microwave irradiation and a total of 15 metabolites were measured from a single piece of tissue from either the hippocampus or the striatum. The rapid alterations in energy-related compounds and cyclic nucleotides appeared to be directly related both to the loss of oxygen and glucose during ischemia and the resupply of these nutrients during reflow. Significant reduction in the level of monoamines occurred prinicipally during reflow, at a time when the energy-related metabolites were restored. It is proposed that the changes in monoamines were triggered by other ischemic-induced events unrelated to energy depletion.Presented in part at the Nineteenth Annual Meeting of the American Society for Neurochemistry, 1988  相似文献   

12.
The relation of the adenylate energy charge (ATP + 12ADP/ATP + ADP + AMP) to the phosphorylation state (ATP)/(ADP)(HPO42?) in rat liver and kidney was analyzed. Under physiological conditions and in ischemia, the two regulatory parameters, calculated from reported values for adenine nucleotides and inorganic phosphate (Pi) and from new observations, were closely coordinated. Energy charge was an inverse linear function of Pi and -log (1 - energy charge) was a positive linear function of log phosphorylation state. To evaluate experimental data with known energy charge, but unknown Pi, and to determine the theoretical relation between energy charge and phosphorylation state, Pi was estimated from a) the regression equation: Pi, μmol/g wet wt tissue = 1.05 - energy charge/0.073 and b) the empirical relationship: (Pi/2Pa) + energy charge = k, where Pa = σAMP + 2ADP + 3ATP and k = 1. With both estimates, the relation between phosphorylation state and energy charge for the experimental data was, within error, the same as that observed with measured Pi and concordant with theoretical values. Over the physiological range of energy charge (~0.85 – 0.95, log phosphorylation state ~3.3 – 4.3), apparent ΔGATP (×2) was closer to the range of ΔG observed by Wilson et al (Biochem. J. 140:57, 1974) for transfer of two electrons from mitochondrial NAD to the cytochrome c couple than the ΔGATP (×2) they reported, supporting their conclusion that near-equilibrium exists between the mitochondrial respiratory chain and the cytoplasmic phosphorylation state under physiological conditions. From evidence presented, it is postulated that the phosphorylation state is regulated by the adenylate energy charge.  相似文献   

13.
The effect of ischemia reperfusion or hypoxia reoxygenation on pulmonary vascular permeability and resistance was studied in 25 isolated blood-perfused dog lungs. Vascular permeability, assessed by determining filtration coefficient (Kf), and vascular resistances were measured at the beginning and end of the experiment. Ischemia reperfusion was produced by occluding blood flow to the lung for 3 h and reperfusing for 1 h, whereas hypoxia reoxygenation was obtained by ventilating the lung with 95% N2-5% CO2 for 3 h and then ventilating with 95% O2-5% CO2 for 1 h with no interruption of perfusion. There was a significant increase in Kf in both ischemia reperfusion and hypoxia reoxygenation groups (51 and 85%, respectively), and total vascular resistance increased greatly in both groups (386 and 532%, respectively). Two additional groups were also studied in which the ischemia reperfusion or hypoxia reoxygenation lungs were pretreated with allopurinol (20 micrograms/ml). The Kf did not significantly increase in either the allopurinol ischemia reperfusion or the allopurinol hypoxia reoxygenation groups (22 and 6%, respectively). However, total vascular resistance significantly increased in both groups (239 and 224%, respectively). Although vascular permeability is modestly increased by both ischemia reperfusion and hypoxia reoxygenation, the predominant change in these conditions is the increased vascular resistance, which predominantly affects the postcapillary resistance and would result in a greater tendency for edema to develop in these slightly damaged lungs. Allopurinol, which inhibits xanthine oxidase, attenuated the permeability changes in both groups and may be useful in preventing ischemia reperfusion injury in certain conditions.  相似文献   

14.
Conscious sheep (n = 6), exposed to 3.5 h of normobaric hypoxia (arterial PO2 = 40 Torr) while allowed varying arterial PCO2, showed striking early increments of cerebral blood flow (CBF; +200-250%, by radiolabeled microspheres) and decrements of cerebral vascular resistance (CVR) in association with an early temporary elevation of cerebral O2 consumption (CMRO2; +25-60%). After 2 h, CMRO2 returned to normoxic levels, while CBF declined to a lower but still elevated level (+150%). CBF/CMRO2 increased twofold, while cerebral fractional extraction of O2 was unchanged. Mean arterial pressure was unchanged, but cerebral venous pressure rose (+11 mmHg) in a stable fashion such that cerebral perfusion pressure declined by 13%. Cerebral venous hematocrit and hemoglobin concentration were both elevated (+2.2-2.7% Hct units; +1.0-1.3 g/dl, respectively) above the corresponding arterial values between 150 and 210 min of hypoxia, suggesting venous hemoconcentration in possible association with a transcapillary fluid shift. CBF, and especially CVR, were well correlated with arterial O2 content.  相似文献   

15.
We evaluated the possibility that ischemic preconditioning could modify hepatic energy metabolism during ischemia. Accordingly, high-energy nucleotides and their degradation products, glycogen and glycolytic intermediates and regulatory metabolites, were compared between preconditioned and nonpreconditioned livers. Preconditioning preserved to a greater extent ATP, adenine nucleotide pool, and adenylate energy charge; the accumulation of adenine nucleosides and bases was much lower in preconditioned livers, thus reflecting slower adenine nucleotide degradation. These effects were associated with a decrease in glycogen depletion and reduced accumulation of hexose 6-phosphates and lactate. 6-Phosphofructo-2-kinase decreased in both groups, reducing the availability of fructose-2, 6-bisphosphate. Preconditioning sustained metabolite concentration at higher levels although this was not correlated with an increased glycolytic rate, suggesting that adenine nucleotides and cAMP may play the main role in the modulation of glycolytic pathway. Preconditioning attenuated the rise in cAMP and limited the accumulation of hexose 6-phosphates and lactate, probably by reducing glycogen depletion. Our results suggest the induction of metabolic arrest and/or associated metabolic downregulation as energetic cost-saving mechanisms that could be induced by preconditioning.  相似文献   

16.
—The concentration of ATP, ADP, AMP, phosphocreatine and of 5 intermediates of carbohydrate metabolism were determined in rodent brain after single and repeated seizures induced by either electroshock (ES), flurothyl or pentylenetetrazol (PTZ). In paralysed-ventilated rats, one ES produced a 4–5 fold increase in cortical glycolytic flux (estimated from changes in glucose and lactate), and associated increases in pyruvate and in the lactate/pyruvate ratio. Total high energy phosphates declined during the seizure; a decrease was also calculated in cortical tissue pH and in the cytoplasmic [NAD+]/[NADH] ratio. Similar changes in brain were observed in ventilated mice after ES, but in paralysed animals, no decrease in high energy phosphates occurred during the first seizure. More vigorous and prolonged chemically-induced seizures in both rats and mice elicited a decrease in the cerebral energy reserves with a rise in lactate and in the lactate/pyruvate ratio. At all times during the seizures the cerebral venous blood had a higher oxygen tension than that of control animals (rats) or was visibly reddened (mice), implying that oxygen availability to brain exceeded metabolic demands. It is proposed that the development of‘non-hypoxic’cerebral lactacidosis during seizures is part of the overall metabolic response of the brain to an abrupt increase in energy consumption. The response constitutes a homeostatic influence which promotes cerebral vasodilatation, thereby increasing blood flow and the delivery of substrates. With repeated seizures, delivered 2 min apart, glycogen declined progressively, but concentrations of the adenine nucleotides appeared to plateau, suggesting that a new energy balance had been established. However, after 20–25 seizures, the attacks became self-generating and there was a further reduction in the tissue high energy phosphate stores, a fall in brain glucose and in the brain/blood glucose ratio. It is concluded that the brain possesses a limited capacity to adjust its metabolism to meet the increased energy requirements of single or repeated seizures, but that this mechanism ultimately fails during status epilepticus unless the abnormal electrical discharges, themselves, are brought under control.  相似文献   

17.
The effects of mild hypoxia on brain oxyhemoglobin, cytochrome a,a3 redox status, and cerebral blood volume were studied using near-infrared spectroscopy in eight healthy volunteers. Incremental hypoxia reaching 70% arterial O2 saturation was produced in normocapnia [end-tidal PCO2 (PETCO2) 36.9 +/- 2.6 to 34.9 +/- 3.4 Torr] or hypocapnia (PETCO2 32.8 +/- 0.6 to 23.7 +/- 0.6 Torr) by an 8-min rebreathing technique and regulation of inspired CO2. Normocapnic hypoxia was characterized by progressive reductions in arterial PO2 (PaO2, 89.1 +/- 3.5 to 34.1 +/- 0.1 Torr) with stable PETCO2, arterial PCO2 (PaCO2), and arterial pH and resulted in increases in heart rate (35%) systolic blood pressure (14%), and minute ventilation (5-fold). Hypocapnic hypoxia resulted in progressively decreasing PaO2 (100.2 +/- 3.6 to 28.9 +/- 0.1 Torr), with progressive reduction in PaCO2 (39.0 +/- 1.6 to 27.3 +/- 1.9 Torr), and an increase in arterial pH (7.41 +/- 0.02 to 7.53 +/- 0.03), heart rate (61%), and ventilation (3-fold). In the brain, hypoxia resulted in a steady decline of cerebral oxyhemoglobin content and a decrease in oxidized cytochrome a,a3. Significantly greater loss of oxidized cytochrome a,a3 occurred for a given decrease in oxyhemoglobin during hypocapnic hypoxia relative to normocapnic hypoxia. Total blood volume response during hypoxia also was significantly attenuated by hypocapnia, because the increase in volume was only half that of normocapnic subjects. We conclude that cytochrome a,a3 oxidation level in vivo decreases at mild levels of hypoxia. PaCO is an important determinant of brain oxygenation, because it modulates ventilatory, cardiovascular, and cerebral O2 delivery responses to hypoxia.  相似文献   

18.
Molecular Biology - Na,K-ATPase maintains sodium and potassium homeostasis. It is the only known receptor for cardiotonic steroids such as ouabain. Binding of ouabain to Na,K-ATPase leads to the...  相似文献   

19.
20.
Nocturnal hypoxia is a major pathological factor associated with cardiorespiratory disease. During wakefulness, a decrease in arterial O2 tension results in a decrease in cerebral vascular tone and a consequent increase in cerebral blood flow; however, the cerebral vascular response to hypoxia during sleep is unknown. In the present study, we determined the cerebral vascular reactivity to isocapnic hypoxia during wakefulness and during stage 3/4 non-rapid eye movement (NREM) sleep. In 13 healthy individuals, left middle cerebral artery velocity (MCAV) was measured with the use of transcranial Doppler ultrasound as an index of cerebral blood flow. During wakefulness, in response to isocapnic hypoxia (arterial O2 saturation -10%), the mean (+/-SE) MCAV increased by 12.9 +/- 2.2% (P < 0.001); during NREM sleep, isocapnic hypoxia was associated with a -7.4 +/- 1.6% reduction in MCAV (P <0.001). Mean arterial blood pressure was unaffected by isocapnic hypoxia (P >0.05); R-R interval decreased similarly in response to isocapnic hypoxia during wakefulness (-21.9 +/- 10.4%; P <0.001) and sleep (-20.5 +/- 8.5%; P <0.001). The failure of the cerebral vasculature to react to hypoxia during sleep suggests a major state-dependent vulnerability associated with the control of the cerebral circulation and may contribute to the pathophysiologies of stroke and sleep apnea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号